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Preface  
 

 

This book covers 3D graphics programming in Windows, using DirectX, and coding in C++. It 
assumes that you have a basic understanding of C++. Although many applications could profit 
from object-oriented constructs, we do not use them in this book in order to avoid the additional 
complications. The book includes one chapter (Chapter 6) on the fundamentals of Windows API 
programming, but it alone may be insufficient for someone who is totally unfamiliar with this topic. 
Readers with no previous Windows programming experience may need to devote some time to 
acquiring these skills before plunging into the details of 3D graphics. We recommend our own 
book titled Windows Graphics Programming, published by M & T Books. This title was designed to 
provide the necessary skills in Windows graphics without overwhelming the reader with too many 
complications and details. Nevertheless, any good book on Windows API programming would 
serve this purpose, such as the ones by Petzold, Rector and Newcomer, and Schildt. Their titles 
can be found in the Bibliography.  

 

 

This book is for you if you wish to learn Windows 3D graphics and to apply it to the development of 
computer games, simulations, or any form of 3D, high-performance, multimedia programming. The 
road is not an easy one; there is much to learn. 3D is rightly called the "rocket science" of 
programming. However, the rewards of working on the cutting edge of this technology are 
enormous.  

 
 What Is in the Book  
 

 

In this book we approach Windows programming at its most basic level, that is, using the Windows 
Application Programming Interface (API). We do not use the Microsoft Foundation Class Library 
(MFC) or other wrapper functions that are furnished as part of commercial development 
environments. Microsoft's MFC is an object-oriented framework that encapsulates many of the 
functions in the API. It is intended for use with Developer's Studio App Wizard, which facilitates 
creating a program skeleton for a Windows application. But the MFC interface introduces a 
processing overhead that slows down execution and limits program functionality. Graphics 
programs in general, and 3D applications in particular, cannot afford this overhead. Furthermore, 
DirectX provides no special support for MFC; therefore, its use offers no advantages to the 
graphics programmer.  

 

 
Please note that although we do not use the wrapper functions of the MFC, we do rely heavily on 
the other tools that are part of the Visual C++ development package. These include resource 
editors for creating menus, dialog boxes, icons, bitmaps, and other standard program components. 
There are no advantages to hand-coding these program elements.  

 

 

Part I of this book is devoted to the fundamentals of 3D graphics. Here we present the tools and 
resources of PC graphics programming and introduce the reader to various graphics 
representations, image modeling techniques, mathematical transformations, data rendering 
operations, and animation. The material for this part was selected based on the minimal 
knowledge required for understanding and using DirectX 3D graphics. The theoretical topics and 
the mathematics have been reduced to the bare essentials. By presenting this material first, we 
avoid the distraction of having to explain theoretical concepts when discussing programming 
topics. This first part also contains a chapter on the fundamentals of Windows API programming.  

 
Part II covers DirectDraw. DirectDraw is the 2D graphics environment in DirectX. We devote 
considerable space to DirectDraw programming for two reasons. The first one is that 3D graphics 



in DirectX are based on DirectDraw; a 3D application executes in the DirectDraw environment. The 
second reason is that few commercial applications are exclusively 3D. Most programs use 3D 
functions to model some of the objects, whereas others, such as backgrounds and sprites, are 
rendered in 2D graphics. Mastering 2D in DirectDraw is an essential skill for the DirectX 3D 
programmer.  

 

 

Parts III and IV are devoted to 3D graphics programming in DirectX retained mode. Part III 
introduces 3D graphics and discusses retained mode programming at the system, device, and 
viewport levels. Part IV discusses programming techniques at the lower levels of the retained mode 
interface. We do not discuss immediate mode programming, but not because we consider it 
unimportant. Our reason for not including immediate mode was a simple matter of space. To 
present a bare-bones discussion of DirectX immediate mode would have required substantially 
reducing and diluting the rest of the material. The result would have been a book that visited many 
topics superficially, but no one subject in depth. Because we believe that retained mode is the most 
reasonable development environment at the application level, as well as the easiest way to learn 
3D graphics programming, we concentrated on it. Other factors that influenced our choice are 
mentioned in the following section.  

 



Direct3D: Past and Future  
 

 

In more than one sense 3D graphics programming is not for the faint-hearted. We believe that at 
present, any Windows 3D programming tool, facility, or development environment, should have a 
warning label stating that it is work in progress. If, as a programmer, you need to operate in a 
stable, well-defined, consistently evolving platform, then 3D graphics should not be your chosen 
field.  

 

 

Although 2D graphics in DirectX always take place in DirectDraw, the 3D DirectX interface 
changes so much and so frequently that, for many programmers, it is a challenge just to keep up 
with the updates. When we began writing this book Microsoft's DirectX 5 was recently released. 
We finished it under DirectX 7. Each of these DirectX versions (5, 6, and 7) contained major 
expansions, additions, and corrections to the previous ones. Furthermore, each consecutive 
version of the DirectX SDK seemed to reflect a new vision of the 3D graphics paradigm.  

 

 

At this time the future of 3D graphics in DirectX remains undefined. For DirectX 8, originally 
planned for release in the first half of the year 2000, Microsoft announced a completely new 
development environment, which was code-named Fahrenheit. The Fahrenheit product was being 
developed as a joint venture with Silicon Graphics Corporation. Silicon Graphics is the creator of 
OpenGL, a 3D environment that has gained considerable prevalence in graphics workstations. 
Early this year, Silicon Graphics pulled out of the Fahrenheit project. Microsoft has not yet said if it 
will continue to develop Fahrenheit on its own, or if the project will be scrapped. What will be in 
DirectX 8 is now a mystery.  

 

 

All of this generated considerable uncertainty regarding the future of the retained mode and 
immediate mode interfaces of DirectX. Will Fahrenheit replace retained mode, immediate mode, 
neither, or both? Because we are not even sure that there will be a Fahrenheit product, or what 
else DirectX 8 may contain, any answer is pure guesswork. This state-of-affairs in 3D development 
environments and tools will continue to affect DirectX for many years to come. The fact that 
Windows is a Microsoft product further complicates matters. Currently DirectX contains three 3D 
development environments: retained mode, immediate mode, and the DirectX foundation. In the 
near future the product now called Fahrenheit may be added to the list. Not long after the release 
of a 3D toolkit or environment, programmers start creating software based on the new interface. 
These new products are marketed with the expectation that they will continue to execute in future 
versions of the operating system. As a consequence Microsoft is compelled to provide support for 
all interfaces or development environments, even after they become outdated, or even obsolete. 
This all means that a new 3D graphics paradigm does not replace the existing ones because the 
old interfaces have to be kept operational so as not to break commercial code. In the near future a 
DirectX 3D programmer may be able to work under retained mode, immediate mode, DirectX 
foundation, or Fahrenheit—all of this not mentioning other 3D development tools that exist outside 
of DirectX, such as OpenGL or the proprietary APIs of the various chip manufacturers.  

 

 

Out of this quagmire of options and development tools we selected DirectX retained mode. Some 
may question the validity of this choice. In DirectX 7, Microsoft announced that retained mode is 
now in a maintenance phase. This statement is interpreted to mean that Microsoft lost interest in 
the future development in retained mode. Another fact is that many professional DirectX 3D 
programmers work in immediate mode, and recommend it as a more powerful alternative. Although 
this is true, it is also undeniable that immediate mode complicates 3D programming by several 
orders of magnitude. Furthermore, there is no assurance that the next release of DirectX will not 
place immediate mode in a maintenance phase. Retained mode, on the other hand, is easier to 
learn and use. The fact that it is not being constantly tinkered with at this stage could be seen as an 
asset, rather than a drawback. We have no doubts that Windows and DirectX must continue to 



support retained mode for years to come. Not being able to cover both retained mode and 
immediate mode in a single volume we preferred the one that is easier to learn and, perhaps, a 
more stable alternative.  

 



About the Sample Programs  
 

 

How to use code listing in programming books is a controversial topic. On the one hand you see 
books with little or no code listings, or with short code snippets that miss so many details that they 
turn out to be virtually useless as programming samples. On the other hand there are books that 
list entire programs, often so complicated that the reader gets lost in innumerable details unrelated 
to the point at hand. Most programmers appreciate the value of a code sample that compiles and 
runs as described. In many cases this is all you need to understand a programming technique or to 
apply it in your own code. Our approach in this book consists of listing in the text the processing 
routines and code fragments that are necessary for illustrating the point being discussed. The CD-
ROM furnished with the book contains entire programs, which can be re-compiled by the reader in 
order to assert their validity.  

 

 

The book's CD-ROM contains all the programs, projects, and templates discussed in the book. 
Each project is located in its own directory and contains all the files necessary for recreating the 
samples using Visual C++ versions 5 or 6. The executables were created using the Debug 
configuration of Microsoft Developer Studio. The authors or the publisher make no copyright claims 
regarding the code listings, which you are free to copy, edit, or reuse in any way you see fit.  

 



Portability Issues  
 

 

It must be clearly understood that DirectX is an interface, for which the graphics hardware must 
provide implementation. Microsoft furnishes some services and facilities that graphics hardware 
vendors can use to test their product's compliance with the standard, but there is no compulsory 
protocol. Neither is there a formal certificate that assures a programmer or a user that a hardware 
device is totally compatible with DirectX. Furthermore, a particular hardware product may support 
certain DirectX functions and not others. The result is revival of the device-dependency ghosts that 
Windows was designed to eliminate in the first place.  

 

 

The DirectX 3D programmer should be ready to tackle many hardware-related problems. Hardware 
compatibility issues have determined that most high-end 3D applications are developed for a 
specific subset of graphics cards. It is virtually impossible to create a full-featured 3D program that 
executes flawlessly in every video card on the market. Even the simple demonstration programs 
developed for this book have shown compatibility problems when tested in five popular video cards. 
Ensuring that the 3D application executes correctly in the targeted hardware is one of the 
programmer's most difficult, and often exasperating, tasks.  

 



Contacting the Authors  
 

 
Although we can't promise to solve every software- or hardware-related problem that arises from 
this book, we will take a look at them. You can contact the authors at the following email 
addresses:  

 
 julio.sanchez@mankato.msus.edu  
 
 cantom@mail.mankato.msus.edu  
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Chapter 1: The PC as a Graphics Machine  
 
 Overview  
 

 

This chapter contains a smorgasbord of introductory topics that relate to graphics on the PC. The 
idea is to provide a historical summary of the evolution of PC graphics, an overview of the state-of-
the-art, and a short list of related technologies and fields of application. Our rationale for including 
this material is the difficulty in understanding the characteristics of current PC graphics systems 
without knowing how and why they came into existence. Many of the PC graphics hardware 
components in use today evolved through a series of changes, some of which were influenced by 
concerns of backward compatibility.  

 



History and Evolution  
 

 

Today, a typical computer is equipped with a high-resolution display, a graphics card or integral 
video system, and an operating system that supports a graphical user interface (GUI). Graphics 
are now the norm, but this was not always the case; for several decades computer input and 
output was text-based and machines were equipped with teletype terminals and line printers. It 
was in the 1960s that television technology was adapted to producing computer output on a 
cathode ray tube (CRT).  

 

 
Sometimes, the transition from text-based systems into interactive graphics was slow. Today we 
watch in amazement a video clip taken in the early 1960s of Doug Englebart demonstrating a 
graphical user interface based on mouse input and CRT graphics. It took fifteen years for this 
system to become commercially available in the Apple Lisa, predecessor to the Macintosh.  

 
 Cathode ray tube technology  
 

 

Computers were not the first machines to use the cathode ray tube (CRT) for graphic display. The 
oscilloscope, a common laboratory apparatus, performs operations on an input signal to display 
the graph of the electric or electronic wave on a fluorescent screen. In computer applications the 
technologies most used for CRT displays can be classified into three groups: storage tube, vector 
refresh, and raster-scan.  

 

 

In its simplest form, the CRT display consists of a glass tube whose interior is coated with a 
specially formulated phosphor; when struck by an electron beam, it remains fluorescent for up to 
one hour. This technology, usually called a storage tube display, is used as a display and as a 
storage device. Flooding the tube with a voltage turns the phosphor to its dark state, which erases 
the image. One limitation is that specific screen areas cannot be erased individually. Because of 
this, the entire CRT surface must be redrawn to make a small change in a displayed image. 
Furthermore, the storage tube display has no color capabilities and contrast is low. For these 
reasons, in spite of its inherent simplicity, storage tube displays are seldom used in computers and 
never in microcomputers.  

 

 

In contrast with the storage tube display, the vector-refresh display uses a short-persistence 
phosphor whose coating must be reactivated by an electron beam at the rate of 30 to 50 times per 
second. In addition to the cathode ray tube, a vector-refresh system requires a display file and a 
display controller. The display file is a memory area that holds the instructions for drawing the 
objects to be displayed. The display controller reads this information from the display file and 
transforms it into digital commands and data, which are sent to the CRT. Figure 1-1 shows the 
fundamental elements of a vector-refresh display system.  

 



 

  
 
 Figure 1-1: Vector-refresh display 

   
 

 
The main disadvantages of the vector-refresh CRT are its high cost and limited color capabilities. 
For these reasons vector-refresh displays have not been used in the PC, although they have been 
used in radar applications and in some of the early video games.  

 

 

During the 1960s, several important advances took place in television technology that made 
possible the use of mass-produced components in display devices for computer systems. At that 
time Conrac Corporation developed a computer image processing technology, known as raster-
scan graphics, which took advantage of the methods of image refreshing used in television 
receivers, as well as other television standards and components. In a raster-scan display the 
electron beam follows a horizontal line-by-line path, usually starting at the top-left corner of the 
CRT surface. The scanning cycle takes place 50 to 70 times per second. At the start of each 
horizontal line the controller turns on the electron beam. The beam is turned off during the 
horizontal and vertical retrace cycles. The scanning path is shown in Figure 1-2.  

 

 

  
 
 Figure 1-2: Path of the electron beam in a raster-scan system 

   
 

 A raster-scan display surface is divided into a pattern of individual dots, usually called pixels. The 
term pixel was derived from the words picture and elements. An area of RAM is reserved in the 
computer's memory space to record the state of each individual screen pixel. The simplest 
possible storage scheme corresponds to a black and white display system where each pixel 



corresponding pixel as white. If the memory bit is cleared, the pixel is left dark. The area of 
memory reserved for the screen display is frequently called the frame buffer or the video buffer, 
and the entire video system is said to be memory-mapped. Figure 1-3 shows the elements of a 
memory-mapped video system.  

 

 

  
 
 Figure 1-3: Memory-mapped video system 

   
 

 

A memory-mapped color video system requires a more elaborate scheme. In color systems the 
CRT is equipped with an electron gun for each color that is used in activating the pixels. The most 
common approach is to use three color-sensitive guns: one for the red, one for the green, and one 
for the blue components. Color data must be stored separately in memory for each of the three 
colors, either in individual memory maps, or in predefined units of storage. For example, if one 
memory byte is used to encode the pixel's color attributes, three bits could be assigned to encode 
the red color, two bits to encode the green color, and three bits for the blue color.  

 

 

One possible mapping of colors to pixels is shown in color plate 1. In this example we have 
arbitrarily divided one memory byte into three separate bit fields which encode the three-color 
values that determine each individual screen pixel. The individual bits are designated with the 
letters R, G, and B, respectively. Since eight combinations can be encoded in a three-bit field, the 
blue and red color components could each have eight levels of intensity. Because we have used a 
two-bit field to encode the green color, it can only be represented in four levels of intensity. The 
total number of combinations that can be encoded in eight bits is 256, which, in this case, is also 
the number of different color values that can be represented in one memory byte. The color code 
is transmitted by the display controller hardware to a digital-to-analog converter (DAC), which, in 
turn, transmits the color video signals to the CRT.  

 

 

All video systems used in the PC are of the memory-mapped, raster-scan type. The advantages of 
a raster-scan display are low cost, color capability, and easy interaction with the operator. One 
major disadvantage is the grainy physical structure of the display surface. Among other 
aberrations, this causes lines that are not vertical, horizontal, or at exactly 45 degrees, to exhibit a 
staircase effect, shown in Figure 1-4.  

 

 

  
 
 Figure 1-4: Staircase effect in a raster-scan system 



 Figure 1-4: Staircase effect in a raster-scan system 

   
 

 

Raster-scan systems also have limitations in implementing animation. Two factors contribute to 
this problem: first, all the screen pixels within a rectangular area must be updated with each image 
change. Second, the successive images that create the illusion of motion must be flashed on the 
screen at a fast rate to ensure smoothness. These constraints place a large processing load on 
the microprocessor and the display system hardware, in any display system.  

 
 PC video technologies  
 

 

In 1981 IBM introduced the first model of its microcomputer line. The original machines were 
offered with either a monochrome display adapter (MDA), or a graphics system named the 
color/graphics monitor adapter (CGA). IBM's notion was that users who intended to use the PC for 
text operations exclusively would purchase a machine equipped with the MDA video system, while 
those requiring graphics would buy one equipped with the CGA card. In reality, the CGA video 
system provided only the most simple and unsophisticated graphics functions. The color card was 
also plagued with interference problems that created a screen disturbance called "snow." 
However, the fact that the original IBM Personal Computer was furnished with the optional CGA 
card signaled that IBM considered video graphics an important part of microcomputing.  

 

 

At present, PC video hardware includes an assortment of systems, cards, monitors, and options 
manufactured and marketed by many companies. In the following pages we briefly discuss the 
history and evolution of the better-known PC video systems. Systems that were short-lived or that 
gained little popularity, such as the PCJr, the IBM Professional Graphics Controller, the Multicolor 
Graphics Array, and the IBM Image Adapter A, are not discussed.  

 
 Monochrome Display Adapter  
 

 

The MDA is the original alphanumeric display card designed and distributed by IBM for the 
Personal Computer. Originally, it was sold as the Monochrome Display and Printer Adapter 
because it included a parallel printer port. It could display the entire range of alphanumeric and 
graphic characters in the IBM character set, but did not provide graphics functions. The MDA was 
compatible with the IBM PC, PC XT, and PC AT, and some of the earlier models of the PS/2 line. It 
could not be used in the PCJr, the PC Convertible, or MicroChannel PS/2 machines. The MDA 
required a monochrome monitor of long-persistence (P39) phosphor. The video hardware was 
based on the Motorola 6845 CRT controller. The system contained 4K of on-board video memory, 
mapped to physical address B0000H.  

 

 

The MDA is a pure alphanumeric display; the programmer cannot access the individual screen 
pixels, but sees the video screen as a collection of character and attribute cells. The character 
codes occupy the even-numbered bytes of adapter memory and the display attributes the odd-
numbered bytes. This special storage and display scheme was conceived to save memory space 
and to simplify programming. Figure 1-5 shows the cell structure of the MDA video memory space 
and the bitmap for the attribute cells.  



 

  
 
 Figure 1-5: Memory mapping and attributes in the MDA adapter 

   
 
 Hercules Graphics Card  
 

 

The original Hercules Graphics Card (HGC), released in 1982, emulates the monochrome 
functions of the MDA, but also can operate in a graphics mode. Like the MDA, the HGC includes a 
parallel printer port. Because of its graphics capabilities, the HGC became somewhat of a standard 
for monochrome systems. The display buffer consists of 64K of video memory. In alphanumeric 
mode the system sees only the 4K required for the text mode. However, when the HGC is in the 
graphics mode, the 64K are partitioned as two 32K graphics pages located at physical addresses 
B0000H to B7FFFH and B8000H to BFFFFH. Graphic applications can select which page is 
displayed.  

 
 Color Graphics Adapter  
 

 

The Color Graphics Adapter (CGA), released early in 1982, was the first color and graphics card 
for the PC. The CGA could operate in seven modes, which included monochrome and color 
graphics. The text characters are displayed in 16 shades of gray. Characters are double width and 
40 can be fit on a screen line. Graphics mode number 6 provided the highest resolution, which was 
640 horizontal by 200 vertical pixels.  

 

 

One notable difference between the CGA and the MDA was the lower-quality text characters of the 
color card. The reason for this is related to the size of the respective character cells, which is a box 
of 9 X 14 screen pixels in the MDA, and a box of 8 X 8 pixels in the CGA. The resulting graininess 
of the CGA text characters is so obvious that many users judged the card as unsuitable for text 
operations.  

 

 The CGA was designed so that it could be used with a standard television set, although it 
performed best when connected to an RGB color monitor. Timing and control signals were 



four 4K areas, each of which holds up to 2000 characters with their respective attributes. The CGA 
video memory pages are shown in Figure 1-6.  

 

 

  
 
 Figure 1-6: Memory mapping and attributes in the CGA color alpha modes 

   
 

 

As in the MDA, video memory in the CGA text modes consists of consecutive character and 
attribute bytes. (See Figure 1-6.) The mapping of the attribute bits in the black and white 
alphanumeric modes is identical to the one used in the MDA. (See Figure 1-6.) However, in the 
color alphanumeric modes the attribute bits are mapped differently. Figure 1-6 shows the bitmap 
for the attribute cells in the color alpha modes.  

 

 

The CGA is plagued with a disturbing screen interference, called snow. This irritating effect is 
related to CGA's use of RAM chips (called dynamic RAMs) which are considerably slower than the 
static RAMs used in the MDA card. In a CGA system, if the CPU reads or writes to the video buffer 
while it is being refreshed by the CRT Controller, a visible screen disturbance takes place. The 
only remedy is to synchronize screen updates with the vertical retrace signal generated by the 
6845. This is only possible during a short time interval, barely sufficient to set a few pixels. 
Therefore, graphics rendering is considerably slowed down by this synchronization requirement. 
Furthermore, during screen scroll operations the display functions must be turned off while the 
buffer is updated. This causes an additionally disturbing screen flicker.  

 
 Enhanced Graphics Adapter  
 

 

The Enhanced Graphics Adapter (EGA) was introduced by IBM in 1984 as an alternative to the 
much maligned CGA card. The EGA could emulate most of the functions and all the display modes 
of both the CGA and the MDA. On the other hand, the EGA had a greater character definition in 
the alphanumeric modes than the CGA, higher resolution in the graphics modes, and was not 
plagued with the snow and flicker problems of the CGA. In addition, EGA could drive an Enhanced 
Color Display with a graphics resolution of 640 X 350 pixels.  

 

 EGA introduced four new graphics resolutions, named the enhanced graphics modes. The new 
modes were numbered 13 through 16. The highest graphics resolution was obtained in the modes 
numbered 15 and 16, which displayed 640 X 350 pixels. The EGA used a custom video controller 



6845 video controller directly did not work on the EGA. EGA was furnished with optional on-board 
RAM in blocks of 64K. In the minimum configuration the card had 64K of video memory, and 256K 
in the maximum one.  

 

 

The EGA system had several serious limitations. In the first place, it supported write operations to 
most of its internal registers, but not read operations. This made it virtually impossible for software 
to detect and preserve the state of the adapter, which determined that EGA was unsuitable for 
memory resident applications or for multitasking or multiprogramming environments, such as 
Windows. Another limitation of the EGA card was related to its unequal definitions in the vertical 
and horizontal planes. This problem was also present in the HGC and the CGA cards. In the case 
of the EGA, with a typical monitor, the vertical resolution in graphic modes 15 and l6 is 
approximately 54 pixels per inch and the horizontal resolution approximately 75 pixels per inch. 
This gives a ratio of vertical to horizontal definition of approximately 3:4. Although not as bad as 
the 2:3 ratio of the HGC, this disproportion still determines that a pixel pattern geometrically 
representing a square is displayed on the screen as a rectangle and the pattern of a circle is 
displayed as an ellipse. This geometrical aberration complicates pixel path calculations, which 
must take this disproportion into account and make the necessary adjustments. The effect of an 
asymmetrical pixel density is shown in Figure 1-7.  

 

 

  
 
 Figure 1-7: Asymmetrical and symmetrical video resolutions 

   
 
 PS/2 video systems  
 

 

The PS/2 line of microcomputers was released by IBM in 1987. It introduced several new features, 
including a new system bus and board connectors, named the MicroChannel architecture, a 3.5-
inch diskette drive with 1.44MB of storage, and an optional multitasking operating system named 
OS/2. Machines of the PS/2 line came equipped with one of two new video graphics systems, with 
a third one available as an option.  

 

 The new video standards for the PS/2 line were the Multicolor Graphics Array (MCGA), the Video 
Graphics Array (VGA), and the 8514/A Display Adapter. The most notable difference between the 



same pixel density horizontally and vertically. Symmetrical resolution simplifies programming by 
eliminating geometrical aberrations during pixel plotting operations.  

 
 Video Graphics Array  
 

 

Video Graphics Array (VGA) is the standard video display system for PS/2 computer models 50, 
50z, 60, 70, and 80. IBM furnished VGA on the system board. VGA comes with 256K of video 
memory, which can be divided into four 64K areas called the video maps or bit planes. The system 
supports all the display modes of the MDA, CGA, and EGA cards of the PC family. In addition, 
VGA introduced graphics mode number 18, with 640 X 480 pixel resolution in 16 colors. The 
effective resolution of the text modes is 720 X 400. To display text in a graphics mode, three text 
fonts with different box sizes could be loaded from BIOS into the adapter. VGA soon became 
available as an adapter card for non-IBM machines and remains a PC video standard to this day.  

 
 8514/A Display Adapter  
 

 

The 8514/A Display Adapter is a high-resolution graphics system designed for PS/2 computers 
and was developed in the United Kingdom at the IBM Hursley Laboratories. The 8514/A system 
comprises not only the display adapter, but also the 8514 Color Display and an optional Memory 
Expansion Kit. The original 8514/A is compatible only with PS/2 computers that use the 
MicroChannel bus; it is not compatible with the PC line, PS/2 models 25 and 30, or non-IBM 
computers that do not use the MicroChannel architecture. Other companies developed versions of 
8514/A that are compatible with the Industry Standard Architecture (ISA) or Expanded Industry 
Standard Architecture (EISA) bus.  

 

 

The 8514/A Display Adapter consists of two sandwiched boards inserted into the special 
MicroChannel slot with the auxiliary video extension. The standard version comes equipped with 
512K of video memory. The memory space is divided into four maps of 128K each. In the standard 
configuration, the 8514/A displays 16 colors. However, if you install the optional Memory 
Expansion Kit, video memory |is increased to 1MB of space, which is divided into eight maps, 
extending the number of available colors to 256. The system is capable of four new graphics 
modes not available in VGA. IBM named them the advanced function modes. One of the new 
modes has 640 X pixels, and the remaining three modes have 1024 X 768 pixels. The 8514/A 
does not directly support any of the conventional alphanumeric or graphics modes of the other 
video standards because it executes only in the advanced function modes. In a typical system, 
VGA automatically takes over when a standard mode is set. The image is routed to the 8514/A 
monitor when an advanced function mode is enabled. An interesting feature of the 8514/A adapter 
is that a system containing it can operate with two monitors. In this case the usual setup is to 
connect the 8514 color display to the 8514/A adapter and a standard monitor to the VGA. Figure 1-
8 shows the architecture of a VGA/8514A system.  



 

  
 
 Figure 1-8: Architecture of a VGA/8514/A video system 

   
 

 

An interesting feature of the 8514/A, which presaged things to come, is that it contains a dedicated 
graphics chip that performs as a graphics coprocessor. Unlike previous systems, the system 
microprocessor cannot access video memory in 8514/A; instead this function is left to the graphics 
coprocessor. The greatest advantage of this setup is the improved performance of the graphics 
subsystem when compared to one in which the CPU is burdened with writing text and graphics to 
the video display. The 8514/A performs graphics functions through a high-level interface. The 
furnished software package is called the Adapter Interface, or AI. There are a total of 59 drawing 
functions in the AI, accessible through a software interrupt.  

 

 

Approximately two years after the introduction of the 8514/A, IBM unveiled another high-
performance, high-priced graphics board, designated the Image Adapter/A. The Image Adapter/A 
is compatible with the 8514/A at the Adapter Interface (AI) level but not at the register level. 
Because of its high price tag and IBM's unveiling of the XGA shortly after its introduction, the 
Image Adapter/A was short -lived.  

 
 Extended Graphics Array  
 

 

In September 1990, IBM disclosed preliminary information on a new graphics standard designated 
as the Extended Graphics Array, or XGA. The hardware was developed in the UK by the same 
team that created the 8514/A. An adapter card and a motherboard version of the XGA standard 
were later implemented. In 1992, IBM released a noninterlaced version of the XGA designated as 
XGA-2 or XGA-NI (noninterlaced). The XGA adapter is compatible with PS/2 MicroChannel 
machines equipped with the 80386 or 486 CPU. The system is integrated in the motherboard of 
IBM Models 90 XP 486 and Model 57 SLC, and is furnished as an adapter board in the Model 95 
XP 486. In 1992, Radius Inc. released the Radius XGA-2 Color Graphics Card for computers using 
the ISA or EISA bus. Other companies developed versions of the XGA system for MicroChannel 
and nonMicroChannel computers. XGA is found today in many laptop computers. Figure 1-9 is a 
component diagram of the XGA system.  



 

  
 
 Figure 1-9: XGA component diagram 

   
 
 SuperVGA  
 

 

SuperVGA refers to enhancements to the VGA standard developed by independent manufacturers 
and vendors. The general characteristic of SuperVGA boards, as the name implies, is that they 
exceed the VGA standard in definition, color range, or both. A typical SuperVGA graphics board is 
capable of executing not only the standard VGA modes, but also other modes that provide higher 
definition or greater color range than VGA. These are usually called the SuperVGA Enhanced 
Modes.  

 

 

Originally, the uncontrolled proliferation of SuperVGA hardware caused many compatibility 
problems. Because of the lack of standardization, the VGA enhancements in the card produced by 
one manufacturer were often incompatible with the enhancements in a card made by another 
vendor. Many times this situation presented insurmountable problems to the graphics programmer 
who would find that an application designed to take advantage of the enhancements in a particular 
SuperVGA system would not execute correctly in another one. In an attempt to solve this lack of 
standardization, several manufacturers of SuperVGA boards formed the Video Electronics 
Standards Association (VESA). In October 1989, VESA released its first SuperVGA standard. This 
standard defined several enhanced video modes and implemented a BIOS extension designed to 
provide a few fundamental video services in a compatible fashion.  

 
 SuperVGA Architecture  
 

 

All IBM microcomputer video systems are memory-mapped. The video memory space in VGA 
extends from A0000H to BFFFFH, with 64K, starting at segment base A000H, which is devoted to 
graphics and 64K, at segment base B000H, which is devoted to alphanumeric modes. This means 
that the total space reserved for video operations is 128K. But the fact that systems could be set 
up with two monitors, one in an alphanumeric mode and the other one in a color mode, actually 
limited the graphics video space to 64K.  

 

 Not much video data can be stored in 64K. For example, if each screen pixel is encoded in one 
memory byte, then the maximum screen data that can be stored in 65,536 bytes corresponds to a 
square with 256 pixels on each side. But a VGA system set in 640 X 480 pixels resolution, using 1 
data byte per pixel, requires 307,200 bytes for storing a single screen. VGA designers were able to 
compress video data by implementing a latching scheme and a planar architecture. In VGA mode 



compress video data by implementing a latching scheme and a planar architecture. In VGA mode 
number 18, this enables a pixel to be encoded into a single memory bit, although it can be 
displayed in 16 different colors. The magic consists of having four physical memory planes 
mapped to the same address. This explains why VGA systems contain 256K of video memory, all 
mapped to a 64K address space.  

 

 

When the VGA was first released, engineers noticed that some VGA modes contained surplus 
memory. For example, in modes with 640 X 480 pixels resolution the video data stored in each 
map takes up 38,400 bytes of the available 64K. Notice that, in this case, the previously mentioned 
VGA latching scheme allows the mapping of each pixel to an individual memory bit. This leaves 
27,136 unused bytes. The original idea of enhancing the VGA system was based on using this 
surplus memory to store video data. It is possible to have an 800 X 600 pixel display divided into 
four maps of 60,000 bytes each, and yet not exceed the 64K allowed for each color map. To 
graphics systems designers, a resolution of 800 X 600 pixels, in 16 colors, appeared as a natural 
extension to VGA mode number 18. This new mode, later designated as mode 6AH by the VESA 
SuperVGA standard, could be programmed in a similar manner as VGA mode number 18. The 
enhancement, which could be achieved with minor changes in the VGA hardware, provided a 36 
percent increase in the display area.  

 
 Memory banks  
 

 
The memory structure for VGA 256-color mode number 19 is not based on a multiplane scheme, 
but in a much simpler format that maps a single memory byte to each screen pixel. This scheme is 
shown in Figure 1-10.  

 

 

  
 
 Figure 1-10: Byte-to-pixel video memory-mapping scheme 

   
 

 

In byte-to-pixel mapping 256 color combinations can be encoded directly into a data byte, which 
correspond to the 256 DAC registers of the VGA hardware. The method is straightforward and 
uncomplicated; however, if the entire video space is contained in 64K, the maximum resolution is 
limited to the 256 X 256 pixels previously mentioned. In other words, a rectangular screen of 320 X 
200 pixels nearly fills the allotted 64K.  

 

 This determines that if the resolution for a 256-color mode exceeds 256 square pixels, it is 
necessary to find other ways of mapping video memory into 64K of system RAM. The mechanism 
adopted by the SuperVGA designers is based on a technique known as bank switching. In bank-
switched systems the video display hardware maps several 64K blocks of RAM to different 



A000H. The entire process is reminiscent of memory page switching in the LIM 
(Lotus/Intel/Microsoft) Extended Memory environment. Figure 1-11 schematically shows mapping 
of several memory banks to the video space and the map selection mechanism for CPU 
addressing.  

 

 

  
 
 Figure 1-11: SuperVGA banked memory-mapping 

   
 

 

In the context of video system architecture, the term aperture is often used to denote the 
processor's window into the system's memory space. For example, if the addressable area of 
video memory starts at physical address A0000H and extends to B0000H, you can say that the 
CPU has a 64K aperture into video memory (10000H = 64K). In Figure 1-11 we see that the bank 
selector determines which area of video memory is mapped to the processor's aperture. This is the 
video display area that can be updated by the processor. In other words, in the memory-banking 
scheme the processor cannot access the entire video memory at once. In the case of Figure 1-11 
the graphics hardware has to perform five bank switches to update the entire screen.  

 
 Implementing 256-color extensions  
 

 

The SuperVGA alternative for increasing definition beyond the VGA limit is a banking mechanism 
similar to the one shown in Figure 1-11. This scheme, in which a memory byte encodes the 256 
color combinations for each screen pixel, does away with the pixel masking complications of the 
high-resolution VGA modes. On the other hand, it introduces some new complexities of its own, 
such as the requirement of a bank selection device. In summary, the SuperVGA approach to 
extending video memory on the PC has no precedent in CGA, EGA, or VGA systems. It is not 
interleaved nor does it require memory planes or pixel masking. Although it is similar to VGA mode 
number 19 regarding color encoding, VGA mode number 19 does not use bank switching.  

 
 VESA SuperVGA standard  
 

 

The Video Electronics Standards Association was created with the purpose of providing a common 
programming interface for SuperVGA extended modes. In order to achieve this, each 
manufacturer furnishes a VESA SuperVGA BIOS extension. The BIOS can be in the adapter ROM 
or furnished as loadable software. The first release of the VESA SuperVGA standard was 
published in October 1, 1989 (version 1.0). A second release was published in June 2, 1990 
(version 1.1). The current one is dated October 22, 1991 (version 1.2).  

 
 Graphics coprocessors and accelerators  



 

A group of video systems based on dedicated graphics chips is perhaps the one most difficult to 
characterize and delimit. These systems are usually defined as those in which graphics 
performance is enhanced by means of a specialized graphics engine that operates independently 
from the CPU. The enormous variations in the functionalities and design of graphics accelerators 
and coprocessors make it impossible to list the specific features of these systems.  

 

 

Historically speaking, one of the first full-featured dedicated graphics coprocessors used in the PC 
was the TMS340 chip developed by Texas Instruments. The chip was introduced in 1986, and an 
upgrade, labeled TMS34020, was introduced in 1990. The project was not a commercial success 
and in 1993, Texas Instruments started discouraging the development of new products based on 
the TMS340 chips. However, from 1988 to 1993 these coprocessors were incorporated into many 
video products, including several high-end video adapters, some of which were capable of a 
resolution of 1280 X 1024 pixels in more than 16 million colors. These products, called True color 
or 24-bit color cards, furnished photographic-quality color for the first time on the PC. The quality of 
the resulting systems was sufficient for image editing, prepress operations, desktop publishing, 
and CAD applications.  

 

 

Not all coprocessor-based graphics systems marketed at the time used the TMS 340. For 
example, the Radius Multiview 24 card contained three 8514/A-compatible chips, while the 
RasterOps Paintboard PC card was based on the S3. But, undoubtedly, TMS 340 dominated the 
field of 24-bit color cards at the time. Of ten True-color cards reviewed on the January 1993 edition 
of Windows Magazine, seven were based on the TMS 340.  

 

 
The TMS 340 was optimized for graphics processing in a 32-bit environment. The technology had 
its predecessors in TI's TMS320 lines of digital signal processing chips. The following are the 
distinguishing features of the TMS340 architecture:  

 
   1.The instruction set includes both graphics and general-purpose instructions. This made the 

TMS340 a credible stand-alone processor.  
 
   2.The internal data path is 32-bits wide and so are the arithmetic registers. The physical address 

range is 128MB.  
 
   3.The pixel size is programmable at 1, 2, 4, 8, 16, or 32 bits.  
 
   4.Raster operations include 16 Boolean and 6 arithmetic modes.  
 
   5.The chip contains thirty general-purpose 32-bit registers. This is approximately four times as 

many registers as in an Intel 80386.  
 
   6.A 512-byte instruction cache allows the CPU to place several instructions in the TMS340 queue 

while continuing to execute in parallel.  
 

   
7.The coprocessor contains dedicated graphics instructions to draw single pixels and lines, and to 
perform two-dimensional pixels array operations, such as pixBlts, area fills, and block transfers, as 
well as several auxiliary graphics functions.  

 

 The commercial failure of the TMS 340-based systems was probably caused by the slow 
development of commercial graphics applications that used the chip's capabilities. Systems based 
on the TMS 340 sold from $500 to well over $1000 and they had little commercial software support. 



on the TMS 340 sold from $500 to well over $1000 and they had little commercial software support. 
However, their principal importance was that they demonstrated the PC's capability of high-quality, 
high-performance graphics.  

 



State-of-the-Art in PC Graphics  
 

 

During the first half of the 1990s, PC graphics were mostly DOS-based. The versions of Windows 
and OS/2 operating systems available lacked performance and gave programmers few options 
and little control outside of the few and limited graphics services offered at the system level. 
Several major graphics applications were developed and successfully marketed during this period, 
including professional quality CAD, draw and paint, and digital typesetting programs for the PC. 
But it was not until the introduction of 32-bit Windows, and especially after the release of Windows 
95 that PC graphics took off as a mainstream force.  

 

 

The hegemony of Windows 95 and its successors greatly contributed to the current graphics 
prosperity. At the end of the decade DOS has all but disappeared from the PC scene and graphics 
applications for the DOS environment are no longer commercially viable. By providing graphics 
hardware transparency, Windows has made possible the proliferation of graphics coprocessors, 
adapters, and systems with many dissimilar functions and fields of application. At the same time, 
the cost of high-end graphics systems has diminished considerably. So much so that in late 1999 a 
top-line PC graphics card equipped with the 3Dfx Voodoo Banshee, the NVidia RIVA TNT, the 
MGA G200, or other cutting edge graphics coprocessors, along with 16MB of graphics memory, 
costs from $100 to $150.  

 
 From the software side three major forces struggle for domination of PC graphics: DirectX, 
OpenGL, and several game development packages of which Glide is the best known.  

 
 Graphics boards  
 

 

PC graphics boards available at this time can be roughly classified by their functionality into 2D 
and 3D accelerators, and by their interface into Peripheral Component Interconnect (PCI) and 
Accelerated Graphics Port (AGP) systems. The 16-bit Industry Standard Architecture (ISA) 
expansion bus is in the process of being phased out and few new graphics cards are being made 
for it.  

 
 System bus  
 
 Table 1-1 compares the currently available PC system buses.  
 
 Table 1-1: Specifications of PC System Buses  
 
    
 
 Bus   

 
Width  

  
Clock Speed  

  
Data Rate  

 

 
    
 
 ISA   

 
16 bits  

  
8MHz  

  
(varies)  

 

       



 PCI   32 bits  33MHz  132MBps  
 
 AGP 1X   

 
32 bits  

  
66MHz  

  
264MBps  

 

 
 AGP 2X   

 
32 bits  

  
133MHz  

  
528MBps  

 

 
 AGP 4X   

 
32 bits  

  
266MHz  

  
1024MBps  

 

 
    
 

 
The PCI bus is present in many old-style Pentium motherboards, and graphics cards continue to 
be made for this interface. It allows full bus mastering and supports data transfer rates in bursts of 
up to 132MBps. Some PCI buses that use older Pentium 75 to 150 run at 25 or 30MHz, but the 
vast majority operates at 33MHz. The 66MHz PCI is seen in specialized systems.  

 

 
The AGP port is dedicated to graphics applications, quadruples PCI performance, and is state-of-
the-art. AGP technology is based on Intel's 440LX and 440BX chipsets used in Pentium II and 
Pentium III motherboards and on the 440 EX chipset designed for the Intel Celeron processors.  

 

 

The great advantage of AGP over its predecessors is that it provides the graphics coprocessors 
with a high bandwidth access system memory. This allows applications to store graphics data in 
system RAM. The 3D graphics applications use this additional memory by means of a process 
called direct memory execute (DIME) or AGP texturing to store additional image data and to 
enhance rendering realism. However, because AGP systems do not require that graphics cards 
support texturing, this feature cannot be taken for granted in all AGP boards. In fact, few graphics 
programs to date actually take advantage of this feature.  

 
 Graphics coprocessors  
 

 

Although it is easy to pick AGP as the best available graphics bus for the PC, selecting a graphics 
coprocessor is much more complicated. Several among half a dozen graphics chips share the 
foreground at this time. Among them are the Voodoo line from 3Dfx (Voodoo2 and Voodoo 
Banshee), NVidia's RIVA processors, MGA-G200, and S3 Savage 3D chips. All of these chips are 
used in top-line boards in PCI and AGP forms. Other well-known graphics chips are 3D Labs 
Permedia, S3's Virge, Matrox's MGA-64, and Intel's i740.  

 
 CPU On-board facilities  
 

 

Graphics, especially 3D graphics, is a calculation-intensive environment. The calculations are 
usually simple and can be performed in integer math, but many operations are required to perform 
even a simple transformation. Graphics coprocessors often rely on the main CPU for performing 
this basic arithmetic. For this reason, graphics rendering performance is, in part, determined by the 
CPU's mathematical throughput. Currently the mathematical calculating engines are the math unit 
and the multimedia extension (MMX).  

 



CPU with or without a built-in math unit. The versions with the math unit were designated with the 
letters DX and those without it as SX. With the Pentium, the math unit hardware became part of 
every CPU and the programmer need not be concerned about its presence. The math unit is a fast 
and efficient numerical calculator that finds many uses in graphics programming. Because 486-
based machines can be considered obsolete at this time, our code can safely assume the 
presence of the Intel math unit and take advantage of its potential.  

 

 

In 1997, Intel introduced a version of their Pentium processor that contained 57 new instructions 
and 8 additional registers designed to support the mathematical calculations required in 3D 
graphics and multimedia applications. This additional unit was named the Multimedia Extension 
(MMX). The Pentium II and later processors all include MMX. MMX is based on the Single 
Instruction Multiple Data (SIMD) technology, an implementation of parallel processing; it has a 
single instruction operating on multiple data elements. In the MMX the multiple data is stored in 
integer arrays of 64 bits. The 64 bits can divided into 8 bytes, four packed words, two 
doublewords, or a single quadword. The instruction set includes arithmetic operations (add, 
subtract, and multiply), comparisons, conversions, logical operations (AND, NOT, OR, and XOR), 
shifts, and data transfers. The result is a parallel, simple, and fast-calculating engine quite suitable 
for graphics processing, especially in 3D.  

 
 3D application programming interfaces  
 

 

The selection of a PC graphics environment for our application is further complicated by the 
presence of specialized application programming interfaces (APIs) furnished by the various chip 
manufacturers. For example, 3Dfx furnishes the Glide API for their line of graphics coprocessors. 
Glide-based games and simulations are popular within the 3D gaming community. An application 
designed to take full advantage of the capabilities of the 3Dfx accelerators is often coded using 
Glide. However, other graphics coprocessors cannot run the resulting code, which makes the 
boards incompatible with the software developed using Glide. Furthermore, Glide and Direct3D are 
mutually exclusive. When a Glide application is running, Direct3D programs cannot start and vice 
versa.  

 
 OpenGL and DirectX  
 

 
One 3D graphics programming interface that attained considerable support is OpenGL. OpenGL, 
which stands for Open Graphics Language, originated in graphics workstations and is now part of 
many system platforms, including Windows 95, 98, and NT, DEC's AXP, OpenVMS, and X 
Window. This led some to believe that it will be the 3D graphics standard of the future.  

 

 

At this time the mainstream of 3D graphics programming continues to use Microsoft's DirectX. The 
main advantage offered by this package is portability and universal availability on the PC. DirectX 
functionality is part of Windows 95, 98, 2000, and NT, and Microsoft provides a complete 
development package that includes a tutorial, support code, and sample programs—free of charge. 
Furthermore, developers are given license to provide DirectX runtime code with their products with 
automatic installation that can be made transparent to the user.  

 



Image Properties  
 

 

A computer graphics image is a surrogate of reality used to convey visual information. The 
surrogate is usually a light pattern displayed on a CRT monitor. Some of the characteristics of this 
image can be scientifically measured, or at least, evaluated objectively. But the human element in 
the perception of the graphic image introduces factors that are not easily measured. For example, 
aesthetic considerations can help us decide whether a certain graphic image "looks better" than 
another one, while another image can give us an eyestrain headache that cancels its technological 
virtues.  

 
 Brightness and contrast  
 

 

Luminance is defined as the light intensity per unit area reflected or emitted by a surface. The 
human eye perceives objects by detecting differences in levels of luminance and color. Increasing 
the brightness of an object also increases the acuity with which it is perceived. However, it has 
been found that the visibility or legibility of an image is more dependent on contrast than on its 
absolute color or brightness value.  

 

 

The visual acuity of an average observer sustains an arc of approximately one minute (1/60 a 
degree of angle). For this reason, the average observer can resolve an object that measures 5 
one-thousands of an inch across on a CRT display viewed at a distance of 18 inches. However, 
visual acuity falls rapidly with decreased luminance levels and with reduced contrast. This explains 
why ambient light, reflected off the surface of a CRT, decreases legibility. Another peculiarity of 
human vision is the decreasing ability of the eye to perceive luminance differences or contrasts as 
the absolute brightness increases. This explains why the absolute luminance values between 
object and background are less important to visual perception than their relative luminance, or 
contrast.  

 
 Color  
 

 

Approximately three-fourths of the light-perceiving cells in the human eye are color-blind, which 
explains why luminance and contrast are more important to visual perception than color. 
Nevertheless, it is generally accepted that color is a valuable enhancement to computer graphics. 
This opinion is probably based on the popular judgment that color photography, cinematography, 
and television are preferred over the black-and-white versions.  

 
 Resolution  
 

 

The quality of a raster-scan CRT is determined by the total number of separately addressable 
pixels contained per unit area. This ratio, called the resolution, is usually expressed in pixels-per-
inch. For example, a CRT with 8-inch rows containing a total of 640 pixels per row has a horizontal 
resolution of 80 pixels per inch. By the same token, a CRT measuring 6 inches vertically and 
containing a total of 480 pixels per column has a vertical resolution of 80 pixels per inch. 
Previously in this chapter we discussed symmetrical and asymmetrical resolutions (see Figure 1-
7).  

 
 Aspect ratio  
 



 
The aspect ratio of a CRT display is the relation between the horizontal and vertical dimensions. 
For example, the CRT previously mentioned, measuring 8 inches horizontally and 6 inches 
vertically, is said to have a 4:3 aspect ratio. An 8- by-8-inch display has a 1:1 aspect ratio. Figure 
1-12 shows a CRT with a 4:3 aspect ratio.  

 

 

  
 
 Figure 1-12: CRT with a 4:3 aspect ratio 

   
 



Graphics Applications  
 

 

Applications of computer graphics in general and of 3D graphics in particular appear to be 
limitless. The limitations seem to relate more to economics and to technology than to intrinsic 
factors. It is difficult to find a sphere of computing that does not profit from graphics in one way or 
another. This is true not only about applications but also about operating systems. In today's 
technology, graphics is the reality of computing. The PC has evolved into a powerful graphics 
machine, and graphics are no longer an option, but a standard feature that cannot be ignored.  

 
 Computer games  
 

 

Since the introduction of Pac Man in the early 1980s, computer games have played an important 
role in personal entertainment. More recently we have seen an increase in popularity of dedicated 
computer-controlled systems and user-interaction devices, such as those developed by Nintendo, 
Sony, and Sega. In the past three or four years, computer games have gone through a remarkable 
revival. The availability of more powerful graphics systems and of faster processors, as well as the 
ingenuity and talent of the developers, has brought about the increase in the popularity of this field. 
Computer games are one of the leading sellers in today's software marketplace, with sales 
supported by an extensive subculture of passionate followers. Electronic games are always at the 
cutting edge of computer graphics and animation. A game succeeds or fails according to its 
performance. It is in this field where the graphics envelope is pushed to the extreme. 3D graphics 
technologies relate very closely to computer games. In fact, it can be said that computer games 
have driven graphics technology.  

 
 Science, engineering, and technology  
 

 

Engineering encompasses many disciplines, including architecture, and mechanical, civil, and 
electrical, and many others. Virtually every field of engineering finds application for computer 
graphics and most can use 3D representations. The most generally applicable technology is 
computer-aided design (CAD), also called computer-aided drafting. CAD systems have replaced 
the drafting board and the T-square in the design of components for civil, electrical, mechanical, 
and electronic systems. A few years ago, a CAD system required a mainframe or minicomputer 
with high-resolution displays and other dedicated hardware. Similar capabilities can be had today 
with off-the-shelf PC hardware and software. Most CAD packages now include 3D rendering 
capabilities.  

 

 

These systems do much more than generate conventional engineering drawings. Libraries of 
standard objects and shapes can be stored and reused. A CAD program used in mechanical 
engineering stores nut and bolt designs, which can be resized and used as needed. The same 
applies to other frequently used components and standard shapes. The use of color adds a visual 
dimension to computer-generated engineering drawings, a feature that is usually considered too 
costly and difficult to do manually. Plotters and printers rapidly and efficiently generate high-quality 
hardcopies of drawings. 3D CAD systems store and manipulate solid views of graphics objects 
and automatically generate perspective views and projections. Wire-frame and solid modeling 
techniques allow the visualization of real-world objects and contours. CAD systems can also have 
expertise in a particular field. This knowledge can be used to check the correctness and integrity of 
a design.  

 



 
In architecture and civil engineering, graphics systems find many applications. Architects used 3D 
modeling for the display of the interior and exterior of buildings. A graphics technique known as ray 
tracing allows the creation of solid models that show lighting, shading, and mirroring effects.  

 

 

Computer graphics are used to predict and model system behavior. Simulation techniques allow 
you to create virtual representations of practically any engineered system, be it mechanical, 
electrical, or chemical. Mathematical equations are used to manipulate 3D representations and to 
predict behavior over a period of simulated time. Graphics images, usually color-coded and often 
in 3D, are used to display movement, and to show stress points or other dynamic features which, 
without this technique, would have been left to the imagination.  

 

 

Geographic Information Systems (GIS) use computers to manipulate and store geographic, 
cartographic, and other social data used in the analysis of phenomena where geographical 
location is an important factor. Usually, the amount of data manipulated in a GIS is much larger 
than can be handled manually. Much of this data is graphics imagery in the form of maps and 
charts. GIS systems display their results graphically. They find application in land use and land 
management, agriculture, forestry, wildlife management, archeology, and geology. Programmable 
satellites and instruments allow you to obtain multiple images that can be used later in producing 
3D images.  

 

 
Remote sensing refers to collecting data at a distance, usually through satellites and other 
spacecraft. Today, most natural resource mapping is done using this technology. As the resolution 
of remotely sensed imagery increases, and its cost decreases, many more practical uses will be 
found for this technology.  

 

 
Automation and robotics also find extensive use for computer graphics. Computer numerical 
control (CNC) and Computer-assisted manufacturing (CAM) systems are usually implemented in a 
computer graphics environment. State-of-the-art programs in this field display images in 3D.  

 
 Art and design  
 

 

Many artists use computer graphics as a development and experimental platform, and some as a 
final medium. It is hotly debated whether computer-generated images can be considered fine art, 
but there is no doubt that graphics technology is one of the most powerful tools for commercial 
graphics and for product design. As CAD systems have replaced the drafting board, draw and 
paint programs have replaced the artist's sketchpad. The commercial artist uses a drawing 
program to produce any desired effect with great ease and speed, and to experiment and fine-tune 
the design. Computer-generated images can be stretched, scaled, rotated, filled with colors, 
skewed, mirrored, resized, extruded, contoured, and manipulated in many other ways. Photo 
editing applications allow scanning and transforming bitmapped images, which later can be 
vectorized and loaded into the drawing program or incorporated into the design as bitmaps.  

 

 

Digital composition and typesetting is another specialty field in which computer graphics has 
achieved great commercial success. Dedicated typesetting systems and desktop publishing 
programs allow the creation of originals for publication, from a brochure or a newsletter to a 
complete book. The traditional methods were based on "mechanicals" on which the compositor 
glued strips of text and images to form pages. The pages were later photographed and the printing 
plates manufactured from the resulting negatives. Today, composition is done electronically. Text 
and images are merged in digital form. The resulting page can be transferred into a digital 
typesetter or used to produce the printing plates directly. The entire process is based on computer 
graphics.  



 
 Business  
 

 

In recent years a data explosion has taken place. In most fields, more data is being generated than 
there are people to process it. Imagine a day in the near future in which fifteen remote sensing 
satellites orbit the earth, each of them transmitting every fifteen minutes an image of an area that 
covers 150 square miles. The resulting acquisition rate of an image per minute is likely to create 
processing and storage problems, but perhaps the greatest challenge will be to find ways to use 
this information. How many experts will be required simply to look at these images? Recently there 
were only two or three remote sensing satellites acquiring earth images and it is estimated that no 
more than 10 percent of these images ever were analyzed. Along this same line, businesses are 
discovering that they accumulate and store more data than can be used. Data mining and data 
warehousing are techniques developed to find some useful nugget of information in these 
enormous repositories of raw data.  

 

 

Digital methods of data and image processing, together with computer graphics, provide our only 
hope of ever catching up with this mountain of unprocessed data. A business graph is used to 
compress and make available a large amount of information, in a form that can be used in the 
decision-making process. Computers are required to sort and manipulate the data and to generate 
these graphs. The field of image processing is providing methods for operating on image data. 
Technologies are being developed to allow computers to "look at" imagery and obtain useful 
information. If we cannot dedicate a sufficient number of human experts to look at a daily heap of 
satellite imagery, perhaps we will be able to train computers for this task.  

 

 

Computer-based command and control systems are used in the distribution and management of 
electricity, water, and gas, in the scheduling of railways and aircraft, and in military applications. 
These systems are based on automated data processing and on graphics representations. At the 
factory level they are sometimes called process controls. In small and large systems, graphics 
displays are required to help operators and experts visualize the enormous amount of information 
that must be considered in the decision-making process. For example, the pilot of a modern-day 
commercial aircraft can obtain, at a glance, considerable information about the airplane and its 
components as they are depicted graphically on a video display. This same information was much 
more difficult to grasp and mentally process when it originated in a dozen or more analog 
instruments.  

 

 

Computer graphics also serve to enhance the presentation of statistical data for business. 
Graphics data rendering and computer animation serve to make the presentation more interesting; 
for example, the evolution of a product from raw materials to finished form, the growth of a real 
estate development from a few houses to a small city, or the graphic depiction of a statistical trend. 
Business graphics serve to make more convincing presentations of products or services offered to 
a client, as a training tool for company personnel, or as an alternative representation of statistical 
data. In sales, computer graphics techniques can make a company's product or service more 
interesting, adding much to an otherwise dull and boring description of properties and features.  

 
 Simulations  
 

 

Both natural and man-made objects can be represented in computer graphics. The optical 
planetarium is used to teach astronomy in an environment that does not require costly instruments 
and that is independent of the weather and other conditions. One such type of computer-assisted 
device, sometimes called a simulator, finds practical and economic use in experimentation and 
instruction. Simulators are further discussed in Chapter 5 in relation to animation programming.  



 
 Virtual reality  
 

 
Technological developments have made possible a new level of user interaction with a computing 
machine, called virtual reality. Virtual reality creates a digital universe in which the user is 
immersed. This topic is discussed in Chapter 5 in relation to animation programming.  

 
 Artificial life  
 

 
Artificial life, or ALife, has evolved around the computer modeling of biosystems. It is based on 
biology, robotics, and artificial intelligence. The results are digital entities that resemble self-
reproducing and self-organizing biological life forms. Artificial life is discussed in Chapter 5.  

 
 Fractal graphics  
 

 
Natural surfaces are highly irregular. For this reason, many natural objects cannot be represented 
by means of polygons or smooth curves. However, it is possible to represent some types of natural 
objects by means of a mathematical entity called a fractal. The word fractal was derived from 
fractional dimensions. Fractals are discussed in Chapter 5.  

 



Summary  
 

 

In this first chapter we discussed a host of topics that are at the core of computer graphics and that 
should be familiar to every PC graphics programmer. We discussed the history and evolution of 
graphics on the PC, the best-known and most widely used PC video technologies, the state-of-the-
art in PC graphics, the various Application Programming Interfaces, image properties, and 
applications of computer graphics. In Chapter 2 we consider how images and graphics image data 
are represented and stored in a computer system, introducing the core notions of segments and of 
polygonal modeling.  

 



Chapter 2: Graphics Representation and Modeling  
 
 Overview  
 

 
This chapter is an overview of the database and geometrical concepts that underlie computer 
graphics. The material has been chosen so that it applies to the 3D rendering engines discussed in 
the book. The specifics that refer to each of the major 3D rendering systems used on the PC, 
Direct3D and OpenGL, are discussed in the corresponding chapters.  

 



Types of Graphics Data  
 

 
Computer images are classified into two general types: those defined as a pixel map and those 
defined as one or more vector commands. In the first case we refer to raster graphics and in the 
second case to vector graphics. Figure 2-1 shows two images of a cross, first defined as a bitmap, 
and then as a set of vector commands.  

 

 

  
 
 Figure 2-1: Raster and vector representation of a graphics object 

   
 

 

On the left side image of Figure 2-1, the attribute of each pixel is encoded in the bitmap. The 
simplest scheme consists of using a 0-bit in the bitmap to represent a white pixel and a 1-bit to 
represent a black or colored pixel. Vector commands, on the other hand, refer to the geometrical 
elements in the image. The vector commands in Figure 2-1 define the image in terms of two 
intersecting straight lines. Each command contains the start and end points of the corresponding 
line in a Cartesian coordinate plane that represents the system's video display.  

 

 

An image composed exclusively of geometrical elements, such as a line drawing of a building, or a 
machine part, can usually be defined by vector commands. On the other hand, a naturalistic 
representation of a landscape may best be done with a bitmap. Each method of image encoding, 
raster- or vector-based, has its advantages and drawbacks. One fact often claimed in favor of 
vector representation is the resulting memory savings. For example, in a video surface of 600-by-
400 screen dots, the bitmap for representing two intersecting straight lines encodes the individual 
states of 240,000 pixels. If the encoding is in a two-color form, as in Figure 2-1, then one memory 
byte is required for each eight screen pixels, requiring a 30,000-byte memory area for the entire 
image. This same image can be encoded in two vector commands that define the start and end 
points of each line. By the same token, to describe in vector commands a screen image of 
Leonardo's Mona Lisa would be more complicated and memory-consuming than a bitmap.  

 

 

In the context of 3D graphics programming rasterized images are mostly used as textures and 
backgrounds. 3D rendering is based on transformations that require graphics objects defined by 
their coordinate points. Software operates mathematically on these points to transform the 
encoded images. For example, a geometrically defined object can be moved to another screen 
location by adding a constant to each of its coordinate points. In Figure 2-2 the rectangle with its 
lower left-most vertex at coordinates x = 1, y = 2, is translated to the position x = 12, y = 8, by 
adding 11 units to its x coordinate and 6 units to its y coordinate.  

 



 

  
 
 Figure 2-2: Translating an object by coordinate arithmetic 

   
 
 In Chapter 3 we explore geometrical image transformations in greater detail.  
 
 Coordinate systems  
 

 

The French mathematician Rene Descartes (1596-1650) developed a method for representing 
geometrical objects. Descartes's system divides the plane with two intersecting lines, known as the 
abscissa and the ordinate axis. Conventionally, the abscissa axis is labeled with the letter x and 
the ordinate axis with the letter y. When the axes are perpendicular, we refer to the coordinate 
system as rectangular; otherwise, it is said to be oblique. The origin is the point of intersection of 
the abscissa and the ordinate axes. A point at the origin has coordinates (0, 0). When coordinates 
are expressed in this manner, the first element inside the parentheses corresponds to the x-axis 
and the second one to the y-axis. Therefore a point at (2, 7) is located at coordinates x = 2, y = 7. 
Figure 2-3 shows the rectangular Cartesian plane.  

 

 

  
 
 Figure 2-3: Cartesian rectangular coordinate plane 



 Figure 2-3: Cartesian rectangular coordinate plane 

   
 

 

In Figure 2-3 we observe that a point on the x-axis has coordinates (x, 0) and a point on the y-axis 
has coordinates (0, y). The origin is defined as the point with coordinates (0, 0). The axes divide 
the plane into four quadrants, usually labeled counterclockwise with Roman numerals I to IV. In the 
first quadrant x and y have positive values. In the second quadrant x is negative and y is positive. 
In the third quadrant both x and y are negative. In the fourth quadrant x is positive and y is 
negative.  

 

 

The Cartesian coordinates plane can be extended to three-dimensional space by adding another 
axis, usually labeled z. A point in space is defined by a triplet that expresses its x, y, and z 
coordinates. Here again, a point at the origin has coordinates (0, 0, 0), and a point on any of the 
three axes has zero coordinates on the other two. In a rectangular coordinate system the axes are 
perpendicular. Each pair of axis determines a coordinate plane: the xy-plane, the xz-plane, and the 
yz-plane. The three planes are mutually perpendicular. A point in the xy-plane has coordinates (x, 
y, 0), a point in the xz-plane has coordinates (x, 0, z), and so on. By the same token, a point not 
located on any particular plane has non-zero coordinates for all three axes. Figure 2-4 shows the 
Cartesian 3D coordinate plane.  

 

 

  
 
 Figure 2-4: 3D Cartesian rectangular coordinates plane 

   
 

 

The labeling of the axes in 3D space is conventional. In Figure 2-4 we could have labeled the x-
axis as z, and the z-axis as x without affecting the validity of the representation. In computer 
graphics the most common labeling preserves the conventional labeling of the x- and y-axis in two-
dimensional space and adds the z-axis in the viewer's direction, as in Figure 2-4. This labeling 
style is consistent with the notion of a video system in which image depth is thought to be inside 
the CRT. However, adopting the axis labeling style in which positive x points to the right, and 
positive y points upward, still leaves undefined the positive direction of the z axis. For example, we 
could represent positive z-axis values in the direction of the viewer or in the opposite one. The 
case in which the positive values of the z-axis are in the direction of the viewer is called a right-
handed coordinate system. The one in which the positive values of the z-axis are away from the 
viewer is called a left-handed system. Left- and right-handed systems are shown in Figure 2-5.  



 

 

  
 
 Figure 2-5: Left- and right-handed 3D coordinate systems 

   
 

 
To remember if a system is left- or right-handed we can visualize which hand needs to be curled 
over the z-axis so that the thumb points in the positive direction, as shown in Figure 2-5. In a left-
handed system the left hand with the fingers curled on the z-axis has the thumb pointing away 
from the viewer. In a right-handed system the thumb points toward the viewer.  

 

 

There is considerable variation in the axes labeling among 3D modeling systems. In some systems 
the z-axis is represented horizontally, the y-axis in the direction of the viewer, and the x-axis is 
represented vertically. In any case, the right- and left-handedness of a system is determined by 
observing the axis that lays in the viewer's direction, independently of its labeling. Image data can 
be easily ported between different axes labeling styles by applying a rotation transformation, 
described in Chapter 3.  

 
 The 3D Cartesian coordinates planes are a 2D representation of a solid modeling system. In 
Figure 2-6 we have modeled a rectangular solid with dimensions x = 5, y = 4, z = 3.  

 

 

  
 
 Figure 2-6: Vertex representation of a rectangular solid 

   
 
The table of points, on the right side of the illustration, shows the coordinates for each of the 
vertices of the solid figure. However, because the illustration is a 2D rendering of a 3D object, it is 
not possible to use a physical scale in order to determine coordinate values from the drawing. For 



example, vertices p1 and p4 have identical x and y coordinates; however, they appear at different 
locations on the flat surface of the drawing. In other words, the image data stores the coordinates 
points of each vertex in 3D space. How these points are rendered on a 2D surface depends on the 
viewing system, sometimes called the projection. Projections and viewing systems are discussed 
in Chapter 4.  

 

 

An alternative visualization of the 3D rectangular Cartesian coordinate system is based on planes. 
In this case each axes pair determines a coordinate plane, named the xy-plane, the xz-plane, and 
the yz-plane. Like the axes, the coordinate planes are mutually perpendicular. In this manner, the z
coordinate of a point p is the value of the intersection of the z-axis with a plane through p that is 
parallel to the yx-plane. If the planes intersect the origin, then a point in the xy-plane has zero 
value for the z coordinate, a point in the yz-plane has zero value for the x coordinate, and a point 
in the xz-plane has zero for the y coordinate. Figure 2-7 shows the three planes of the 3D 
Cartesian coordinate system.  

 

 

  
 
 Figure 2-7: Coordinate planes in the rectangular Cartesian system 

   
 

 
We have transferred to Figure 2-7 points p6 and p7 of Figure 2-6. Point p6 is located on xy-plane 
1, and point p7 in xy-plane 2. The plane labeled xy-plane 2 can be visualized as xy-plane 1 which 
has been slid along the z-axis to the position z = 3. This explains why the x and y coordinates of 
points p6 and p7 are identical, as in the table of Figure 2-6.  

 
 Representing geometrical objects  
 

 

Much of 3D graphics programming relates to representing, storing, manipulating, and rendering 
vector-coded geometrical objects. In this sense, the problem of representation precedes all others. 
Many representational forms are used in 3D graphics; most are related to the rendering algorithms 
used in a particular package. In addition, representational forms determine data structures, 
processing cost, final appearance, and editing ease. The following are the most frequently used:  

 
   1.Polygonal representations are based on reducing the object to a set of polygonal surfaces. This 

approach is the most popular one due to its simplicity and ease of rendering.  



 

   
2.Objects can also be represented as bicubic parameteric patch nets. A patch net is a set of 
curvilinear polygons that approximate the object being modeled. Although more difficult to 
implement than polygonal representations, objects represented by parametric patches are more 
fluid; this explains their popularity for developing CAD applications.  

 

   
3.Constructive solid geometry (CSG) modeling is based on representing complex objects by 
means of simpler, more elementary ones, such as cylinders, boxes, and spheres. This 
representation finds use in manufacturing-related applications.  

 

   
4.Space subdivision techniques consider the whole object space and define each point 
accordingly. The best-known application of space subdivision technique is ray tracing. With ray 
tracing processing is considerably simplified by avoiding brute force operations on the entire object 
space.  

 
 Out of this list, we concentrate our attention on polygonal modeling, with occasional reference to 
parametric patches.  

 



Polygons and Polygonal Modeling  
 

 

A simple polygon is a two-dimensional geometrical figure formed by more than two connected and 
non-intersecting line segments. The connection points for the line segments are called the vertices
of the polygon and the line segments are called the sides. The fundamental requirements that the 
line segments be connected and non-intersecting eliminates from the polygon category certain 
geometrical figures, as shown in Figure 2-8.  

 

 

  
 
 Figure 2-8: Valid and invalid polygons 

   
 

 

Polygons are named according to their number of sides or vertices. A triangle, which is the 
simplest possible polygon, has three vertices. A quadrilateral has four, a pentagon has five, and so 
on. A polygon is said to be equilateral if all its sides are equal, and equiangular if all its angles are 
equal. A regular polygon is both equilateral and equiangular. Figure 2-9 shows several regular 
polygons.  

 

 

  
 
 Figure 2-9: Regular polygons 

   
 

 
Polygons can be convex or concave. In a convex polygon the extension of any of its sides does 
not cut across the interior of the figure. Optionally, we can say that in a convex polygon the 
extensions of the lines that form the sides never meet another side. Figure 2-10 shows a convex 
and a concave polygon.  

 

 

  



 
 Figure 2-10: Concave and convex polygons 

   
 

 
Specific software packages often impose additional restrictions on polygon validity in order to 
simplify the rendering and processing algorithms. For example, OpenGL requires that polygons be 
concave and that they be drawn without lifting the pen. In OpenGL, a polygon that contains a non-
contiguous boundary is considered invalid.  

 
 Triangular representations  
 

 

Of all the polygons, the one most used in 3D graphics is the triangle. Not only is it the simplest of 
the polygons, but all the points in the surface of a triangular polygon must lie on the same plane. In 
other polygons this may or may not be the case. In other words, the figure defined by three 
vertices must always be a plane, but four or more vertices can describe a figure with more than 
one plane. When all the points on the figure are located on the same surface, the figure is said to 
be coplanar. This is not the case in non-coplanar objects. Figure 2-11 shows coplanar and non-
coplanar polygons.  

 

 

  
 
 Figure 2-11: Coplanar and non-coplanar polygons 

   
 

 
The coplanar property of triangular polygons simplifies rendering. In addition, triangles are always 
convex figures. For this reason 3D software such as Microsoft's Direct3D rely heavily on triangular 
polygons.  

 
 Polygonal approximations  
 

 
Solid objects with curved surfaces can be approximately represented by means of polygonal 
facets. For example, a circle can be approximated by means of a polygon. The more vertices in 
the polygon, the better the approximation. Figure 2-12 shows the polygonal approximation of a 
circle. The first polygon has eight vertices, while the second one has sixteen.  

 

 

  



 
 Figure 2-12: Polygonal approximation of a circle 

   
 

 
A solid object, such as a cylinder, can be approximately represented by means of several 
polygonal surfaces. Here again, the greater the number of polygons, the more accurate the 
approximation, as shown in Figure 2-13.  

 

 

  
 
 Figure 2-13: Polygonal approximation of a cylinder 

   
 
 Edges  
 

 

When objects are represented by polygonal approximations, often two polygons share a common 
side. This connection between vertex locations that define a boundary is called an edge. Edge 
representations of polygons simplify the database by avoiding redundancy. This is particularly 
useful in models that share a large number of edges. Figure 2-14 shows a figure represented by 
two adjacent triangular polygons that share a common edge.  

 



 

  
 
 Figure 2-14: Polygon edge 

   
 

 
In an edge representation the gray triangle in Figure 2-14 is defined in terms of its three vertices, 
labeled p1, p2, and p3. The white triangle is defined in terms of its edge and point p4. Thus, points 
p2 and p3 appear but once in the database. Edge-based image databases provide a list of edges 
rather than of vertex locations. Figure 2-15 shows an object consisting of rectangular polygons.  

 

 

  
 
 Figure 2-15: Edge representation of polygons 

   
 

 

In Figure 2-15 each vertical panel consists of six triangles, for a total of 30 triangles. If each 
triangle were defined by its three vertices, the image database would require 90 vertices. 
Alternatively, the image could be defined in terms of sides and edges. There are 16 external sides 
which are not shared, and 32 internal sides, which are edges. Therefore, the edge-based 
representation could be done by defining 48 edges. The rendering system keeps track of which 
edges have already been drawn, avoiding duplication and the consequential processing 
overheads, and facilitating transparency.  

 
 Polygonal mesh  



 

In 3D graphics an object can be represented as a polygon mesh. Facets are used to approximate 
curved surfaces; the more facets the better the approximation. Polygon-based modeling is 
straightforward, and polygon meshes are quite suitable for using shading algorithms that diminish 
the linearity that results from the straight-line representation. In the simplest form a polygon mesh 
is encoded by means of the x, y, and z coordinates of each polygon vertex. Alternatively, polygons 
can be represented by their shared sides, or edges. In either case, each polygon is an 
independent entity that can be rendered as a unit. 3D renderers are often based on this strategy 
as a means of shading and removing hidden surfaces. Figure 2-16 shows the polygon mesh 
representation of a teacup and the resulting rendered image.  

 

 

  
 
 Figure 2-16: Rendering a polygon mesh representation of a teacup 

   
 



The Graphics Primitives  
 

 

Many graphics systems are imaging tools, therefore, they must be capable of performing 
elementary graphics functions, such as drawing lines and geometric figures, displaying text 
characters, and shading or coloring screen areas. The set of available image-creating operations 
are called the output functions or graphics primitives of the system. A general- purpose graphics 
library generally includes a collection of graphics primitives. A graphics application often includes 
only those functions required for its specific purpose. A minimal, general-purpose 2D graphics 
library may contains the following primitives:  

 
   1.Viewport primitives: clear the viewport, set the entire viewport to a color or attribute, save the 

displayed image in memory, and restore a saved image.  
 
   2.Window primitives: set a rectangular screen area to a given color or attribute, save a rectangular 

screen area in memory, and restore a saved rectangular screen area.  
 

   
3.Attribute selection primitives: set the current drawing color, set the current fill color, set the 
current shading attribute, set the current text color, set the current text font, set the current line 
type (continuous, dotted, dashed, etc.), and set the current drawing thickness.  

 
   4.Geometrical primitives:draw a straight line, draw a circular arc, draw an elliptical arc, draw a 

parabolic arc, draw a hyperbolic arc, and draw Bezier curves.  
 
   5.Image transformation primitives: scale, rotate, translate, and clip image.  
 
   6.Painting primitives: fill a closed figure with current fill color or shading attribute.  
 
   7.Bit block primitives: XOR text or bit block, AND text or bit block, and OR text or bit block.  
 
 The Windows API provide some of the listed functionality, except for the image transformation 
functions mentioned in item Number 5.   

 
 Input functions  
 

 

In addition to generating geometrical objects, a computer graphics system must usually be capable 
of interacting with a human operator. The interaction typically takes place through an input device 
such as a keyboard, a mouse, a graphical input tablet, or any other similar gadgetry. Input can be 
roughly classified into two types: valuator and locator. Valuator input takes place when the data 
entered is in alphanumerical form. For example, the coordinates of the end points of a line 
constitute valuator input. Locator input takes place when the user interaction serves to establish 
the position of a graphics object called the locator. A mouse-controlled icon produces locator input. 

 
 Valuator and locator input normally follow this sequence of input phases:  
 
   1.Input request phase: The graphics system goes into the input mode and prompts the user to 

produce an input action.  



 

   
2.Echo phase:As the user interacts with the input device, its actions are echoed by the graphics 
system. For instance, the characters are displayed as they are typed, or an icon moves on the 
screen as the mouse is dragged. Phases 1 and 2 are sometimes called the prompt-and-echo 
phase.  

 

   
3.Trigger phase: The user signals the completion of input by pressing a specially designated key 
or a button on the input device. One way to conclude the input phase is to abort the operation, 
usually by pressing the escape or break key or clicking a specific button.  

 

   

4.Acknowledge phase: The graphics system acknowledges that the interaction has concluded by 
disabling the input prompt and by notifying the user of the result of the input. In the case of locator 
input the acknowledge phase often consists of displaying a specific symbol that fixes the locator 
position. In the case of valuator input the acknowledge phase can make the cursor disappear. 
Another action of the acknowledge phase is that the characters entered are reformatted and 
redisplayed, or they are stored internally and erased from the CRT.  

 
 A general-purpose graphics library includes the following interaction primitives:  
 
   1.Valuator input primitives: input coordinate, input integer, input string, and input real number  
 
   2.Locator selection primitives: select cursor type, such as crosshair, vertical bar, flashing 

rectangle, or rubber band  
 
   3.Locator input primitives: enable and disable screen icon, move screen icon, select graphics item 

on screen and menu item  
 
 Display file structure  
 

 

A graphics application must be capable of storing and transforming graphics data. The logical 
structure that contains this data is sometimes called the display file. One of the advantages of a 
display file is that it allows the compact storage of graphics data and its transformation through 
logical and mathematical operations. For example, an image may be enlarged by means of a 
mathematical transformation of its coordinate points, called a scaling transformation. Or the 
graphics object can be viewed from a different angle by means of a rotation transformation. 
Another transformation, called translation, allows changing the position of a specific object. 
Geometrical transformations are the subject of Chapter 3.  

 

 

Before these manipulations can take place, the program designers must devise the logical 
structure that encodes image data in a form that is convenient for the mathematical operations to 
be performed. High-level graphics environments, graphical languages, and operating systems with 
graphics functions provide pre-canned display file structures that are available to applications. The 
programmer working in a customized environment, on the other hand, usually designs the display 
file to best accommodate and manipulate the data at hand. The first step in defining this structure 
usually consists of standardizing the screen coordinates.  

 

 
A screen normalization schemes usually aims at maximum simplification. A common approach is 
to select the top-left corner of the screen as the origin of the coordinate system and make all 
locations positive, as shown in Figure 2-17.  



 

 

  
 
 Figure 2-17: Cartesian plane representation of the display surface 

   
 

 

The range of values that can be represented in either axis is determined by the system's 
resolution. If an application is to support a single display definition, it may be convenient to 
normalize the screen coordinates to this range. However, this decision should be taken cautiously, 
since equating the virtual to the physical device means that any future support for a system with a 
different definition probably implies modifying the entire software package.  

 

 

Screen normalization is necessary so that image data in the display file can be shown on a 
physical device, but stored image data does not have to conform to the adopted screen 
normalization. At display time the processing routines perform the image-to-pixel conversions. This 
pixelation, sometimes called the window-to-viewport transformation, is described later in this 
chapter and in Chapter 4.  

 
 Image data in the display file  
 

 

How the image is stored in the display file depends on the image itself and on the operations to be 
performed on its elements. Graphical images can be vectorized or bit-mapped. This requires a 
decision on whether a particular image is to be stored as a set of vector commands, as a bitmap, 
or as a combination of both. In many cases the nature of the image itself determines the most 
suitable approach. For example, an application that manipulates geometrical figures, such as a 
drawing program, probably stores image data in vector form. Some images, as is the case with 
alphanumeric characters, can be represented either in vector form or as bitmaps. Postscript and 
other conventions use vector representation of text characters in order to facilitate scaling.  

 

 

There can be considerable variation in the encoding of a graphics object, whether it is represented 
as a bitmap, as a set of vector commands, or as both. A straight line is defined by its two end-
points coordinates, or by its start point, angle, and length. A rectangle is defined by the coordinates 
of its four vertices, or by the coordinates of two diagonally opposite vertices. In the case of a 
rectangle, the first option allows the representation of parallelograms, but the second one is more 
compact. There are also variations in the encoding of bit-mapped objects. If the object is unique, 
its bitmap can be included in the display file. However, if the application is to manipulate several 



objects with the same bitmap, then it may be preferable to encode a reference to the bitmap image 
in the display file.  

 

 
The design of the image data formats for a customized display file requires careful planning and 
detailed design. Even then, changes usually become necessary in the program development 
stage. Anticipation of change is one of the basic principles of good database design.  

 
 Display file commands  
 

 

A graphics system must not only store image data, it must also be capable of manipulating this 
data in order to generate and transform images. The set of orders that operate on image data is 
called display file commands. The notion of a display file containing both data and processing 
methods is consistent with the principles of object-oriented programming. As an illustration 
consider a screen triangle represented by three straight lines. The display file contains the 
coordinate points of the three lines as well as the commands to draw these lines, as shown in 
Figure 2-18.  

 

 

  
 
 Figure 2-18: Display file for a triangle 

   
 

 
In Figure 2-18 the screen coordinates coincide with the display file coordinates, which is not usually 
the case. More often graphics software must perform mapping operations and convert image data 
to viewport coordinates at display time, as described in the following sections.  

 



Image Mapping  
 

 
The graphical image exists in a physical universe. The storage media is typically a memory or a 
permanent digital recording, and the display media is a pixel-mapped video surface. In either case 
there are certain concepts, terminology, and logical structures that find frequent use in image 
mapping, storage, and retrieval.  

 
 Video buffer  
 

 

The video buffer is the portion of system memory reserved for video display use. It is a system-
specific concept: the location and structure of the video buffer depends on the architecture of the 
specific graphics hardware and on the operating system. In MS-DOS graphics programming the 
video buffer architecture changes in the different display modes. For example, in VGA mode 18 
the video buffer consists of four color planes, each plane storing a 640-by-480 pixel image, while in 
mode 19 the video buffer consists of 320-by-200 pixels, each of which is mapped to a memory 
byte that encodes the pixel's attribute. SuperVGA memory structures were mentioned in Chapter 
1. In any case, the physical address of the MS-DOS video buffer in the graphics modes is A0000H. 
Microsoft DirectX allows Windows graphics applications to obtain access to the video buffer. Direct 
access to video memory in Windows programming is discussed in detail in Part II.  

 

 

The video buffer is also called the display buffer, the regen buffer (short for image regeneration 
buffer), video memory, and the video display buffer. The term frame buffer is used occasionally, 
and somewhat imprecisely. Most PC display systems allow access to the video buffer by the CPU 
(programmer's port) and by the display hardware (video controller's port). For this reason it is 
described as a dual-ported system.  

 
 Image buffer  
 

 

While the video buffer is a physical entity, the notion of an image buffer is a logical one. It is 
usually associated with the virtual graphics device. Since the attributes of the virtual machine can 
exceed those of the physical one, the dimensions and attribute range of the image buffer can 
exceed those of the video buffer. In fact, an application can manage and manipulate more than 
one image buffer. In DirectX image buffers are called surfaces. Image data in the image buffer is 
usually represented in world coordinates using whatever units are meaningful in the program's 
context. For example, an engineering application may store image data in meters, while an 
astronomical program uses light years.  

 
 Window and viewport  
 

 

The terms window and viewport are used often, and sometimes imprecisely, in computer graphics. 
The fact that Microsoft's multitasking operating system for the PC is called Windows adds to the 
confusion. Strictly speaking, a window is a rectangular area in the image buffer, also called a 
world-coordinate window. A screen region is called a viewport. In this sense, an application 
displays a portion of the image data by performing a window-to-viewport transformation. But 
recently, the word window has been used as a loose synonym for viewport. This type of window is 
sometimes qualified as window-manager window, to distinguish it from world-coordinate window.   

 
In the PC world the word "window" is used, in the sense of a window-manager window, to denote a 
screen area. This connotation is at least as common as the more correct term "viewport." In this 



book we use either term, according to the topic's context. We refer specifically to "world-coordinate 
window" and "window-manager window" when the clarification is necessary. Figure 2-19 shows 
these terms and concepts.  

 

 

  
 
 Figure 2-19: Window and viewport 

   
 



Graphics Modeling Elements  
 

 
Graphic modeling assumes that any picture, no matter how elaborate or ornate, can be 
constructed out of relatively few, simple components. The term descriptor is often used to 
represent an element in a drawing, which cannot be subdivided into simpler parts.  

 
 Descriptor  
 

 

The descriptor concept is an abstraction adopted by the graphics system. Theoretically, any 
geometrical figure except a point can be represented in a simplified form. A description is defined 
as a collection of at least one descriptor. In general, a graphics model is the representation of 
objects using literal or mathematical descriptions. In functional programming, the model is a 
representation of the object, but does not include instructions on how to display it. In object-
oriented terms the model includes the data that defines the image and the methods that are used 
in manipulating and rendering it. Whether object-oriented or not most graphics systems adopt this 
last approach.  

 

 
The specific format and syntax of the model and the available descriptors vary with each 
development system or graphics language, and even in the specific implementations of these 
packages. For example, a simple graphic modeling system could be based on the following 
descriptors:  

 
   1.move (x,y) is a command to set the current location of the drawing pen at coordinates x,y.  
 
   2.line (x,y) is a command to draw a line from the current location to a location with coordinates x,y. 
 
   3.circle (r) is a command to draw a circle of radius r with its center positioned at the current 

location of the drawing pen.  
 
 Description  
 

 
A description can include as many descriptors as necessary to represent the figure. In some 
graphics languages, descriptions are assigned a variable name. The following description encodes 
the operations necessary to draw a circle enclosed by a square:  

 
 Dname (A)  
 move (0,0)  
 line (8,0) > line (8,8) > line (0,8) >line (0,0)  
 move (4,4)  
 circle (3)  
 A ends  
 

 

In this case the operator Dname marks the start of a description and the operator ends signals its 
end. Also note that the greater-than symbol (>) is used to separate descriptors in the same line, as 
well as to indicate program flow. Notice that these symbols and structures are used by the authors 



for the purpose of the current illustration, and that they do not correspond to the actual operators of 
any graphics language or system.  

 

 

The model of a graphics object may also specify transformations to be performed on its 
description. These transformations are the usual operations of translation, rotation, scaling, or 
others specific to the language or environment. Sometimes the transformed description is called a 
graphical object. A possible scheme for representing transformations in a graphical language can 
use parentheses, brackets, and capital letters, as in the following example of a translation of the 
graphical description, labeled A, previously listed:  

 
 SHIFT (14,2) [A]  
 
 Figure 2-20 represents the description for the object (A) and the translation that results from the 
SHIFT (x,y) [A] operator.  

 

 

  
 
 Figure 2-20: Descriptors and descriptions in a graphical language  
 



The Display File  
 

 

The data structure that serves to encode graphical images is called the display file. Because 
descriptors and descriptions are the rational foundation for any modeling scheme, display file 
design is based on the principles of graphics modeling. The first step in display file design is 
usually determining the general structure of the filing system. The level of complexity of the display 
file structure should be consistent with the requirements of the system or application. The 
implementation of a full-featured graphical language requires several logical levels and sublevels 
of image encoding. A specific application, on the other hand, can sometimes do without some of 
these complications.  

 
 The most common elements of the display file are the image file, the image segment, and the 
image descriptors.  

 
 Image file  
 

 

Image files are subdivisions of a display file. Each image file encodes a single screen image. 
Image file data, or data references, can be in the form of bitmaps, vector graphics, and text 
elements. In some cases the image file also includes manipulating and rendering logic. Figure 2-
21 shows the results of displaying an image file that contains a bitmap, a vector-based rectangle, 
and several text elements.  

 

 

  
 
 Figure 2-21: Rendered image file 

   
 

 

Storing bitmaps, vector-based graphics, and text data separately makes available the individual 
components to other images. In Figure 2-21 the partial view of the planet Saturn is a portion of a 
much larger image stored in the image buffer, represented in Figure 2-19. In this case the display 
file need contain only a reference that allows identifying the rectangular tile of the image buffer that 
is to be used in this particular screen. In addition, the image file contains information describing the 
transformations, if any, to be performed on the data.  

 
Text elements can be stored in the image file or elsewhere, according to their purpose, complexity, 
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and extension. For example, if the use of text is limited to short messages that are part of the 
graphics images, the most reasonable approach may be to store the text strings in the image file 
itself. On the other hand, if the program uses and reuses extensive text areas it is more efficient to 
store the text separately and include in the image file a reference to this location.  

 
 Image segments  
 

 

An image segment is a portion of the image that can be considered as a graphic unit. Therefore, 
the image file can contain more than one image segment. The portion of the image contained in 
each segment is displayed as a single element. Figure 2-22 shows an image file consisting of two 
separate segments: the mailbox segment and the flag segment. In the right-hand drawing the flag 
segment has been rotated to the vertical position.  

 

 

  
 
 Figure 2-22: Image segments 

   
 
 Most graphics manipulations take place at the level of the image segment.  
 
 Image descriptors  
 

 

The image descriptors are the basic elements of the encoding. They are also called display file 
commands, and less appropriately, graphics primitives. A descriptor contains the instructions, 
data, and data references necessary for displaying a graphical element. The descriptors in Figure 
2-20 (move, line, and circle) are used to form the segment (or description) labeled (A). A segment 
can contain one or more descriptors. For example, the segment for the mailbox in Figure 2-22 
requires descriptors for the straight-line segments that form the top and bottom of the box and for 
the arcs that form its ends. The segment for the mailbox flag can contain a single descriptor for a 
polygon.  

 

 

The components of a descriptor are the operation code and the operands. The operation code, 
sometimes called opcode, is a mnemonic description of the operations to be performed. The terms 
move, line, and circle in Figure 2-20 are opcodes. The operands are the data items required by the 
opcode. In this example the operands follow the opcodes and are enclosed in parentheses or 
brackets.  

 



 Summary  
 

 

This chapter is an overview of the basic concepts and constructs that serve as a foundation to 
computer graphics in general, and to 3D graphics in particular. The chapter's main purpose is to 
acquaint the reader with types of graphics data and their most common representations, with 
graphics modeling systems and techniques, and with the basic ideas of image mapping. In Chapter 
3 we use this knowledge obtained here to explain the geometrical transformations that are at the 
core of 3D graphics manipulations.  

 



Chapter 3: 3D Image Transformations  
 
 Overview  
 

 
Computer graphics rely heavily on geometrical transformations for the generation and animation of 
2D and 3D imagery. In this chapter we introduce the essential transformations of translation, 
rotation, and scaling. For didactical reasons the geometrical transformations are first presented in 
the context of 2D imagery, and then expanded to 3D.  

 



 Coordinate Systems and Matrix Representations  
 

 

In computer graphics you often need to manipulate vector images in order to transform them. For 
example, an arrow indicating a northerly direction can be rotated 45 degrees clockwise to indicate 
a northeasterly direction. If an image is defined as a series of points in the Cartesian plane, then 
the rotation can be performed by a mathematical operation on the coordinates that define each 
point. Similarly, if an image is defined as a series of straight lines connecting points in the plane, 
as would be the case in the representation of an arrow, then the transformation applied to the 
image points is also a transformation of the image itself.  

 

 

The process is simplified further by storing the coordinates of each image point in a rectangular 
array. The mathematical notion of a matrix as a rectangular array of values turns out to be quite 
suitable for storing the coordinates of image points. After the coordinate points are stored in a 
matrix, you can use standard operations of linear algebra to perform geometrical transformations 
on the images. Figure 3-1 shows the approximate location of seven stars of the constellation Ursa 
Minor, also known as the Little Dipper. The individual stars are labeled with the letters a through g. 
The star labeled a corresponds to Polaris (the Pole star).  

 

 

  
 
 Figure 3-1: Point representation of the stars in the constellation Ursa Minor (Little Dipper) 

   
 
 The coordinates of each star of the Little Dipper, shown in Figure 3-1, can be represented in 
tabular form, as follows:  

 
 Star   

 
X  

  
Y  

 

 
 A   

 
0  

  
0  

 

 
 B   

 
-1  

  
11  

 

 
 C   

 
1  

  
8  

 



 
 D   

 
0  

  
12  

 

 
 E   

 
2  

  
5  

 

 
 F   

 
3  

  
9  

 

 
 G   

 
1  

  
2  

 

 

 
In 2D graphics the coordinate matrix is a set of x, y coordinate pairs, as shown in the preceding 
example. 3D representations require an additional z-coordinate that stores the depth of each point. 
3D matrix representations are discussed later in this chapter. In the following sections we explain 
the matrix operations that are most useful in graphics programming.  

 
 Image transformations  
 

 
An image can be changed into another one by performing mathematical operations on its 
coordinate points. Figure 3-2 shows the translation of a line from coordinates (2,2) and (10,14) to 
coordinates (10,2) and (18,14).  

 

 

  
 
 Figure 3-2: Translation of a straight line 

   
 

 
Notice that in Figure 3-2 the translation is performed by adding 8 to the start and end x-coordinates 
of the original line. This operation on the x-axis performs a horizontal translation. A vertical 
translation requires manipulating the y-coordinate. To translate the line both horizontally and 
vertically you must operate on both coordinate axes simultaneously.  

 



Matrix Arithmetic  
 

 

Matrices are used in several fields of mathematics. In linear algebra matrices can hold the 
coefficients of linear equations. When the equations are represented in this manner, they can be 
manipulated (and often solved) by performing operations on the rows and columns of the matrix. 
At this time we are interested only in matrix operations that are used to perform geometrical image 
transformations. The most primitive of these—translation, rotation, and scaling—are common in 
graphics and animation programming. Other less common transformations are reflection 
(mirroring) and shearing.  

 

 
We start by defining a matrix as a rectangular array usually containing a set of numeric values. It is 
customary to represent a matrix by means of a capital letter. For example, the following matrix, 
designated by the letter A, has three rows and two columns.  

 
 Example 1  
 

 

  
 
 The size of a matrix is determined by its number of rows and columns. It is common to state matrix 
size as a product of rows by columns. For example, matrix A, in Example (1), is a 3-by-2 matrix.  

 
 Scalar-by-matrix operations  
 
 A single numerical quantity is called a scalar. Scalar-by-matrix operations are the simplest 
procedures of matrix arithmetic. Example 2 shows the multiplication of matrix A by the scalar 3.  

 
 Example 2  
 

 

  
 
 If a scalar is represented by the variable s, the product matrix sA is the result of multiplying each 
element in matrix A by the scalar s.  

 
 Matrix addition and subtraction  
 



 
Matrix addition and subtraction are performed by adding or subtracting each element in a matrix to 
the corresponding element of another matrix of equal size. Example 3 shows matrix addition. 
Matrix C is the algebraic sum of each element in matrices A and B.  

 
 Example 3  
 

 

  
 

 
The fundamental restriction of matrix addition and subtraction is that both matrices must be of 
equal size, that is, they must have the same number of rows and columns. Matrices of different 
sizes cannot be added or subtracted.  

 
 Matrix multiplication  
 

 

Matrix addition and subtraction intuitively correspond to conventional addition and subtraction. The 
elements of the two matrices are added or subtracted, one-to-one, to obtain the result. The fact 
that both matrices must be of the same size makes the operations easy to visualize. Matrix 
multiplication, on the other hand, is not the multiplication of the corresponding elements of two 
matrices, but a unique sum-of-products operation. In this case, the elements of a row in the 
multiplicand (first) matrix are multiplied by the elements in a column of the multiplier (second) 
matrix. These resulting products are then added to obtain the final result. The process is best 
explained by describing the individual steps. Consider the matrices in Example 4.  

 
 Example 4  
 

 

  
 

 

From the definition of matrix multiplication we deduce that if the columns of the first matrix are 
multiplied by the rows of the second matrix, then each row of the multiplier must have the same 
number of elements as each column of the multiplicand. Notice that matrices A and B in Example 
4 meet this requirement. However, observe that product B X A is not possible, since matrix B has 
three elements per row and matrix A has only two elements in each column. For this reason, in 
Example 4, the matrix operation A X B is possible but B X A is undefined. The row by column 
operation in A X B is performed as follows:  

 
 Example 5  



 

 

  
 

 
The products matrix has the same number of columns as the multiplicand matrix and the same 
number of rows as the multiplier matrix. In Example 6, the products matrix C has the same number 
of rows as A and the same number of columns as B. In other words, C is a 2 X 3 matrix. The 
elements obtained by the preceding operations appear in matrix C in the following manner:  

 
 Example 6  
 

 
  

 

 

You have seen that in relation to matrices A and B in the previous example, the operation A X B is 
possible but B X A is undefined. This fact is often described by saying that matrix multiplication is 
not commutative. For this reason, the product of two matrices can be different if the matrices are 
taken in different order. In fact, in regards to nonsquare matrices, if the matrix product A X B is 
defined, then the product B X A is undefined.  

 

 

On the other hand, matrix multiplication is associative. This means that the product of three or more 
matrices is equal independently of the order in which they are multiplied. For example, in relation to 
three matrices, A, B, and C, youi can state that (A X B) X C equals A X (B X C). In the coming 
sections you often find use for the associative and noncommutative properties of matrix 
multiplication.  

 



2D Geometrical Transformations  
 

 

A geometrical transformation can be described as the conversion of one image onto another one 
by performing mathematical operations on its coordinate points. Geometrical transformations are 
simplified by storing the image coordinates in a rectangular array, called a matrix. In the following 
sections, we describe the most common transformations: translation, scaling, and rotation. The 
transformations are first described in terms of matrix addition and multiplication, and later 
standardized so that they can be expressed in terms only of matrix multiplications.  

 
 Translation  
 

 

A translation transformation is the movement of a graphical object to a new location by adding a 
constant value to each coordinate point that defines the object. The operation requires that a 
constant is added to all the coordinates in each plane, but the constants can be different for each 
plane. For example, a translation takes place if the constant 5 is added to all x-coordinates and the 
constant 2 to all y-coordinates of an object represented in a two-dimensional plane.  

 

 
At the top of Figure 3-3 you see the graph and matrix of seven stars in the constellation Ursa 
Minor. A translation transformation is performed by adding 5 to the x-coordinate of each star and 2 
to the y-coordinate. The bottom part of Figure 3-3 shows the translated image and the new 
coordinates.  

 

 

  
 
 Figure 3-3: A translation transformation 

   
 
 In terms of matrix operations, the translation can also be viewed as follows:  
 



 

  
 
 The transformation is expressed in the following matrix equation:  
 
 A + B = C  
 

 

where A represents the original coordinates matrix, B the transformation matrix, and C the matrix 
holding the transformed coordinates. Notice that the transfor-mation matrix holds the constants to 
be added to the x- and y-coordinates. By definition of the translation transformation, because the 
same value must be added to all the elements of a coordinate plane, it is evident that the columns 
of the transformation matrix always hold the same numerical value.  

 
 Scaling  
 

 

To scale is to apply a multiplying factor to the linear dimension of an object. A scaling 
transformation is the conversion of a graphical object into another one by multiplying each 
coordinate point that defines the object by a scalar. The operation requires that all the coordinates 
in each plane are multiplied by the scaling factor, although the scaling factors can be different for 
each plane. For example, a scaling transformation takes place when all the x-coordinates of an 
object represented in a two-dimensional plane are multiplied by 2, and all the y-coordinates of this 
same object are multiplied by 3. In this case the scaling operation is said to be asymmetrical.  

 

 
In comparing the definition of the scaling transformation to that of the translation transformation 
you notice that translation is performed by adding a constant value to the coordinates in each 
plane, while scaling requires multiplying these coordinates by a factor. The scaling transformation 
can be represented in matrix form by taking advantage of the properties of matrix multiplication.  

 
 Figure 3-4 shows a scaling transformation that converts a square into a rectangle.  



 

  
 
 Figure 3-4: A scaling transformation 

   
 
 The coordinates of the square in Figure 3-4 can be stored in a 4-by-2 matrix, as follows:  
 

 

  
 

 
The transformation matrix holds the factors that must be multiplied by the x- and y-coordinates in 
order to perform the scaling operation. Using the letters Sx to represent the scaling factor for the x-
coordinates, and the letters Sy to represent the scaling factor for the y-coordinates, the scaling 
transformation matrix can be expressed as follows:  

 

 

  
 
 The transformation of Figure 3-4, which converts the square into a rectangle, is expressed in 
matrix form as follows:  



 

  
 
 The intermediate steps in the matrix multiplication operation can be obtained following the rules of 
matrix multiplication described previously in this chapter.  

 

 
Figure 3-5 shows the scaling transformation of the graph of the constellation Ursa Minor. In this 
case, in order to produce a symmetrical scaling, the multiplying factor is the same for both axes. A 
symmetrical scaling operation is sometimes referred to as a zoom.  

 

 

  
 
 Figure 3-5: Symmetrical scaling (zooming) 

   
 
 Rotation  
 

 

A rotation transformation is the conversion of a graphical object into another one by moving all 
coordinate points that define the original object, by the same angular value, along circular arcs with 
a common center. The angular value is called the angle of rotation, and the fixed point that is 
common to all the arcs is called the center of rotation. Notice that some geometrical figures are 
unchanged by specific rotations. For example, a circle is unchanged by a rotation about its center, 
and a square is unchanged if rotated by an angle that is a multiple of 90 degrees, provided that the 
center of rotation is the intersection point of both diagonals.  

 

 
The mathematical interpretation of the rotation is obtained by applying elementary trigonometry. 
Figure 3-6 shows the counterclockwise rotation, through an angle r, of points located on the 
coordinate axes at unit distances from the center of rotation.  



 

  
 
 Figure 3-6: Rotation of a point 

   
 

 
The left-side drawing in Figure 3-6 shows the counterclockwise rotation of point p1, with 
coordinates (1,0), through angle r. The coordinates of the rotated point (pr1) can be determined by 
solving the triangle with vertices at O, p1 and pr1, as follows:  

 
 cos r = x/1, therefore x = cos r  
 sin r = y/1, therefore y = sin r  
 
 The coordinates of the rotated point pr2, shown on the right-side drawing in Figure 3-6, can be 
determined by solving the triangle with vertices at O, p2 and pr2.  

 
 sin r = -x/1, therefore x = - sin r  
 cos r = y/1, therefore y = cos r  
 
 Now the coordinates of the rotated points can be expressed as follows.  
 
 coordinates of pr1 = (cos r, sin r)  
 coordinates of pr2 = (-sin r, cos r)  
 

 
From these equations you can derive a transformation matrix, which, through matrix multiplication, 
yields the new coordinates for the counterclockwise rotation about the origin, through angle r, as 
shown in the following example:  

 

 
  

 

 
You are now ready to perform a rotation transformation through matrix multiplication. Figure 3-7 
shows the clockwise rotation of the stars in the constellation Ursa Minor, through an angle of 60 
degrees, with center of rotation at the origin of the coordi-nate axes.  



 

  
 
 Figure 3-7: Rotation transformation 

   
 
 Suppose that the coordinates of the four vertices of a polygon are stored in a matrix, as follows:  
 

 

  
 
 The transformation matrix for clockwise rotation through angle r is as follows:  
 

 

  
 
 Evaluating this matrix for a 60-degree rotation gives the following trigonometric functions.  
 

 

  
 
 Now the rotation can be expressed as a product of two matrices as shown in the following 
example.  

 
 The intermediate steps in the matrix multiplication operation are obtained following the rules of 
matrix multiplication described earlier in this chapter.  



 

 

  
 
 Homogeneous coordinates  
 

 

Expressing translation, scaling, and rotation mathematically, in terms of matrix operations, allows a 
more efficient approach to graphical transformations. However, you notice that in the method 
previously described rotation and scaling are expressed in terms of matrix multiplication, while 
translation is expressed as matrix addition. It would be a valuable simplification if you could 
express all three basic transformations in terms of the same mathematical operation. Fortunately, 
it is possible to represent the translation transformation as matrix multiplication. The scheme 
requires adding a dummy parameter to the coordinate matrices and expanding the transformation 
matrices to 3 X 3. The following example shows the necessary manipulations where the 
coordinates of a point can be expressed in a matrix.  

 

 

  
 

 
This matrix can be expanded to three columns by using a dummy matrix parameter, labeled w. If w 
is not to affect coordinates x and y in two-dimensional transformations, it must meet the following 
requirement:  

 
 x = x * w, y = y * w  
 
 It follows that 1 is the only value that can be assigned to w so that it meets the condition in the 
preceding example. This results in the matrix:  

 

 

  
 

 
You can use the terms Tx and Ty to represent the horizontal and vertical units of a translation. A 
transformation matrix for the translation operation can be expressed when you use homogenous 



coordinates as follows:  
 

 

  
 

 
You test these results by performing a translation of eight units in the horizontal direction (Tx = 8) 
and zero units in the vertical direction (Ty = 0) of the point located at coordinates (5,2). The matrix 
multiplication is expressed as follows:  

 

 

  
 

 
This operation shows the point at x = 5, y = 2 translated 8 units to the right, with destination 
coordinates of x = 13, y = 2. Observe that the w parameter, set to 1 in the original matrix, remains 
the same in the final matrix. For this reason, in actual processing operations the additional 
parameter can be ignored.  

 
 Concatenation  



 

 
To take full advantage of the system of homogeneous coordinates you must express all the 
transformation matrices in terms of 3-by-3 matrices. The translation transformation can be 
expressed using homogenous coordinates in the following matrix:  

 

 

  
 
 The scaling transformation matrix can also be expanded to a 3-by-3 matrix as follows:  
 

 

  
 
 At the same time, the translation transformation matrix for a counterclockwise rotation through 
angle r can be converted to homogeneous coordinates as follows:  

 

 

  



 
 Notice that this rotation transformation assumes that the center of rotation is at the origin of the 
coordinate system.  

 

 
Matrix multiplication is associative. This means that the product of three or more matrices is equal, 
no matter which two matrices are multiplied first. By virtue of this property, you are now able to 
express a complex transformation by combining several basic transformations. This process is 
generally known as matrix concatenation.  

 

 
For example, in Figure 3-7 the image of the constellation Ursa Minor is rotated clockwise 60 
degrees about the origin. But it is possible to perform this transformation using any arbitrary point 
in the coordinate system as a pivot point. For instance, to rotate a polygon about any arbitrary 
point pa, the following sequence of transformations is executed:  

 
   1.Translate the polygon so that point pa is at the coordinate origin.  
 
   2.Rotate the polygon.  
 
   3.Translate the polygon so that point pa returns to its original position.  
 
 In matrix form the sequence of transformations can be expressed as the following product:  
 

 
  

 
 Performing the indicated multiplication yields the matrix for a counterclockwise rotation, through 
angle r, about point pa, with coordinates (Tx,Ty).  

 

 
  

 

 

Although matrix multiplication is associative, it is not commutative. Therefore, the order in which 
the operations are performed can affect the results. A fact that confirms the validity of the matrix 
representation of graphics transformations is that, graphically, the results of performing 
transformations in different sequences can also yield different results. For example, the image 
resulting from a certain rotation, followed by a translation transformation, may not be identical to 
the one resulting from performing the translation first and then the rotation.  

 
 Figure 3-8 shows a case in which the order of the transformations determines a difference in the 
final object.  

 



 

  
 
 Figure 3-8: Order of transformations 

   
 



3D Transformations  
 

 

Two-dimensional objects are defined by their coordinate pairs in 2D space. By extending this 
model you can represent a three-dimensional object by means of a set of coordinate triples in 3D 
space. Adding a z-axis that encodes the depth component of each image point produces a three-
dimensional coordinate system. The coordinates that define each image point in 3D space are a 
triplet of x, y, and z values. Because the three-dimensional model is an extension of the two-
dimensional one, you can apply geometrical transformations in a similar manner as you did with 
two-dimensional objects. Figure 3-9 shows a rectangular solid in 3D space.  

 

 

  
 
 Figure 3-9: 3D representation of a rectangular solid 

   
 

 
The solid in Figure 3-9 is defined by means of the coordinate triplets of each of its eight points, 
which are represented by the labeled black dots. In tabular form the coordinates of each point are 
defined as follows:  

 
    

 
x  

  
y  

  
z  

 

 
 p1   

 
0  

  
0  

  
2  

 

 
 p2   

 
4  

  
0  

  
2  

 

 
 p3   

 
4  

  
2  

  
2  

 

 
 p4   

 
0  

  
2  

  
2  

 

 
 p5   

 
0  

  
0  

  
0  

 

 
 p6   

 
4  

  
0  

  
0  
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2  

  
0  

 

 

 

Point p5, which is at the origin, has values of zero for all three coordinates. Point p1 is located 2 
units along the z-axis, therefore its coordinates are x = 0, y = 0, z = 2. Notice that if you disregard 
the z-axis coordinates, then the two planes formed by points p1, p2, p3, and p4 and points p5, p6, 
p7, and p8 would have identical values for the x- and y-axis. This is consistent with the notion of a 
rectangular solid as a solid formed by two rectangles residing in 3D space.  

 
 3D translation  
 

 

In 2D representations, a translation transformation is performed by adding a constant value to 
each coordinate point that defines the object. This continues to be true when the point's 
coordinates are contained in three planes. As in the case of a 2D object, the transformation 
constant is applied to each plane to determine the new position of each image point. Figure 3-10 
shows the translation of a cube defined in 3D space by adding 2 units to the x-axis coordinates, 6 
units to the y-axis, and -2 units to the z-axis.  

 

 

  
 
 Figure 3-10: Translation transformation of a cube 

   
 

 

If the coordinate points of the eight vertices of the cube in Figure 3-10 were represented in a 3-by-
8 matrix (designated as matrix A) and the transformation constants in a second 8-by-3 matrix 
(designated as matrix B), then you could perform the translation transformation by means of matrix 
addition and store the transformed coordinates in a results matrix (designated as matrix C). The 
matrix operation A + B = C operation would be expressed as follows:  

 



 

  
 
 Here again, you can express the geometric transformation in terms of homogeneous coordinates. 
The translation transformation matrix for 3D space would be as follows:  

 

 

  
 

 
The parameters Tx, Ty, and Tz represent the translation constants for each axis. As in the case of 
a 2D transformation, the new coordinates are determined by adding the corresponding constant to 
each coordinate point of the figure to be translated. If x', y', and z' are the translated coordinates of 
the point at x, y, and z, the translation transformation takes place as follows:  

 
 x' = x + Tx  
 
 y' = y + Ty  
 
 z' = z + Tz  
 

 
As in the case of 2D geometrical transformations, the transformed results are obtained by matrix 
multiplication using the matrix with the object's coordinate points as the first product matrix, and 
the homogenous translation transformation matrix as the second one.  

 
 3D scaling  



 

A scaling transformation consists of applying a multiplying factor to each coordinate point that 
defines the object. A scaling transformation in 3D space is consistent with the scaling in 2D space. 
The only difference is that in 3D space the scaling factor is applied to each of three planes, instead 
of the two planes of 2D space. Here again the scaling factors can be different for each plane. If this 
is the case, the resulting transformation is described as an asymmetrical scaling. When the scaling 
factor is the same for all three axes, the scaling is described as symmetrical or uniform. Figure 3-
11 shows the uniform scaling of a cube by applying a scaling factor of 2 to the coordinates of each 
figure vertex.  

 

 

  
 
 Figure 3-11: Scaling transformation of a cube 

   
 
 The homogeneous matrix for a 3D scaling transformation is as follows:  
 

 

  
 

 
The parameters Sx, Sy, and Sz represent the scaling factors for each axis. As in the case of a 2D 
transformation, the new coordinates are determined by multiplying the corresponding scaling factor 
with each coordinate point of the figure to be scaled. If x', y', and z' are the scaled coordinates of 
the point at x, y, and z, the scaling transformation takes place as follows:  

 
 x' = x * Sx  
 
 y' = y * Sy 



 y' = y * Sy  
 
 z' = z * Sz  
 

 

In homogeneous terms, the transformed results are obtained by matrix multiplication using the 
matrix with the object's coordinate points as the first product matrix, and the homogeneous scaling 
transformation matrix as the second one. When the object to be scaled is not located at the origin 
of the coordinates axes, a scaling transformation will also result in a translation of the object to 
another location. This effect is shown in Figure 3-12.  

 

 

  
 
 Figure 3-12: Scaling transformation of an object not at the origin 

   
 
 Assuming that point p1 in Figure 3-12 is located at coordinates x = 2, y = 2, z = -2, and that a 
uniform scaling of 3 units is applied, then the coordinates of translated point p1' are as follows:  

 

 

  
 

 
The result is that not only is the cube tripled in size, it is moved to a new position in the coordinates 
plane as well. To scale an image with respect to a fixed position, it is necessary to first translate it 
to the origin, apply the scaling factor next, and finally translate it back to its original location. The 
necessary manipulations are shown in Figure 3-13.  



 

  
 
 Figure 3-13: Fixed-point scaling transformation 

   
 

 
In terms of matrix operations a fixed-point scaling transformation consists of applying a translation 
transformation to move the point to the origin, and then the scaling transformation, followed by 
another translation to return the point to its original location. If you represent the fixed position of 
the point as xf, yf, zf, then the translation to the origin is represented by the transformation:  

 
 

  
 
 Where T is any transformation applied to the points inside the parentheses. The transformation to 
return the point to its original location is as follows:  

 

 
  

 
 Therefore, the fixed-point scaling consists of  
 
   
 
 and the homogeneous matrix is  
 

 

  
 
 where S is the scaling matrix and T the transformation matrix, as previously described. 



 where S is the scaling matrix and T the transformation matrix, as previously described.  
 
 3D rotation  
 

 

Although 3D translation and scaling transformations are described as simple extensions of the 
corresponding 2D operations, the 3D rotation transformation is more complex than its 2D 
counterpart. The additional complications arise from the fact that in 3D space, rotation can take 
place in reference to any one of the three axes. Therefore an object can be rotated about the x-, y-
, or z-axes, as shown in Figure 3-14.  

 

 

  
 
 Figure 3-14: Rotation in 3D space 

   
 

 
In defining 2D rotation, we adopted the convention that positive rotations produce a clockwise 
movement about the coordinate axes as shown by the elliptical arrows in Figure 3-14. Figure 3-15 
shows the positive, x-axis rotation of a cube.  

 

 

  



 
 Figure 3-15: Positive, x-axis rotation of a cube 

   
 

 

A rotation transformation leaves unchanged the coordinate values along the axis of rotation. For 
example, the x-coordinates of the rotated cube in Figure 3-15 are the same as those of the figure 
at the top of the illustration. By the same token, rotating an object along the z-axis changes its y- 
and x-coordinates while the z-coordinates remain the same. Therefore, the 2D rotation 
transformation equations can be extended to a 3D rotation along the z-axis, as follows:  

 

 

  
 
 Here again, r is the negative angle of rotation.  
 
 By performing a cyclic permutation of the coordinate parameters you can obtain the transformation 
matrices for rotations along the x- and y-axis. In homogeneous coordinates they are as follows:  

 

 

  
 



 

  
 
 Rotation about an arbitrary axis  
 

 

You often need to rotate an object about an axis parallel to the coordinate axis but different from 
the one in which the object is placed. In the case of the 3D fixed-point scaling transformation 
shown in Figure 3-13, we performed a translation transformation to reposition the object in the 
coordinates planes, performed the scaling transformation, and concluded by retranslating the 
object to its initial location. Similarly, you can rotate a 3D object about an arbitrary axis by first 
translating it to the required position on the coordinate plane, performing the rotation, and finally 
relocating the object at its original position. For example, suppose you want to rotate a cube, with 
one of its faces parallel to one of the principal planes, along its own x-axis. In this case you may 
need to relocate the object so that the desired axis of rotation lies along the x-axis of the 
coordinate system. When in this position, you can perform the rotation applying the rotation 
transformation matrix for the x-axis. After the rotation, the object is repositioned to its original 
location. The sequence of operations is shown in Figure 3-16.  

 

 

  
 
 Figure 3-16: Rotation about an arbitrary axis 

   

In this case it is possible to see one of the advantages of homogeneous coordinates. Instead of 



concatenation. Matrix concatenation was covered earlier in this chapter.  
 



Coding Geometrical Transformations  
 

 
Most graphics packages, including Microsoft DirectX 6, contain utilities for performing geometrical 
transformations and matrix concatenation. The file named D3dutil.cpp in the DirectX package 
includes primitives to perform 3D rotations, translations, and scaling operations. Three utilities are 
provided in D3dutil.cpp for performing rotation transformations, one for each coordinate axis.  

 

 
After the transformation matrices have been obtained, you can develop your own routines for 
performing translation, rotation, scaling, and matrix concatenation transformations. The following 
code sample contains code for the following functions:  

 

   
1.The MatrixMult() function performs matrix multiplication. The first parameter is an array of 
points holding x- and y-coordinates of a figure in 2D space. The second parameter is a 3-by- 3 
matrix used as the multiplier. The third parameter is an array that holds the new point in 
homogeneous coordinates.  

 

   
2.The Transform() function applies a transformation to an array of x- and y-coordinate pairs in 
homogeneous coordinates. The first parameter is a matrix containing the coordinates of the points 
to be transformed. The second parameter is the matrix that is applied in performing the 
transformation.  

 
   3.The TranslateFig() function demonstrates the use of the Transform() function by calling it 

with a translation matrix as an argument.  
 
 //********************************************************  
 // code sample for 2D geometrical transformations  
 //********************************************************  
   
 // Matrix multiplication  
 void MatrixMult(double s[], double matrix[3][3],  
 double r[])  
 // First parameter holds the coordinates of a point.  
   
 // The second parameter is a 3 X 3 transformation matrix.  
 // The third parameter is an array of vertices  
 // that result from the matrix multiplication,  
 // as follows:  
 // SOURCE MATRIX RESULT  
 // | 1 0 0 |  
 // [sx sy 1] * | 0 1 0 | = [rx ry 1]  
 // | 2 4 1 |  
 //  
 // Matrix multiplication operation:  



 // rx = sx*1 + sx*0 + sx*2  
 // ry = sy*0 + sy*1 + sy*4  
 //  
 // if sx = 10 and sy = 40  
 // to perform a translation of x = 200 and y = 50   
 // SOURCE MATRIX   
 // | 1 0 0 |  
 // [10 40 1] * | 0 1 0 |  
 // |200 50 1 |  
   
 // rx = 10*1 + 40*0 + 1*200 = 210  
 // ry = 10*0 + 40*1 + 1*50 = 90  
   
 {  
 for(int col = 0; col < 3; col++)  
 {  
 r[col] = 0.0;  
 for(int row = 0; row < 3; row++)  
 {  
 r[col] = r[col] + s[row] * matrix[row][col];  
 }  
 }  
 }  
   
 // Apply a transformation to a shape stored in an  
 // array of x and y coordinate pairs. tMatrix holds  
 // a 3 X 3 transformation matrix  
 void Transform(int shape[][3], double tMatrix[3][3])  
 {  
 double oldPos[] = {0, 0, 1 };  
 double newPos[] = {0, 0, 1 };  
   
 // Set up loop. A value of -1 forces loop termination  
 for(int i = 0; shape[i][0] != -1; i++)  
 {  
 oldPos[0] = shape[i][0];  
 oldPos[1] = shape[i][1];  
 MatrixMult(oldPos, tMatrix, newPos);  



 shape[i][0] = (int) newPos[0];  
 shape[i][1] = (int) newPos[1];  
 }  
 }  
   
 // Translate shape  
 void TranslateFig(int shape[3][3], int xVal, int yVal)  
 {  
 double translateMat[][3] = {  
 { 1, 0, 0 },  
 { 0, 1, 0 },  
 { xVal, yVal, 1 },  
 };  
   
 Transform(shape, translateMat);  
 }  
 



Coding Geometrical Transformations  
 

 
Most graphics packages, including Microsoft DirectX 6, contain utilities for performing geometrical 
transformations and matrix concatenation. The file named D3dutil.cpp in the DirectX package 
includes primitives to perform 3D rotations, translations, and scaling operations. Three utilities are 
provided in D3dutil.cpp for performing rotation transformations, one for each coordinate axis.  

 

 
After the transformation matrices have been obtained, you can develop your own routines for 
performing translation, rotation, scaling, and matrix concatenation transformations. The following 
code sample contains code for the following functions:  

 

   
1.The MatrixMult() function performs matrix multiplication. The first parameter is an array of 
points holding x- and y-coordinates of a figure in 2D space. The second parameter is a 3-by- 3 
matrix used as the multiplier. The third parameter is an array that holds the new point in 
homogeneous coordinates.  

 

   
2.The Transform() function applies a transformation to an array of x- and y-coordinate pairs in 
homogeneous coordinates. The first parameter is a matrix containing the coordinates of the points 
to be transformed. The second parameter is the matrix that is applied in performing the 
transformation.  

 
   3.The TranslateFig() function demonstrates the use of the Transform() function by calling it 

with a translation matrix as an argument.  
 
 //********************************************************  
 // code sample for 2D geometrical transformations  
 //********************************************************  
   
 // Matrix multiplication  
 void MatrixMult(double s[], double matrix[3][3],  
 double r[])  
 // First parameter holds the coordinates of a point.  
   
 // The second parameter is a 3 X 3 transformation matrix.  
 // The third parameter is an array of vertices  
 // that result from the matrix multiplication,  
 // as follows:  
 // SOURCE MATRIX RESULT  
 // | 1 0 0 |  
 // [sx sy 1] * | 0 1 0 | = [rx ry 1]  
 // | 2 4 1 |  
 //  
 // Matrix multiplication operation:  



 // rx = sx*1 + sx*0 + sx*2  
 // ry = sy*0 + sy*1 + sy*4  
 //  
 // if sx = 10 and sy = 40  
 // to perform a translation of x = 200 and y = 50   
 // SOURCE MATRIX   
 // | 1 0 0 |  
 // [10 40 1] * | 0 1 0 |  
 // |200 50 1 |  
   
 // rx = 10*1 + 40*0 + 1*200 = 210  
 // ry = 10*0 + 40*1 + 1*50 = 90  
   
 {  
 for(int col = 0; col < 3; col++)  
 {  
 r[col] = 0.0;  
 for(int row = 0; row < 3; row++)  
 {  
 r[col] = r[col] + s[row] * matrix[row][col];  
 }  
 }  
 }  
   
 // Apply a transformation to a shape stored in an  
 // array of x and y coordinate pairs. tMatrix holds  
 // a 3 X 3 transformation matrix  
 void Transform(int shape[][3], double tMatrix[3][3])  
 {  
 double oldPos[] = {0, 0, 1 };  
 double newPos[] = {0, 0, 1 };  
   
 // Set up loop. A value of -1 forces loop termination  
 for(int i = 0; shape[i][0] != -1; i++)  
 {  
 oldPos[0] = shape[i][0];  
 oldPos[1] = shape[i][1];  
 MatrixMult(oldPos, tMatrix, newPos);  



 shape[i][0] = (int) newPos[0];  
 shape[i][1] = (int) newPos[1];  
 }  
 }  
   
 // Translate shape  
 void TranslateFig(int shape[3][3], int xVal, int yVal)  
 {  
 double translateMat[][3] = {  
 { 1, 0, 0 },  
 { 0, 1, 0 },  
 { xVal, yVal, 1 },  
 };  
   
 Transform(shape, translateMat);  
 }  
 



Applications of Geometrical Transformations  
 

 
Geometrical transformations provide a convenient technique for creating consecutive images of a 
graphical object. If the consecutive images are projected and erased at sufficient speed, they can 
be used to create an illusion of movement or change, called animation.  

 

 

Because of image retention, the animated images must be flashed at a rate of approximately 70 
images per second to produce a smooth and realistic effect. Even when dealing with images of 
moderate complexity, the task of creating and displaying them at this rate can impose an 
extremely large processing load on the graphics system. Therefore, in animation programming 
every device or stratagem that improves graphics performance is critically important. Performing 
the image transformation by mathematically operating on matrices of coordinate points saves 
considerable processing time and effort.  

 

 

It is possible to combine more than one transformation in the creation of more refined animation 
effects. For example, by combining translation and rotation transformations, a wheel can be made 
to appear to roll on the screen. Or, by combining translation and scaling transformations, an object 
can be made to disappear into the background. Figure 3-17 shows the application of scaling and 
rotation to the image of an airplane in order to simulate it being approached in combat. The effect 
could be enhanced by applying additional transformations to the background image.  

 

 
  

 
 Figure 3-17: Animation by rotation and scaling transformations 

   
 



Summary  
 

 

In Chapter 3, you see how geometrical transformations facilitate graphics representations 2D and 
3D space. The transformation matrices developed in this chapter, coupled with matrix 
concatenation operations, constitute the basic transformation tool of 3D graphics. These 
techniques find frequent use in the remainder of the book. We covered the following fundamental 
topics:  

 
   •Matrix arithmetic  
 
   •2D transformations  
 
   •Homogenous coordinates  
 
   •3D transformations  
 
   •Applications and code sample  
 

 
In Chapter 4, we continue our overview of 3D graphics techniques with modeling and rendering, 
introducing the plane as a polygonal modeling tool, and discussing splines, cameras, lights, 
rendering algorithms, and texture mapping.  

 



 Chapter 4: 3D Rendering  
 
 Overview  
 

 

Before you can view a graphics object, you must find a way of storing it in a computer-compatible 
way, and before you can store an image, you must find a way of defining it. In other words, you 
must be able to digitize it. Because the current state-of-the-art in computer displays is two-
dimensional, the solid image must be transformed so that it is displayed on a flat surface. The task 
can be broken down into three separate chores: representing, encoding, and rendering. 
Representing and encoding graphics images were discussed in previous chapters. Here we are 
concerned with rendering.  

 

 
Rendering a real-world solid, encoded in digital form, onto a flat display surface is indeed 
complicated. Many books and hundreds of articles and research papers have been written on this 
topic and as many algorithms have been developed, each with its own advantages and drawbacks. 

 



Projections and Perspective  
 

 

We start from the assumption that the computer screen is a planar surface. In Chapters 2 and 3 
you learned how to represent and transform image data stored in the computer in numerical form. 
The result is a data structure of coordinate points that defines the image, which can be translated, 
scaled, and rotated by means of geometrical transformations. But this data structure cannot be 
directly displayed on a flat screen. A similar problem is encountered by an engineer who needs to 
represent a solid object on the flat surface of the drawing paper. In either case you must find ways 
of rendering a solid onto a plane. Various approaches to this problem produce several types of 
projections. Figure 4-1 shows the more common classification of projections.  

 

 

  
 
 Figure 4-1: Projections classification 

   
 
 Projective geometry  
 
 Projective geometry is the field of mathematics that studies the transformations of objects during 
projections. The following imaginary elements participate in every projection:  

 
   1.The observer's eye, also called the center of projection, or viewpoint  
 
   2.The object being projected  
 
   3.The plane or planes of projection  
 
   4.The visual rays that determine the line of sight, called the projectors  
 
 Figure 4-2 shows these elements.  
 



 

  
 
 Figure 4-2: Projection elements 

   
 

 

From a geometrical point of view, the projection of a point on a plane is the point of intersection on 
the plane of projection of a line that extends from the object's point to the center of projection. 
Because this line is called the projector, you can also say that the projection of a point is the 
intersection between the point's projector and the plane of projection. This definition can be refined 
further by requiring that the center of projection not be located in the object nor in the plane of 
projection. This constraint makes this type of projection a central projection.  

 

 

The location of the center of projection in relation to the plane of projection and the object 
determines the two main types of projections. When the center of projection is at a discrete 
distance from the plane of projection the result is called a perspective projection. When the center 
of projection is located at infinity, the projection is called a parallel projection. Figure 4-3 shows 
perspective and parallel projections.  

 

 

  
 
 Figure 4-3: Perspective and parallel projections 

   
 

 In a central projection the geometrical elements in the object plane are transformed into similar 
ones in the plane of projection. In this case a line is projected as a line, a triangle as a triangle, and 
a polygon as a polygon. Other properties are not preserved. For example, the length of line 



hyperbola) retain the conic section property, but not necessarily the type. A circle can be projected 
as an ellipse, an ellipse as a parabola, and so on. Figure 4-4 shows the perspective projection of a 
circle as an ellipse.  

 

 

  
 
 Figure 4-4: A circle projected as an ellipse 

   
 
 Parallel projections  
 

 

Parallel projections have found extensive use in technical drafting, engineer-ing drawings, and 
architecture. They are divided into two types: oblique and orthographic. The orthographic or right-
angle projection, which is the simplest of all, assumes that the direction of projection is 
perpendicular to the projection plane. In this case the projectors are normal (perpendicular) to the 
plane of projection. In the oblique projection the projectors are not normal to the plane of 
projection.  

 

 
A type of orthographic projection, called a multiview projection, is used often in technical drawings. 
The images that result from a multiview projection are planar and true-to-scale. Therefore, the 
engineer or draftperson can take measurements directly from a multiview projection. Figure 4-5 
shows a multiview projection of an engineered object.  

 

 

  
 
 Figure 4-5: Parallel, orthographic, multiview projection 

   



 

The front, side, and top views shown in the drawing in Figure 4-5 are called the regular views. 
There are three additional views not shown in the illustration, called the bottom, right-side, and rear 
views. These are drawn whenever it is necessary to show details not visible in the regular views. 
The Cartesian interpretation of the front view is the orthographic projection of the object onto the 
xy-plane, the side view is the projection onto the yz-plane, and the top view is the projection onto 
the xz-plane. Sometimes, these views are called the front-elevation, side-elevation, and top- or 
plan-elevation.  

 

 
Although each multiview projection shows a single side of the object, it is often convenient to show 
the object pictorially. The left-side drawing in Figure 4-5 shows several sides of the object in a 
single view, thus rendering a pictorial view of the object. The orthographic-axonometric projections 
are pictorial projections often used in technical applications.  

 

 

The term axonometric originates in the Greek words "axon" (axis) and "metrik" (measurement). It 
relates to the measurements of the axes used in the projection. In Figure 4-1 the axonometric 
projections are further classified into isometric, dimetric, and trimetric. Isometric means "equal 
measure," which determines that the object axes make equal angles with the plane of projection. 
In the dimetric projection two of the three object axes make equal angles with the plane of 
projection. In the trimetric, all three axes angles are different. Figure 4-6 shows the isometric, 
dimetric, and trimetric projections of a cube.  

 

 

  
 
 Figure 4-6: Isometric, dimetric, and trimetric projections 

   
 
 Perspective projections  
 

 

The orthographic projections have features that make them useful in technical applications. The 
multiview projections provide information to the technician, engineer, and the architect. The 
axonometric projections shown in Figure 4-6 can be mechanically generated from multiview 
drawings. In general, the main feature of the parallel projections is their information value. In the 
world of 3D rendering the objection to the parallel projections is their lack of realism. For example, 
Figure 4-7 shows two isometric cubes, labeled A and B, at different distances from the observer. 
However, both objects have projected images of the same size. This is not a realistic 
representation because cube B, farther away from the observer, should appear smaller than cube 
A.  



 

  
 
 Figure 4-7: Lack of realism in an isometric projection 

   
 

 

A perspective projection attempts to improve the realism of the image by providing depth cues that 
enhance relative positions, distances, and diminishing size. One of the most important depth cues 
is the relative size of the object at different distances from the viewpoint. This effect can be 
achieved by means of perspective projections. The perspective projections depend on a vanishing 
point that is used to determine the object's relative size. Three types of perspective projections are 
in use, according to the number of vanishing points. They are named one-point, two-point, and 
three-point perspectives.  

 

 

The number of vanishing points is determined by the positioning of the object in relation to the 
plane of projection. If a cube is placed so its front face is parallel to the plane of projection, then 
one set of edges converges to a single vanishing point. If the same cube is positioned so that one 
set of parallel edges (usually, the vertical) is parallel to the picture plane and the other two sets are 
not, then each of those two sets of parallel edges not parallel to the picture plane has a vanishing 
point. Finally, if the cube is placed so that none of its principal edges are parallel to the plane of 
projection, then there are three vanishing points.  

 

 

In contrast to the parallel projections previously described, perspective projections have unique 
characteristics. In a parallel projection you take a three-dimensional object and produce a two-
dimensional image. In a perspective projection you start with a three-dimensional object and 
produce another three-dimensional object, which is modified to enhance its depth cues. This 
means that a projection is a transformation, much like the rotation, translation, and scaling 
transformations discussed in Chapter 3. Unlike rotation, translation, and scaling, a perspective 
transformation distorts the shape of the object transformed. After a perspective transformation, 
forms that were originally circles may turn into ellipses, parallelograms into trapezoids, and so 
forth. It is this distortion that reinforces our depth perception.  

 
 One-point perspective  
 

 
The simplest perspective projection is based on a single vanishing point. This projection is also 
called single-point perspective. In the one-point perspective the object is placed so that one of its 
surfaces is parallel to the plane of projection. Figure 4-8 shows a one-point perspective of a cube.  



 

 

  
 
 Figure 4-8: One-point perspective projection 

   
 

 

One-point perspective projections are simple to produce and find many practical uses in 
engineering, architecture, and computer graphics. One of the features of the one-point perspective 
is that if an object has cylindrical or circular forms, and these are placed parallel to the plane of 
projection, then the forms are represented as circles or circular arcs in the perspective. This can 
be an advantage, considering that circles and circular arcs are easier to produce than ellipses or 
other conics. Figure 4-9 is a one-point projection of a mechanical part that contains cylindrical and 
circular forms.  

 

 

  
 
 Figure 4-9: One-point projection of a part with cylindrical and circular forms 

   
 

 

A special form of the one-point perspective projection takes place when the vanishing point is 
placed centrally within the figure. This type of projection, which has limited use, is sometimes 
called a tunnel perspective or tunnel projection. Because of the particular positioning of the object 
in the coordinate axes, the depth cues in a tunnel projection are not very obvious. Figure 4-10 
shows the tunnel projection of a cube.  

 



 

  
 
 Figure 4-10: Tunnel projection of a cube 

   
 
 Two-point perspective  
 

 

The depth cues in a linear perspective of a multifaced object can be improved by rotating the 
object so that two of its surfaces have vanishing points. In the case of a cube this is achieved if it is 
rotated along its y-axis, so that lines along that axis remain parallel to the viewing plane, but those 
along the two other axes have vanishing points. Figure 4-11 shows a two-point perspective of a 
cube.  

 

 

  
 
 Figure 4-11: Two-point perspective of a cube 

   
 
 Two-point perspective projections are the most commonly used in 3D graphics.  
 
 Three-point perspective  
 

 
You create a three-point perspective by positioning the object so that none of its axes are parallel 
to the plane of projection. Although, in this case, the visual depth cues are stronger than in the 
two-point perspective, the resulting geomet-rical deformations are sometimes disturbing to the 
viewer. Figure 4-12 is a three-point perspective projection of a cube.  



 

  
 
 Figure 4-12: Three-point perspective of a cube 

   
 
 Perspective as a transformation  
 

 

The data that defines a three-dimensional object can be changed into another one that contains 
enhanced depth cues by performing a mathematical transformation. In other words, a perspective 
projection can be accomplished by means of a transformation. In calculating the projection 
transformation it is convenient to define a 4 X 4 matrix so the transformation is compatible with the 
ones used for rotation, translation, and scaling described in Chapter 3. In this manner you can use 
matrix concatenation to create matrices that simultaneously perform one or more geometrical 
transformations, as well as a perspective projection.  

 

 
The simplest approach for deriving the matrix for a perspective projection is to assume that the 
projection plane is normal to the z-axis and located at z = d. Figure 4-13 shows the variables for 
this case.  

 

 

  
 
 Figure 4-13: Perspective projection of point P 

   



 

 
Point Pp, in Figure 4-13, is the perspective projection of point P. According to the predefined 
constraints for this projection, you already know that the z-coordinate of point Pp is d. To 
determine the formulas for calculating the x- and y-coordinates you can take views along either 
axis, and solve the resulting triangles, as shown in Figure 4-14.  

 

 

  
 
 Figure 4-14: Calculating x- and y-coordinates of Pp 

   
 
 Because the gray triangles in Figure 4-14 are similar, you can establish the following ratios:  
 

 

  
 
 and  
 

 

  
 
 Solving for xp and yp produces the equations:  
 

 
  



 

 
Because the distance d is a scaling factor in both equations, the division by z has the effect of 
reducing the size of more distant objects. In this case the value of z can be positive or negative, 
but not zero, because z = 0 defines a parallel projection. These equations can be expressed in 
matrix form, as follows:  

 

 

  
 



 The Rendering Pipeline  
 

 

One possible interpretation considers the rendering process as a series of transformations that 
take the object from the coordinate system in which it is encoded, into the coordinate system of the 
display surface. This process, sometimes referred to as the rendering pipeline, is described as a 
series of spaces through which the object migrates in its route from database to screen. One 
model of the rendering pipeline is shown in Figure 4-15.  

 

 

  
 
 Figure 4-15: The rendering pipeline 

   
 
 Local space  
 

 
Objects are usually easier to model if they are positioned conveniently in the coordinate plane. For 
example, when you place the bottom-left vertex of a cube at the origin of the coordinate system, 
the coordinates are all positive values, as in Figure 4-16.  

 

 

  
 
 Figure 4-16: Local space coordinates of a cube with vertex at the origin 

   
 

 

This scheme, called the local space or modeling coordinates system, facilitates numerical 
representation and transformations. When objects are represented by polygons, the modeling 
database usually includes not only the object coordinates points but the normals to the polygon 
vertices and the normal to the polygon itself. This information is necessary to perform many of the 
rendering transformations discussed in this chapter.  

 



 World space  
 

 

The coordinate system of the scene is called the world space, or world coordinate system. Objects 
modeled in local space usually have to be transformed into world space at the time they are placed 
in a scene. For example, a particular scene may require a cube placed so that its left-bottom 
vertex is at coordinates x = 2, y = 3, z = 0. The process requires applying a translation 
transformation to the cube defined in local space. In addition, lighting conditions are usually 
defined in world space. After the light sources are specified and located, shading and other 
rendering transformations can be applied to the polygons so as to determine how the object 
appears under the current illumination. Surface attributes of the object, such as texture and color, 
may affect the shading process. Figure 4-17 shows the world space transformation of a cube 
under unspecified illumination conditions and with undefined texture and color attributes.  

 

 

  
 
 Figure 4-17: World space transformation of the cube in Figure 4-16 

   
 
 Eye space  
 

 

Note in Figure 4-17 that the image is now in world space, and that some shading of the polygonal 
surfaces has taken place; however, the rendering is still far from complete. The first defect that is 
immediately evident is the lack of perspective. The second one is that all of the cube's surfaces are 
still visible. The eye space, or camera coordinate system, introduces the necessary 
transformations to improve rendering to a desired degree. Perspective transformations require 
knowledge of the camera position and the projection plane. The second of these is not known until 
you reach the screen space phase in the rendering pipeline. Therefore, determining the projection 
plane must be postponed until you reach this stage.  

 

 

The notions of eye and camera positions can be taken as equivalent, although the word "camera" 
is used more often in 3D graphics. The camera can be positioned anywhere in the world space 
and pointed in any direction. Once the camera position is determined, it is possible to eliminate 
those elements of the scene that are not visible. In the context of polygonal modeling, this process 
is generically called backface elimination.  

 
 Backface elimination 



 Backface elimination  
 

 

One of the most important rendering problems that must be solved at this stage of the pipeline is 
the elimination of the polygonal faces that are not visible from the eye position. In the simplest 
case, entire polygons that are not visible are removed at this time. This operation is known as 
culling. When dealing with a single convex object, as is a cube, culling alone solves the backface 
elimination problem. However, if there are multiple objects in a scene, where one object may 
partially obscure another one, or in the case of concave objects, then a more general backface 
elimination algorithm must be used.  

 

 

A solid object composed of polygonal surfaces that completely enclose its volume is called a 
polyhedron. In 3D graphics a polyhedron is usually defined so that the normals to its polygonal 
surfaces point away from its center. In this case, you can assume that the polygons whose 
normals point away from the eye or camera are blocked by other, closer polygons, and are thus 
invisible. Figure 4-18 shows a cube with rods normal to each of its six polygonal surfaces. Solid 
arrows indicate surfaces whose normals point in the direction of the viewer. Dotted arrows indicate 
surfaces whose normals point away from the viewer and can, therefore, be eliminated.  

 

 

  
 
 Figure 4-18: Backspace culling of a polyhedron 

   
 

 

A single mathematical test can be used to determine if a polygonal face is visible. The geometric 
normal to the polygonal face is compared with a vector from the polygon center to the camera or 
eye position. This is called the line-of-sight vector. If the resulting angle is greater than 90 degrees, 
then the polygonal surface faces away from the camera and can be culled. Figure 4-19 shows the 
use of polygonal surface and line-of-sight vectors in culling.  



 

  
 
 Figure 4-19: Line-of-sight and surface vectors in culling 

   
 
 When the position of the camera is determined in the scene, it is possible to perform the backface 
elimination. Figure 4-20 shows the cube of Figure 4-17 after this operation.  

 

 

  
 
 Figure 4-20: Eye space transformation of the cube in Figure 4-17 

   
 
 Screen space  
 

 
The image, as it exists at this point of the rendering pipeline, is a numerical repre-sentation of the 
object. The previous illustrations, such as Figure 4-20, should not be taken literally because the 
image has not been displayed yet. The last step of the rendering pipeline is the transformation 
onto screen space.  

 



cube defined by points p1, p2, p6, and p5, the result will be a one-point perspective. If you position 
the camera so that only the vertical edges of the cube remain parallel to the viewer, the result will 
be a two-point perspective. Similarly, you can reposition the object for a three-point perspective. In 
addition, the perspective transformation requires determining the distance to the plane of 
projection, which is known at the screen space stage of the rendering pipeline.  

 

 

Screen space is defined in terms of the viewport. The final transformation in the rendering pipeline 
consists of eliminating those elements of the eye space that fall outside the boundaries of the 
screen space. This transformation is known as clipping. The perspective and clipping 
transformations are applied as the image reaches the last stage of the rendering pipeline. Figure 
4-21 shows the results of this stage.  

 

 

  
 
 Figure 4-21: Screen space transformation of the cube in Figure 4-20 

   
 
 Other pipeline models  
 

 

The model of the rendering pipeline described here is not the only one in use. In fact, practically 
every 3D graphics package or development environment describes its own version of the rendering 
pipeline. For example, the model used in Microsoft's Direct 3D is based on a transformation 
sequence that starts with polygon vertices being fed into a transformation pipeline. The pipeline 
performs world, view, projection, and clipping transformations before data is sent to the rasterizer 
for display. These other versions of the rendering pipeline are discussed in the context of the 
particular systems to which they refer.  

 



Lighting  
 

 
Lighting of a three-dimensional object determines its rendered realism to a great degree. In fact, 
some solid objects are virtually impossible to represent without lighting effects. For example, a 
billiard ball could not be convincingly rendered as a flat disk. Figure 4-22 shows the enhanced 
realism that results from lighting effects on a solid object.  

 

 

  
 
 Figure 4-22: Lighting enhances realism 

   
 

 

Rendering lighting is one of the most computationally expensive operations of 3D graphics. You 
often have to consider not the ideal lighting effects on a scene, but the minimum acceptable levels 
of lighting that will produce a satisfactory rendering. The value of this "acceptable level" depends 
on the application. An interactive program that executes in real-time, such as a flight simulator or a 
computer game, usually places stringent limitations on lighting effects. For the PC animation 
programmer it often comes down to a tradeoff between the smoothness of the animation and the 
quality of the scene lighting. On the other hand, when developing applications that are not so 
sensitive to execution speed, such as a paint program, you are able to grant a greater time slice to 
lighting operations, even at some sacrifice of speed of execution.  

 

 
Two related models are usually mentioned in the context of lighting: the reflection model and the 
illumination model. The reflection model describes the interaction of light within a surface. The 
illumination model refers to the nature of light and its intensity distribution. Both are important in 
developing rendering algorithms that take lighting into account.  

 
 Illumination models  
 

 
The intensity and distribution of light on the surface of an object are determined both by the 
characteristics of the light itself and by the texture of the object. A polished glass ball and a velvet-
covered one show different lighting under the same illumination. The subject of textures is covered 
later in this chapter. At this point you are concerned with the light source and its characteristics.  

 

 

The simplest illumination model, and one that you must sometimes accept for the sake of 
performance, is one with no external light source. In this case each polygon that forms the object is 
displayed in a single shade of its own color. The result is a flat, monochromatic rendering in which 
self-luminous objects are visible by their silhouette only. One exception is if the individual polygons 
that form the object are assigned different colors or shades. The circular disk on the left side of 
Figure 4-22 is an example of rendering without lighting effects.  

 
An object can receive two types of illumination: direct and indirect. This, in turn, relates to two 
basic types of light sources: light-emitting and light reflecting. The illumination that an object 



receives from a light-emitting source is direct. The illumination received from a light-reflecting 
source is indirect. Consider a polished sphere in a room illuminated by a single light bulb. If no 
other opaque object is placed between the light bulb and the sphere, then most of the light that 
falls on the sphere is direct. Indirect light, proceeding from reflection of other objects, may also 
take part in illuminating the sphere. If an opaque object is placed between the light bulb and the 
sphere, then the sphere is illuminated indirectly, which means, by reflected light only. Figure 4-23 
shows a polished sphere illuminated by direct and indirect lighting, and by a combination of both.  

 

 

  
 
 Figure 4-23: Sphere illuminated by direct and indirect lighting 

   
 

 

Light sources can also differ by their comparative size. A small light source, such as the sun, is 
considered a point source. A rather extensive light source, such as a battery of fluorescent light, is 
considered an extended source. Reflected light is usually an extended source. Here again, the 
lighting effect of a point or extended source is modified by the object's texture. Figure 4-24 shows 
a polished sphere illuminated by a point and an extended source.  

 

 

  
 
 Figure 4-24: Sphere illuminated by a point and an extended light source 

   
 
 Reflection  
 

 Excluding luminescent objects, most of the lighting effects result from reflection. In this context 
ambient illumination is defined as light that has been scattered to such a degree that it is no longer 
possible to determine its direction. Backlighting produces ambient illumination, as is the case in the 



second sphere in Figure 4-23. Ambient light and matte surfaces produce diffuse reflection. Point 
sources and polished surfaces produce specular reflection. Variations in the light source, and 
surface textures, produce unlimited variations between pure diffuse and pure specular reflection.  

 

 

where I is the intensity of illumination and k is the ambient reflection coefficient, or reflectivity, of 
the surface. Notice that this coefficient is a property of the material from which the surface is made. 
In calculations, k is assigned a constant value in the range 0 to 1. Highly reflective surfaces have 
values near 1. When this is the case, reflected light has nearly the same effects as incident light. 
Surfaces that absorb most of the light have reflectivities near 0.  

 

 

The second element in determining diffuse reflection is the angle of illumination, or angle of 
incidence. A surface perpendicular to the direction of incident light reflects more light than a 
surface at an angle to the incident light. For a point source, the calculation of diffuse reflection can 
be made according to Lambert's cosine law, which states that the intensity of reflected light is 
proportional to the cosine of the angle of incidence. Figure 4-25 shows this effect.  

 

 

  
 
 Figure 4-25: Reflected light depends on the angle of incidence 

   
 

 

Diffuse reflection is also called Lambertian reflection because it obeys Lambert's cosine law. It is 
associated with matte, dull surfaces such as rubber, chalk, and cloth. The degree of diffusion 
depends on the material and the illumination. Given the same texture and lighting conditions, the 
diffuse reflection is determined solely by the angle of incidence. In addition, the type of the light 
source and atmospheric attenuation can influence the degree of diffusion. The spheres in Figure 4-
26 show various degrees of diffuse reflection.  

 

 

  
 
 Figure 4-26: Spheres showing diffuse reflection 

   
 
 Specular reflection  
 

 
Specular reflection is observed in naturally shiny or polished surfaces. Illuminating a polished 
sphere, such as a billiard ball, with a bright white light, produces a highlight of the same color as 
the incident light. Color plate 2 shows specular reflection on the surface of a teapot. Notice that the 
reflected highlights are the color or the incident light, not that of the surface material.  



 

 
Specular reflection is also influenced by the angle of incidence. In a perfect reflector the angle of 
incidence, which is the inclination of the light source to the surface normal, is the same as the 
angle of reflection. Figure 4-27 shows the angles in specular reflection.  

 

 

  
 
 Figure 4-27: Specular reflection 

   
 

 

In Figure 4-27 you see that in specular reflection, the angle of incidence ( is the same as the angle 
of reflection. In the case of a perfect reflector, specular reflection is visible only when the viewer is 
located at the angle of reflection, in other words, when (= 0. Objects that are not perfect reflectors 
exhibit specular reflection over a range of viewing positions about the angle of reflection. Polished 
surfaces have a narrow reflection angle while dull surfaces have a wider one.  

 
 Phong illumination model  
 

 
In 1975, Phong Bui-Toung described a model for nonperfect reflectors, such as the teapot in color 
plate 2. The Phong model, which is widely used in 3D graphics, assumes that specular reflectance 
is great in the direction of the reflection angle, and decreases as the viewing angle increases. The 
Phong model sets the intensity of reflection according to the function  

 
 I = cos n α  
 

 

where n is called the material's specular reflection exponent. For a perfect reflector n would be 
infinite and the falloff would be instant. Normal values of n range from 1 to several hundreds, 
depending on the reflectivity of the surface material. The shaded areas in Figure 4-28 show Phong 
reflection for a shiny and a dull surface. The larger the value of n, the faster the falloff and the 
smaller the angle at which specular reflection is visible. A polished surface is associated with a 
large value of n, while a dull surface has a small value of n.  

 



 

  
 
 Figure 4-28: Values of n in the Phong model of specular reflection 

   
 
 The Phong model enjoys considerable popularity because of its simplicity and because it provides 
sufficient realism for many applications. However, it also has some important drawbacks:  

 
   1.All light sources are assumed to be points.  
 
   2.Light sources and viewers are assumed to be at infinity.  
 
   3.Diffuse and specular reflections are modeled as local components.  
 
   4.The decrease of reflection around the reflection vector is empirically determined.  
 
   5.Highlights are rendered white, regardless of the color of the surface.  
 
 The following limitations have been pointed out for the Phong model:  
 
   1.Because highlights are rendered white, no matter the color of the material, the Phong model 

does not render plastics and other colored solids very well.  
 
   2.The Phong model does not generate shadows. Therefore, objects in a scene do not interact with 

each other and appear floating and lifeless.  
 
   3.Object concavities are often rendered incorrectly. This means that the model often produces 

specular highlights in concave areas that should not have them.  
 



Shading  
 

 
In computer graphics the word shading refers to the application of a reflection model over the 
surface of an object. Because graphics objects are often represented by polygons, a brute force 
shading method can be based on calculating the normal to each polygon surface, and then 
applying an illumination model, such as Phong's, to that point.  

 
 Flat shading  
 

 

The simplest shading algorithm for a polygonal object is to use an illumination model to determine 
the corresponding intensity value for the incident light, and then shade the entire polygon 
according to this value. This type of shading, also known as constant shading or constant intensity 
shading, is easy to implement. Flat shading produces satisfactory results when the following 
conditions apply:  

 
   1.The subject is illuminated by ambient light and there are no surface textures or shadows  
 
   2.In the case of curved objects when the surface changes gradually and the light source and 

viewer are far from the surface  
 
   3.In general, when there are large numbers of plane surfaces  
 
 Figure 4-29 shows three cases of flat shading of a conical surface. The more polygons there are, 
the better the rendering.  

 

 

  
 
 Figure 4-29: Flat shading 

   
 
 Interpolative shading  
 

 

The fundamental limitation of flat shading is that each polygon is rendered in a single color. Very 
often the only way to improve the rendering is to increase the number of polygons, as shown in 
Figure 4-29. An alternative shading scheme is based on using more than one shade in each 
polygon by interpolating the values calculated for the vertices to the polygon's interior points. This 
type of manipulation, called interpolative or incremental shading, is capable of producing, under 
some circumstances, a more satisfactory shade rendering with a smaller number of polygons in 
the model. Two incremental shading methods, called Gouraud and Phong shading are almost 
ubiquitous in 3D rendering software.  



 
 Gouraud shading  
 

 

This shading algorithm was described by H. Gouraud in 1971. It is also called bilinear intensity 
interpolation. Gouraud shading is best explained in the context of the scan-line algorithm used in 
hidden surface removal. Scan-line processing is discussed in greater detail later in this chapter; for 
now, assume that each pixel is examined according to its horizontal (scan-line) placement, usually 
left-to-right. Figure 4-30 shows a triangular polygon with vertices at A, B, and C.  

 

 

  
 
 Figure 4-30: Intensity interpolation in Gouraud shading 

   
 

 
The intensity value at each of these vertices is determined from the reflection model. As scan-line 
processing proceeds, the intensity of pixel p1 is determined by interpolating the intensities at 
vertices A and B, according to the formula  

 

 

  
 

 
In Figure 4-30, the intensity of p1 is closer to the intensity of vertex A than that of vertex B. The 
intensity of p2 is determined similarly by interpolating the intensities of vertices A and C. After the 
boundary intensities for the scan line are determined, any pixel along the scan line is calculated by 
interpolating, according to the following formula:  

 

 

  
 



 
The process is continued for each pixel in the polygon, and for each polygon in the scene. 
Gouraud shading calculations are usually combined with a scan-line hidden surface removal 
algorithm and performed at the same time.  

 

 

Gouraud shading also has limitations. One of the most important ones is the loss of highlights on 
surfaces and highlights that are displayed with unusual shapes. Figure 4-31 shows a polygon with 
an interior highlight. However, because Gouraud shading is based on the intensity of the pixels 
located at the polygon edges, this highlight is missed. In this case pixel p3 is rendered by 
interpolating the values of p1 and p2, which produces a darker color than the one required.  

 
 Another error associated with Gouraud shading is the appearance of bright or dark streaks, called 
Mach bands.  

 

 

  
 
 Figure 4-31: Highlight rendering error in Gouraud shading 

   
 
 Phong shading  
 

 

Phong shading is the most popular shading algorithm in use today. This method was developed by 
Phong Bui-Toung, the author of the illumination model described previously. Pong shading, also 
called normal-vector interpolation, is based on calculating pixel intensities by means of the 
approximated normal vector at the point in the polygon. Although more calculation-expensive, 
Phong shading improves the rendering of bright points and highlights that are miss-rendered in 
Gouraud shading.  

 
 Ray tracing  
 

 

Other shading models have been developed and find occasional use in 3D graphics. The ones 
discussed to this point, Phong and Gouraud shading, as well as others of intermediate complexity, 
are not based on the physics of light, but on the way that light interacts with objects. Although the 
notion of light intensity is used in these models, it is not formally defined. Physically based 
methods, although much more expensive computationally, can produce more accurate rendering. 
One such method, called ray tracing, is based on backtracking the light rays from the center of 
projection (viewing position) to the light source.  

 



computer graphics researchers began applying ray-tracing techniques in the production of very 
high quality images, at a very high processing expense. Ray tracing is a versatile and powerful 
rendering tool. It incorporates the processing done in reflection, hidden surface removal, and 
shading operations. Its only objection is its processing cost. When execution time is not a factor, 
ray tracing produces superior results, better than any other rendering scheme. This fact has led to 
the general judgment that ray tracing is currently the best implementation of an illumination model. 

 

 

Color plate 3 shows two renderings of a coffee cup. The one on the left is obtained through 
incremental shading, and the one on the right, through ray tracing. Note the reflection of the cup's 
handle that is visible on the ray-traced image. In a simple reflection model, only the interaction of a 
surface with the light source is considered. For this reason, when a light ray reaches a surface 
through interaction with another surface, or when it is transmitted through a partially transparent 
object, or by a combination of these factors, the rendering fails. This is the case with the reflection 
of the cup handle in color plate 3. Color plate 4 shows how ray tracing captures the reflected image 
of a blue cube on the surface of a polished red sphere.  

 



Other rendering algorithms  
 

 

So far we have discussed rendering algorithms that relate to projection, culling and hidden surface 
removal, illumination, and shading. In this section we look at other rendering methods that 
complement or support the ones already mentioned. Note that we have selected a few of the 
better-known schemes. In making this selection we emphasize the algorithms used in the graphics 
programming packages discussed in the text.  

 
 Scan-line operations  
 

 

In computer graphics the term scan-line processing or scan-line algorithms refers to a general-
processing method whereby each successive pixel is examined in row-by-row (scan-line) order. 
You already have seen scan-line processing in Gouraud shading. Scan-line methods are used in 
filling the interior of polygons also. Most rendering engines use some form of scan-line processing. 
Usually, several algorithms are incorporated into a scan-line routine. For example, as each pixel is 
examined in the scan-line routine, hidden-surface removal, shading, and shadow generation logic 
are applied to determine how it should be rendered. The result is a considerable saving compared 
to the time it would take to apply each rendering operation independently.  

 
 Scan-line hidden surface removal  
 

 

A scan-line algorithm called the image space method is often used for removing hidden surfaces in 
a scene. This method is actually a variation of the scan-line polygon-filling algorithm. The 
processing requires that the image database contain the coordinate points for each polygon 
vertex. This is usually called the edge table. Figure 4-32 shows two overlapping triangles whose 
vertices (A, B, C, D, E, and F) are stored in the edge table.  

 

 

  
 
 Figure 4-32: Scan-line algorithm for hidden surface removal 

   
 
The scan-line algorithm uses a binary flag to indicate whether a pixel in the scan line is inside or 
outside a surface. Each surface on the scene is given one such flag. As the left-most boundary of 
a surface is reached, the flag is turned on. At the surface's right-most boundary, the flag is turned 



off. When a single surface flag is on, the surface is rendered at that pixel. Scan line 1 in Figure 4-
32 has some pixels in which the flag is on for triangle ABC. Scan line 2 in Figure 4-32 also poses 
no problem because a single surface has its flag on at one time. In scan line 3 the flag for triangle 
ABC is turned on at its left-most boundary. Before the surface's right-most boundary is reached, 
the flag for triangle DEF is turned on. When two flags are on for a given pixel, the processing 
algorithm examines the database to determine the depth of each surface. The surface with less 
depth is rendered, and all the other ones are removed. As the scan-line processing crosses the 
boundary defined by edge BC, the flag for triangle ABC is turned off. From that point on, the flag 
for triangle DEF is the only one turned on; therefore, its surface is rendered.  

 
 Scan-line shadow projections  
 

 

Ray-tracing algorithms can be implemented so as to generate shadows; however, other rendering 
methods require a separate handling of shadows. Sometimes, it is convenient to add shadow 
processing to a scan-line routine. To do this, the image database must contain a list of polygons 
that may mutually shadow each other. This list, called the shadow pairs, is constructed by 
projecting all polygons onto a sphere located at the light source. Only polygon pairs that can 
interact are included in the shadow pairs list. The list saves considerable processing effort by 
eliminating those polygons that cannot possibly cast a shadow on each other.  

 

 

The actual processing is similar to the scan-line algorithm for hidden surface removal. Figure 4-33 
shows two polygons, labeled A and B. In this case you assume a single light source placed so that 
polygon A casts a shadow on polygon B. The shadow pairs in the database tell us that polygon B 
cannot shadow polygon A, but polygon A can shadow polygon B. For this reason, polygon A is 
rendered without further query in scan line 1. In scan line 2, polygon B is shadowed by polygon A. 
Therefore, the pixels are modified appropriately. In scan line 3, polygon B is rendered.  

 

 

  
 
 Figure 4-33: Scan-line algorithm for shadow projection 

   
 
 Figure 4-34 shows two renderings of the same scene. The one on the left side is done without 
shadow projection. The one on the right side is rendered using a shadow projection algorithm.  



 

  
 
 Figure 4-34: Shadow rendering of multiple objects in a scene 

   
 
 Z-buffer algorithm  
 

 
Developed by Catmull in 1975, the z-buffer or depth buffer algorithm for eliminating hidden 
surfaces has become a staple in 3D computer graphics. The reason for its popularity is its 
simplicity of implementation.  

 

 

The algorithm's name relates to the fact that the processing routine stores in a buffer the z-
coordinates for the (x, y) points of all objects in the scene. This is the z-buffer. A second buffer, 
sometimes called the refresh buffer, is used to hold the intensities for each pixel. In processing, all 
positions in the z-buffer are first initialized to the maximum depth value, and all positions in the 
refresh buffer to the background attribute. At each pixel position, each polygon surface in the 
scene is examined for its z-coordinate value. If the z-coordinate for the surface is less than the 
value stored in the z-buffer, then the value in the z-buffer is replaced with the one corresponding to 
the surface being examined. At this point the refresh buffer is also updated with the intensity value 
for that pixel. If the z value for the surface is greater than the value in the z-buffer, then the point is 
not visible and can be ignored.  

 

 

Figure 4-35 shows the z-buffer algorithm operation. Three surfaces, a square, a circle, and a 
triangle, are located at various depths. When the z-buffer is initialized the pixel shown in the 
illustration is assigned the depth of the background surface, S0. The surface for the circle is 
examined next. Because S2 is at less depth than S0, the value S2 replaces the value S0 in the z-
buffer. Now S2 is the current value in the z-buffer. Next, the value for the triangular surface S1 is 
examined. Because S1 has greater depth than S2, it is ignored. However, when S3 is examined it 
replaces S2 in the buffer, because it is at less depth.  



 

  
 
 Figure 4-35: Z-buffer algorithm processing 

   
 
 Textures  
 

 

The surface composition of an object influences how the surface reflects light. The reflectivity of a 
surface is taken into account when calculating illumination effects. Textures were completely 
ignored in early 3D packages. At that time all surfaces were assumed to have identical refection 
properties. The results were scenes that appeared unnatural because of their uniformity. Since 
then, textures have been steadily gaining popularity. All of the 3D development systems discussed 
in this book support textures, in one form or another.  

 

 

In the PC, the simplest and most common implementation of textures is with bitmaps. Because of 
this, the notion of texture refers only to the color pattern of the surface, and not to its degree of 
smoothness. Texture bitmaps are easy to apply to objects and are rendered as a surface attribute. 
In addition, texture blending and light mapping with textures provide additional enhancements to the 
rendering. The specifics of texture rendering are discussed in the context of the individual 3D 
packages.  

 



Summary  
 

 

In this chapter we examined the problems associated with rendering a graphics object. In doing 
this, we looked at projections and perspective, followed the rendering pipeline, and studied the 
fundamentals of lighting and illumination and shading. In the process we discussed some of the 
fundamental algorithms of 3D graphics: Gouraud and Phong shading, scan-line processing, and the 
z-buffer method for hidden surface removal, among others. We also mentioned textures and 
shadow processing. In Chapter 5, we discuss animation techniques, one of the most difficult, 
intriguing, and rewarding topics of 3D graphics programming.  

 



Chapter 5: Computer Animation  
 
 Overview  
 

 

This chapter is about computer animation. A few years ago, real-time, convincing animation was 
not possible on a PC machine. Over the past five or six years, improvements in processing speed 
and rendering capabilities have made PC animation a reality. Today, a PC programmer can 
simulate movement on the computer screen in a realistic, effective, and pleasant way. Several 
screen objects can be manipulated simultaneously over a panoramic background, producing 
lifelike actions that are comparable to cinematography and cartoon animation. The spectacular 
growth of PC computer games and simulations that has taken place in the past few years is a 
direct result of this technological watershed.  

 
 The details of PC animation programming are left for Part II of the book. At this time we discuss 
mostly the fundamental principles.  

 



Cartoon Animation  
 

 

Computer animation originated in cartoons and is closely related to them. Many of the 
technologies used in the production of cartoons are directly applicable to computer animation. The 
original cartoon techniques are based on the work of Walt Disney, Hanna-Barbera, and others. 
The standard method consists of photographing a series of progressive drawings. The 
photographs are then developed as color transparencies and animation achieved by successively 
projecting the transparencies on the screen.  

 
 Historical note  
 

 

In 1831, a Frenchman named Joseph Antoine Plateau was able to create the illusion of movement 
by means of a machine, which he called a phenakistoscope. The device consisted of a disk with a 
series of progressive drawings and a viewing window. When the disk was rotated, the viewer 
would see the drawings in rapid sequence, which created an illusion of movement. Three years 
later, an Englishman named Horner modified the phenakistoscope into a device, which he called 
the zoetrope. The zoetrope consisted of a drum with drawings on its inner walls. A series of slits 
allowed the viewer to see the different drawings as the drum rotated. Emile Reynaud, another 
Frenchman, further refined the zoetrope by replacing the viewing slits with mirrors. This device 
was named the praxisnoscope.  

 

 

The first movie theater was founded by Emile Reynaud in 1892. It was called the Theater Optique. 
The first animated film was produced in 1906. By 1913, several American companies were 
regularly producing cartoons for the thriving motion picture theaters. Felix the Cat, by Pat Sullivan, 
is possibly the best-known cartoon character of this era. Walt Disney, who is usually considered 
the father of animated cartoons, produced a Mickey Mouse film in 1928. This was the first cartoon 
to incorporate sound. Donald Duck and other characters followed shortly thereafter. Snow White 
and the Seven Dwarfs was the first feature film–length cartoon.  

 
 Drawing techniques  
 

 

Computers play an important role in the commercial production of cartoons. They are used in the 
coloring of drawings and in the generation of intermediate images, an operation called in-
betweening or tweening. Drawing, coloring, and in-betweening are tedious and time-consuming 
operations when performed by hand. The organiza-tional elements in the production of an 
animated cartoon can be seen in Figure 5-1.  

 



 

  
 
 Figure 5-1: Production sequence for a cartoon 

   
 

 

In a cartoon the story is developed in three progressively refined steps, shown in Figure 5-1. The 
synopsis is a short summary of the story, usually in less than one page. The scenario describes 
the story more completely and it includes details of characters and scenery. The storyboard is a 
series of drawings and captions that capture the most important moments depicted in the film. 
From the storyboard it is possible to derive the film sequences. Each sequence refers to a film 
action and consists of one or more scenes. Typically, scenes are associated with a particular 
location, or with one or more characters. The units of cartoon execution are the individual shots 
that compose each scene. The production of each animated scene is performed by artists called 
animators who layout, design, and draw the key images in each scene. At this time the sound track 
for the cartoon must have already been defined because the motion of the animated figures takes 
place in relation to dialog and music. Note that computer games are often developed following the 
synopsis-scenario-storyboard sequence that is used in cartoons.  

 

 

In the production of the actual cartoon drawings the artists use two key positions, called frames, as 
reference. Figure 5-2 shows the drawings used in a cartoon scene in which a dagger appears to 
travel from the hand of an imaginary thrower to a target. The key frames are the start frame and 
the end frame. The drawings that are necessary to animate the movement between both key 
frames are the in-between frames. In cartoon animation in-betweening is a routine task usually 
performed by assistants to the animators.  

 

 

  
 
 Figure 5-2: In-betweening in cartoon animation 

  



   
 

 
The number of progressions between the start frame and the end frame of a sequence depends 
on the time assigned to the frame and the display rate. For example, if the animation is to take 1.5 
seconds, and the display rate is 24 frames per second, then 36 frames are required for the 
animation, of which 34 are in-between frames.  

 
 Photographic techniques  
 

 

The progressive drawings simulate movement, and photographic manipulations are used to 
enhance the effects. Because the drawings for cartoons are made on a transparent plastic film, the 
clear portions of the drawing are invisible to the camera. The equipment used in the production of 
cartoons is a specialized motion picture camera called a multiplane. The animation surface 
consists of several glass layers at varying distances from the camera lens. Figure 5-3 is a diagram 
of a multiplane camera.  

 

 

  
 
 Figure 5-3: Diagram of a multiplane camera 

   
 

 

The multiplane camera is used in creating special effects. The camera can be moved horizontally 
to pan an image, or moved along the optic axis to enlarge or reduce the apparent size of an object 
(zooming). Rotating the camera creates an effect called spin. Several fade and dissolve effects are 
used to provide a soft transit between scenes. The fade-in is a progressive transition of the image 
from black, and the fade-out is a transition to black. The fade-in is typically used at the start of a 
scene and the fade-out at the conclusion.  

 

 
In multiplane animation the image is separated into several elements according to their distance 
from the viewer. For example, in animating the scenery visible from a moving train it is possible to 
divide the image into several strips, as shown in Figure 5-4.  



 

  
 
 Figure 5-4: A multiplane image 

   
 

 

The landscape in Figure 5-4 is animated by moving the three image strips at differ-ent rates under 
the multiplane camera. In this case the image strip that depicts the setting sun is scrolled 
downward. At the same time, the strip depicting the mountain range is moved horizontally, at a slow 
rate, while the strip with the telephone poles is moved at a faster rate. The resulting animation 
simulates what a person traveling in a train or automobile would see as the sun slowly sets behind 
a mountain range. Notice that the length of the images is proportional to their rate of movement 
during animation. The multiple plane animation technique is quite suited to computer animation.  

 



Computer Animation  
 

 

A computer can assume one of two roles in implementing animation: it can assist in the creation of 
animated imagery (computer-assisted animation) or it can generate and portray the animated 
action (real-time animation). The most time-consuming and tedious task of computer-assisted 
cartoon animation is the generation of the many intermediate images required by the process 
(tweening). During this phase a computer plays the following roles:  

 
   1.During the drawing stage the computer is used to scan and digitize image elements and to 

create drawings or parts of drawings.  
 
   2.In the animation process the computer is used to generate in-betweens and to color the 

drawings.  
 
   3.During the photography stage the computer controls the multiplane camera and assists in the 

creation of special effects.  
 
   4.In the production stage the computer is used in editing and in adding sound to the animated film. 
 

 

Every day animators find new uses for computers; new technologies are developed which create 
novel possibilities and applications in animated graphics. Computer technology is used in the 
creation of spectacular special effects based on the digitization of screen objects, which are later 
manipulated by the software. Original efforts in this type of computer-assisted animation first 
appeared in the films TRON, produced by Walt Disney Studios, in Return of the Jedi, by Lucasfilm, 
and The Last Starfighter. In recent years animation by image digitization has become a standard 
manipulation.  

 
 Real-time animation  
 

 
Real-time animation is found in arcade machines, simulators and trainers, elec-tronic games, 
including Nintendo and Sega, and in interactive simulations and computer games. In real-time 
animation the computer is both an image generator and a display media.  

 

 

Animation is based on the physiology of the human eye–brain complex. The basic fact is that the 
image of an object persists in the brain for a brief period of time after it no longer exists in the real 
world. This phenomenon, called visual retention, is related to the chemistry of the retina and to the 
structure of cells and neurons in the eye. Smooth animation is achieved in cinematography and 
television by consecutively displaying images at a faster rate than the period of visual retention. 
This operation, by which a new image replaces the old one before the period of retention has 
expired, creates in our minds the illusion of movement.  

 

 

Visual retention lasts a few hundredths of a second. Experiments set the critical image update rate 
for smooth animation between 22 and 30 images per second, depending on the individual. Modern 
day moving picture films are recorded and displayed at a rate of 24 images per second. 
Commercial television takes place at a slightly faster rate, that is, at 30 images per second. In 
general, the threshold rate, subject to individual variations, is usually estimated at 18 images per 
second. This means that if the consecutive images are projected at a rate slower than this 
threshold, the average individual perceives jerkiness. When the image rate equals or exceeds this 
threshold, our brains merge the images together and we sense a smoothly animated action.  



 

 

Assuming that animation must take place at an image rate of 20 per second, then each image 
must be updated and rendered in 1/20th of a second. Some rendering routines require that the old 
image is erased from the display before a new one is drawn, otherwise the animation leaves a 
visible track of objects on the video display. For this reason the image update sequence is a series 
of redraw, erase, redraw operations, which means that the critical display rate must be calculated 
from one redraw cycle to the next one. The allotted time for the redraw phase is one-half the image 
rate, in this case, 1/40th of a second.  

 

 

All of this explains why computer animation is often a battle against time. The animation 
programmer resorts to every known trick and stratagem in order to squeeze the maximum 
performance out of the image update and rendering routines. Occasionally the programmer cannot 
overcome the system's limitations, and the result is a bumpy and coarse animation that is but a 
remote likeness of cinematography and television.  

 
 Frame-by-frame animation  
 

 

In frame-by-frame animation the computer generates the required images, which are recorded or 
stored for playback at a later time. This playback can take place in the same machine that 
generated the image set or in another machine or media. For example, a computer can be used to 
manipulate the image strips in Figure 5-4 so as to generate a set of 100 progressive pictures. As 
the images are generated, they are recorded on videotape, or any other compatible media. When 
the image set is complete, the animation can be viewed by playing back the tape. Alternatively, the 
images can be stored in computer memory played back from this storage. In frame-by-frame 
animation the rendering is not time-critical because the image creation step does not have to take 
place in real-time.  

 
 Interactive animation  
 

 

Interactive animation refers to computer objects that are moved at the user's will. At present, the 
most common interactive devices in the PC are the mouse, the joystick, and the command center. 
In general, the notion of interactive animation includes any technology in which the user exercises 
some level of control over computer-animated action. By today's standards the ultimate level of 
interactive animation is called virtual reality, discussed later in this chapter.  

 
 Unpredictability  
 

 

Conventionally, the computer simulation of movement is based on programmable or predictable 
stages. In this manner, the cartoon animator knows beforehand (from the storyboard) all the 
actions and interactions that will be portrayed in the final rendition. In most implementations of 
virtual reality, every possible result can be predicted from the user's interaction with the device. 
Therefore, we can say that the system is deterministic.  

 

 

However, many natural systems are not deterministic. Biology students often observe that colonies 
of bacteria developing in an identical media show different patterns of growth. This is because 
many factors cannot be determined beforehand in a complex biological system. Random or 
unpredictable elements influence the evolution of a biosystem. One modern theory states that the 
disappearance of the dinosaurs was caused by the collision of an asteroid with the earth. If this 
hypo-thesis is true, then a small change in the trajectory of the asteroid would have made it miss 
our planet, and the evolution of life on earth would have followed an entirely different path.  



 

 

Statistics can be used to describe the unpredictable behavior of a biosystem. In the gene exchange 
process it is often possible to determine, according to their location in the chromosome, that certain 
genes are more or less likely to be transmitted. However, anything less than absolute certainty 
implies some degree of randomness or unpredictability. If a computer were to simulate the 
reproduction of a biosystem it would have to take into consideration these random or unpredictable 
factors.  

 



Animation Techniques  
 

 

If computer animation is roughly equated with the screen simulation of movement, the 
methodology for producing the animated effect can be described as a set of motion control 
techniques. Allan and Mark Watt, in their book Advanced Animation and Rendering Techniques, 
refer to procedural, representational, stochastic, and behavioral as the main categories of the 
animation hierarchy.  

 

 
From a programmer's viewpoint, animation is implemented by applying one of many low-level 
methods of motion simulation and control. Some of these methods have been passed on to us by 
cartoon animators, while others are digital in nature; therefore, unique products of the computer 
environment.  

 

 

The computer animator is confronted by many limitations and constraints. Often the animation is 
produced by means of mathematical transformations on the parameters that define one or more 
screen images. It is possible to perform image rotation, translation, scaling, and other 
transformations, by geometrical means. Because movement is a function of time, the laws of 
physics are often taken into account. For example, in representing a falling object the animator 
may use the formula that expresses acceleration in a gravitational field to determine the rate of in-
betweening that most naturally represents the action. On the other hand, artistic considerations 
can determine an intentional variation from the physical laws of motion.   

 
 Tweening and morphing  
 

 

The cartoon animator proceeds from two key positions, known as frames, and creates a set of in-
between drawings, as in Figure 5-2. The entire sequence is photographed and projected to create 
an illusion of movement. The depiction of animated action by creating and projecting a set of in-
between drawings is often called tweening; the intermediate drawings are the tweens. Computer 
animators have successfully borrowed the tweening technique from cartoon animators. 
Furthermore, in a computer environment the machine can often aid in the creation of the in-
between frames by performing geometrical transformations on the key frames.  

 

 
The tweening required for representing the flight of the dagger shown in Figure 5-2 is obtained by 
rotating and translating the initial frame. In this case, the animation image set can be produced by 
mathematical manipulations of a single file.  

 

 

Another animation technique that originated in cartoons is morphing. The term relates to the notion 
of a metamorphosis: a transformation in shape, form, or substance that takes place by biological 
change or by magic and sorcery. Morphing techniques are now extensively used in motion 
pictures. We are all familiar with the image of an actor transforming into a wolf or a cat. Figure 5-5 
shows the morphing of a circle into a square.  

 



 

  
 
 Figure 5-5: Morphing animation 

   
 
 Path-of-motion calculations  
 

 

The rules for path-of-motion calculations in animation depend on the image file encoding and on 
the transformation to be performed. In morphing, the intermediate frames are determined 
according to different rules than in tweening. The morphing transformation of a circle into a square 
shown in Figure 5-5 cannot be made by rotation and translation alone, as is the case in the 
tweening shown in Figure 5-2. Figure 5-6 shows the path, along a vector that is at a 45-degree 
angle with the horizontal, that a point on the circle would follow in the process of morphing into a 
square.  

 

 

  
 
 Figure 5-6: Path-of-motion in a morphing transformation 

   
 

 In Figure 5-6 you see that points along different vectors follow a different motion path. For this 
reason, morphing usually requires more complicated processing than other geometrical 
transformations. Notice that the path-of-motion along vector v1 requires three intermediate steps in 



necessary, while there is no motion along vector v3. Path-of-motion calculations in tweening and 
morphing are often based on polygonal rendering, discussed in previous chapters. This 
approximation is shown in Figure 5-7.  

 

 

  
 
 Figure 5-7: Polygonal approximation in morphing 

   
 
 Color-shift animation  
 

 

The animator manipulates the color attribute of screen objects to create the illusion of movement 
or change. One common application of this technique is fading. An object or scene is faded-in 
when its color is progressively changed so as to make it slowly appear on the screen. A cross-
dissolve operation takes place when one scene or object is faded-out while another one is faded-
in. Figure 5-8 shows fade-in of a rectangle and fade-out of a circle.  

 

 

  
 
 Figure 5-8: Fade-in and fade-out 

   
 

 

Sometimes fade operations can be implemented by progressively changing the hue or saturation 
of one or more objects, or of the entire scene. A screen fade-out can be accomplished by 
progressively increasing the white saturation of all the objects until the entire screen is white. In 
some PC display modes, modifying the color palette itself, instead of the color attributes of 
individual objects, can perform the fade operations. Palette animation, as these methods are 
sometimes called, is relatively easy to implement and often generates satisfactory results at a low 
processing cost.  

 

 Color animation is also used in other creative manipulations. For example, increasing the black, 
red, and orange color saturation of selected screen objects can mimic a sunset scene. Or the 
illusion of movement can be enhanced by having the object leave tracks of its image with a 



illusion of movement can be enhanced by having the object leave tracks of its image with a 
decreasing color saturation. This effect, sometimes called a motion blur, is depicted by the 
bouncing ball shown in Figure 5-9.  

 

 

  
 
 Figure 5-9: Motion blur 

   
 
 Background animation  
 

 

A computer game or real-time simulation contains two different types of graphics objects: 
backgrounds and sprites. The backgrounds consist of larger bitmaps over which the action takes 
place. For example, in a flight simulator program there can be several background images 
representing views from the cockpit. These may include landscapes, seascapes, and views of 
airports and runways used during takeoff and landing. A computer game that takes place in a 
medieval castle may have backgrounds consisting of the various castle rooms and corridors on 
which the action takes place. Sprites are small objects represented in two or three dimensions. In 
the flight simulator program, the sprites are other aircraft visible from the cockpit and the cabin 
instruments and controls that are animated during the simulation. In the computer game the sprites 
are medieval knights that do battle in the castle, as well as the objects animated during the battle. 
The methods discussed so far refer mostly to sprite animation. But backgrounds can also be 
animated, usually with very effective results. Panning and zooming are two popular techniques for 
background animation.  

 
 Panning  
 

 

The design, display, and manipulation of background images in a graphics application are 
relatively straightforward. One of the most common methods consists of creating backgrounds that 
are larger than the viewport and using clipping and blit-time transformations to generate panning 
and zoom effects. Figure 5-10 shows a bitmapped scene, a portion of which is selected by a 
rectangular viewport.  



 

  
 
 Figure 5-10: Source rectangles in panning animation 

   
 

 

In panning, the portion of the image mapped to the viewport is changed a few pixels at a time. In 
Figure 5-10, the progression from the portion of the image enclosed by the solid rectangle to the 
one enclosed by the dashed rectangle could take over one hundred steps. The result appears as if 
the camera were slowly moved from the start position to the final one. In actual programming, 
panning effects are easy to produce and are effective and natural.  

 
 Zoom  
 

 

Zooming is another background animation that is implemented at display time. In zooming, the 
image size is progressively reduced or enlarged, while the correspond-ing portion of the image 
bitmap is stretched or compressed to fill the viewport. The effect simulates progressively changing 
the magnification of a viewing instrument, such as binoculars or a telescope. Figure 5-11 shows 
the source rectangles in the original bitmap, which, in this case, are expanded to fit the viewport. 
Like panning, zoom animation can be programmed simply and effectively.  

 

 

  
 
 Figure 5-11: Source rectangles in zoom animation 

  



   
 

 
Notice that the dimension of the rectangles in zoom animation must take into account the aspect 
ratio of the viewport. This is necessary so that the image is not deformed by the required 
compression and stretching operations.  

 
 XOR animation  
 

 

To animate a screen object, its image must be erased from the current screen position before 
being redrawn at the new position. In this respect animation programmers sometimes speak of a 
draw-erase-redraw cycle. If the object is not erased, the consecutive images leave a visible track 
on the display surface. In lateral translation an object appears to move across the screen, from left 
to right, by progressively redrawing and erasing its screen image at consecutively larger x 
coordinates. In this case erasing the old screen object is at least as time-consuming as drawing 
the new one. In either case, each pixel in the object must be changed.  

 

 

Several techniques have been devised for performing the draw-erase-redraw cycle required in 
animation. The most obvious method is to save that portion of the screen image that is to be 
occupied by the object. Redisplaying the saved image can then erase the object. The problem with 
this double blit manipulation is that it requires a preliminary, and time-consuming, read operation to 
store the screen area that is to be occupied by the animated object. Therefore, the draw-erase-
redraw cycle is performed by a video-to-RAM blit (save screen), RAM-to-video blit (display object), 
and a RAM-to-video blit (restore screen).  

 

 
An interesting method of erasing and redrawing the screen is based on the properties of the logical 
exclusive (XOR) operation. The action of the logical XOR is that a bit in the result is set if both 
operands contain opposite values. Consequently, XORing the same value twice restores the 
original contents, as in the following case:  

 
 10000001B  
 XOR mask 10110011B  
 ----------  
 00110010B  
 XOR mask 10110011B  
 ----------  
 10000001B  
 

 

In this example the final bitmap (10000001B) is the same as the original one. This property of the 
logical XOR makes it a convenient and fast way for consecutively drawing and erasing a screen 
object. Its main advantage is that it does not require a previous read operation to store the original 
screen contents. This results in a faster and simpler read-erase cycle. The XOR method is 
particularly useful when more than one animated object can coincide on the same screen position 
because it ensures that the original screen image is always restored.  

 

 The biggest disadvantage of the XOR method is that the resulting image depends on the 
background. In other words, each individual pixel in the object displayed by means of a logical 



example, the following XOR operation produces a red object (in RGB format) on a bright white 
screen background:  

 
 R G B   
 background = 1 1 1 (white)  
 XOR mask = 0 1 1   
 -------  
 image = 1 0 0 (red)  
 
 However, if the same XOR mask is used over a green background the resulting pixel is blue, as in 
the following example:  

 
 R G B   
 background = 0 1 0 (bright green)  
 XOR mask = 0 1 1   
 -------  
 image = 0 0 1 (blue)  
 

 

The effect whereby an object's color changes as it moves over different back-grounds can be an 
advantage or a disadvantage in graphics applications. For example, a marker symbol 
conventionally displayed may disappear as it moves over a background of its same color, whereas 
a marker displayed by means of a logical XOR is likely to be visible over many different 
backgrounds. On the other hand, the color of a graphics object could be an important 
characteristic. In this case any changes during display operations would be objectionable.  

 
 Figure 5-12 graphically shows how the XOR operation changes the attributes of a sprite as it is 
displayed over different backgrounds.  

 

 

  
 
 Figure 5-12: XOR rendering 

   
 

 
Most video graphics systems and processors directly support the XOR operation. By using the 
XOR function the graphics programmer can move the sprite symbol simply by defining its new 
coordinates. In this case the hardware takes care of erasing the old marker and restoring the 
underlying image.  

 
 Rendering in animation  



 

In creating the image set the animator is often confronted with modeling problems. As the number 
of dimensions of the representation and the complexity of the objects increase, so do the 
difficulties in obtaining the in-between images and the complications in performing the 
mathematical transformations required for the animation. In general, two-dimensional objects are 
easier to model than three-dimensional ones, symmetrical objects are easier than asymmetrical 
ones, and geometrical entities are easier than living organisms, although there are exceptions to 
these general rules.  

 

 

The modeling of realistic living organisms introduces additional difficulties. Higher animals and 
human forms, in particular, present challenging rendering problems. In this case the models are 
complex and muscle action is difficult to predict and imitate. Several techniques have been 
developed to model the human body in three dimensions. Stick figures, surfaces, and volume 
models have all been used with moderate success. Stick figures, in particular, provide a 
simplification during the early development stages by reducing the complexity of animating a 
human body. Figure 5-13 is a stick figure of a man.  

 

 

  
 
 Figure 5-13: Stick figure of a man 

   
 

 
But even in the most schematic representations of the human body, developing the image set 
involves the interaction of several limbs and joints. Figure 5-14 shows the animation of a stick 
figure to simulate a walking man.  

 

 

  
 
 Figure 5-14: Stick figure animation 



 Figure 5-14: Stick figure animation 

   
 

 

Several techniques and algorithms have been developed for the computer modeling of human 
motion. In one methodology (Labanotation) the body is described as sets of limbs and joints. Each 
joint is specified in terms of axes that can be oriented in various ways. Joint movements are 
described by operations that fall into several categories. A special symbol represents each class of 
operation. This approach makes possible the study and representation of human motion in an 
abstract way.  

 



Applications of Computer Animation  
 

 

The applications of computer animation practically coincide with the applications of computer 
graphics. For instance, computer graphics are often used in business to draw charts of economic 
and financial functions. The usual purpose of these charts and graphs is to facilitate the 
understanding of complex phenomena and to aid in decision making. These purposes are 
enhanced when the graphs and charts are animated so as to represent historical changes or future 
trends of the depicted data. The use of animation in business computing is made evident by the 
fact that standard business software tools, such as Microsoft's PowerPoint, now support animation. 

 
 Simulators and trainers  
 

 

Many natural or man-made objects and environments can be represented artificially in a 
satisfactory manner. For many years we have used optical planetariums to illustrate and teach 
astronomy in an environment that does not require costly optical instruments and that is 
independent of the weather and other meteoro-logical conditions. In the planetarium, the viewer 
sits in a comfortable chair located in an air-conditioned amphitheater and watches the procession 
of constellations and deep-sky objects, as well as the trajectory of the moon and the planets, over 
a realistically depicted sky. The operator of the planetarium controls the rate of movement so that 
the celestial transformations that take place over years or centuries can appear to occur in a few 
seconds or in minutes. The operator can enlarge the magnification of a particular object so that the 
viewer can appreciate in detail the rings of Saturn or the satellites of Jupiter. Furthermore, it is 
possible in an artificial environment to reproduce the stellar objects and viewing conditions of any 
particular date in history. In this manner a viewer is able to relive the astronomical observations 
and experiences of Galileo or Newton. Most modern planetariums use computers to aid the control 
and rendering processes.  

 

 

Other natural phenomena cannot be conveniently reproduced in a physical or optical laboratory. 
For example, the transformation of mass according to the theory of relativity would be practically 
impossible to reproduce physically. We can use animated graphics to simulate physical entities or 
to represent complex scientific phenomena such as nuclear and chemical reactions, hydraulic flow, 
physiological systems and organs, or structures under load. We can also use animated graphics in 
reproducing physical simulators, such as the planetarium, in depicting systems that cannot be 
conveniently imitated in other ways, or in creating a more feasible or economical emulation of 
physical phenomena.  

 

 
One such type of computer-assisted device, sometimes called a simulator, finds practical and 
economical use in experimentation and instruction. Astronauts training for a lunar landing practiced 
in simulators of the landing module and the mother ship. Airplane pilots often train in computer-
assisted simulators that can safely reproduce unusual or dangerous flying conditions.  

 
 Computer games  
 

 

Since the release of Pac Man in the early 1980s computer animation has played an increasingly 
important role in the personal entertainment field. More recently we have seen a remarkable 
increase in popularity of dedicated computer-controlled systems and user-interaction devices, such 
as those developed by Nintendo and Sega. During this time the arcade-type electronic game 
continued to prosper.  

 
Even more recently, PC games and simulations have gained their own status. High-performance 
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video systems, CD-ROM, digital audio, and specialized user-interaction devices have been 
combined in an environment called multimedia. The quality of the animated imagery and sound 
effects that can be obtained in multimedia compu-ter systems often competes with those in 
dedicated systems. Some applications for personal computers have achieved such a degree of 
realism that moral and ethical issues are being raised regarding the use of sexually explicit or 
violent representations.  

 
 Artificial life  
 

 

A new discipline of computer science, named artificial life, or ALife, has evolved around the 
computer modeling of biosystems. Practitioners of this new field state that it is based on biology, 
robotics, and artificial intelligence. The results are digital entities that resemble self-reproducing 
and self-organizing biological life forms. Computer viruses of the harmful and benign forms are 
examples of artificial life.  

 

 

The notion of a cellular automaton is at the core of artificial life. The idea was first described by 
John von Neumann as a theoretical model of a parallel computing device. The model is made 
subject to various restrictions to facilitate the formal investigation of its computing powers. The 
cellular automaton is reminiscent of a living organism because it is based on an interconnection of 
identical cells. Each cell behaves as a finite-state machine: it computes an output based on input 
received from a finite set of other similar cells, which are said to form its neighbor-hood. A cell can 
also receive input from an external source. A timer determines that all cells produce a 
simultaneous output. The output is directed to all cells in the neighborhood, and possibly to an 
external destination or receiver.  

 

 

The first formal discussion of cellular automata was by E. F. Codd in 1968. The subject of cellular 
automata is also discussed in a book edited by A.W. Burks titled Theory of Self-Reproducing 
Automata (1970). A more recent title by Edward Rietman, Creating Artificial Life Self Organization, 
provides a rigorous, and at the same time, entertaining presentation of this subject. The 
implementation of cellular automata is often represented as a sequence of images. Each clock 
cycle is an iteration update of the automata system, which can be viewed graphically on the 
computer screen. The resulting changes in the system give rise to an image set that simulates an 
animated entity. In general, the notion of artificial life is naturally associated with biological forms 
capable of self-reproduction and self-organization. These actions imply changes that can be 
represented graphically.  

 
 Virtual reality  
 

 

Recent breakthroughs in input/output technology have made possible a new level of user 
interaction with a computing machine. In virtual reality (VR) a computer system is equipped with 
one or more interaction devices (typically in the form of virtual reality goggles or head-mounted 
display), and one or more input devices, which enable the user to interact with the animation 
system. The result of virtual reality is a digital universe created by the computer system in which 
the user is submerged, according to its level of isolation from the surrounding environment. This 
digital universe has been named cyberspace, using a term coined by science fiction writer William 
Gibson in his 1984 book Neuromancer. The possible applica-tions of VR technology range from 
pure entertainment to practical industrial controls. For example, we can use VR to travel to planet 
Mars and walk on its surface, to control a complex robot used in industry or manufacturing, or to 
dance to the tango with a virtual partner. Other applications of virtual reality technology include 
scientific and medical research, art, music, CAD, electronic games, information management, 
engineering, education, and surgery.  



 

 

Animation techniques are usually required in virtual reality as part of the computer feedback 
mechanism. In a typical VR system the goggles take the place of the video display. Animators use 
their art to present to the user a convincing image of the virtual environment created by the 
system. For example, when the system detects a rotation of the user's head toward the left, the 
video image displayed on the VR goggles is smoothly panned in that direction. This action makes 
visible the objects that were previously outside of the user's field of view, as would naturally result 
from the new position of the eyes. If the virtual universe includes entities that move, the system 
must use sprite animation to reflect this action in the virtual environment. For example, a virtual 
reality representation of the Jurassic period could be based on images of dinosaurs that move in 
predetermined or random fashion, perhaps interacting with the user.  

 

 

On the PC we have not yet achieved the level of technical refinement and the image processing 
power necessary for creating a completely realistic virtual environment. In an ideal system many 
virtual entities would be animated simultaneously, accord-ing to the user's interaction with the 
system, or to predetermined or random factors. In the years to come we are likely to create virtual 
realities in which a user is able to experience being a brain surgeon, a time traveler, or a rather 
skimpy meal for a large, flesh-eating animal from the Jurassic period.  

 
 Fractal graphics  
 

 

When examined closely, natural surfaces are highly irregular and do not follow predictable 
geometrical patterns. Such is the case with coastlines, islands, rivers, snowflakes, and galaxies. 
For this reason, many natural objects cannot be satis-factorily represented using polygons or even 
smooth curves because the resulting image is too regular and contrived. However, it is possible to 
represent some types of natural objects realistically with a mathematical entity called a fractal. The 
term was derived from the words fractional dimensions and first used by Benoit Mandelbrot in his 
book The Fractal Geometry of Nature.  

 

 

A fractal is often explained by a structure called a triadic Koch curve. The evolution of the Koch 
curve starts with a straight line of length one. The middle third of this line (one-third fraction) is 
replaced by two lines of the same length that form a 60-degree angle. The result is a curve that is 
more rugged than the original one. This second-order curve can be transformed into a curve of the 
third order by repeating the same process with each of its four segments. The evolution of a Koch 
curve to the third order is shown in Figure 5-15.  

 

 
  

 
 Figure 5-15: Triadic Koch fractal 

   
 

 

We observe that the length of the Koch curve in Figure 5-15 increases in proportion to the number 
of straight line segments that it contains. This means that the second-order Koch curve has a 
greater length than the first-order curve, and the third order is longer than the second order. By 
continuing the process to infinity, the length of the curve also increases to infinity. Therefore, the 
curve cannot be measured in one dimension. On the other hand, the Koch curve cannot be 
measured in two dimensions because, by definition, its area is always zero. This leads to the 
conclusion that the curve must have a dimension that is greater than one and less than two, that 
is, a fractional dimension, or fractal. Following the Hausdorff-Besicovich method, the dimension of 



the Koch curve is determined to be approximately 1.2857.  
 

 

One interesting feature of fractals is that they can be generated by computers following what is 
called a production rule. The method of subdividing each intermediate line segment into two others 
is the production rule for the Koch fractal. The Koch curve exhibits a feature known as self-
similarity. Parts of the curves are similar to the whole curve. Natural objects, on the other hand, 
rarely exhibit self-similarity, although they do show what is called statistical self-similarity. In using 
fractal curves to simulate natural objects it is necessary to introduce a random factor that 
diminishes the curve's self-similarity property. The result is comparable to the image formed in a 
kaleidoscope in which the random placement of the colored glass fragments ensures a unique 
image with every change.  

 

 

Computer animation can be used to show the progression in the approximation of random fractals. 
Notice that a truly random fractal has an infinitely complex shape; therefore, it cannot actually exist 
as a visible object. The introduction of a random element in the creation of the fractal curve ensures 
that the result will be unpredict-ably different every time the fractal is approximated. The animated 
imagery that results from the generation of a random fractal graphic approximation is quite 
interesting from both an artistic and a mathematical viewpoint.  

 



The Animator's Predicament  
 

 

At the current levels of technology, a 3D programmer on the PC rarely has available all the 
resources ideally necessary for the project at hand. The most common dilemma requires a 
sacrifice of image quality for the sake of performance, or vice-versa. Real-time animation in the PC 
environment, such as is required in games and simulations, may result in a bumpy, coarse, and 
unrealistic rendering that is aesthetically unpleasant, and even physiologically disturbing. The 3D 
programmer's art consists of making the best possible use of limited resources in solving the 
processing and image representation problems to produce results that are as smooth and pleasant 
as the media allows. This often requires stretching the system's capabilities to its extremes as well 
as resorting to every scheme and stratagem in the programmer's bag of tricks.  

 

 

The least rewarding part of the programmer-animator's work is making the compromises that 
ensure acceptable levels of undesirable effects. In this sense, the animator often has to decide how 
small an image satisfactorily depicts the object, how much bumpiness is acceptable in representing 
a movement, how little definition is sufficient for a certain scenery, or with how few attributes can an 
object be realistically depicted. In the hands of the expert, these compromises and concessions 
result in the best possible representation in a particular system.  

 



Summary  
 

 

Here we reviewed the fundamental concepts in computer animation. We started with cartoon 
technology because computer animation originated in cartoons and continues to follow similar 
methods. We also looked at frame-by-frame and real-time animation, at programming methods, 
and rendering problems. The chapter also covered applications of animation and concluded with a 
discussion of the compromises and concessions that the animation programmer often must make. 

 
 At this point in the book we are almost finished with the fundamentals. One topic that is pending is 
covered in the next chapter: the fundamentals of Windows programming.  

 



Chapter 6: Windows API Programming  
 
 Overview  
 

 

Although this book assumes that you have some Windows programming experience, in this 
Chapter we review API programming in Windows. The idea is to establish a programming 
environment for the chapters that follow and to agree upon a program development methodology. 
Our approach to Windows programming is at the API level. Although we don't use class libraries or 
other wrappers, we take advantage of the editing and code generating facilities provided by 
Developer Studio. The process of fabricating a program requires not only knowledge of the 
language con-structs that go into it, but also skills in using the environment. For example, to create 
a program icon for an application you need to know about the API services that are used in defining 
and loading the icon, but you also need to have skills in activating and using the icon editor that is 
part of Developer Studio. Furthermore, when the icon graphics are stored in a file, you need to 
follow a series of steps that make this resource available to the program.  

 



 Preparatory Steps  
 

 

We assume that you already installed one of the supported software development products. The 
text is compatible with Microsoft Visual C++ versions 5 and 6. The following section describes the 
steps in creating a new project in Microsoft Developer Studio, inserting a source code template 
into the project, modifying and saving the template with a new name, and compiling the resulting 
file into a Windows executable.  

 
 Creating a project  
 

 

After Visual C++ is installed, start Developer Studio by double-clicking on the program icon on the 
desktop, or by selecting it from the Microsoft Visual C++ program group. The initial Developer 
Studio screen varies with the program version, the Windows configuration, the options selected 
when Developer Studio was last executed, and the project under development. Visual C++ version 
5.0 introduced the notion of a project workspace, or simply a workspace, as a container for several 
related projects. In version 5 the extension .mdp, used previously for project files, was changed to 
.dsw, which now refers to a workspace. The dialog boxes for creating workspaces, projects, and 
files were also changed. The workspace/project structure and the basic interface are also used in 
Visual C++ version 6.0.  

 

 

We start with a walk through the process of creating a project from a template file. The 
walkthrough is intended to familiarize you with the Developer Studio environ-ment. Later in this 
chapter you will learn about the different parts of a Windows program and develop a sample 
application. We call this first project Program Zero Demo, for the lack of a better name. The project 
files are found in the Program Zero project folder in the book's CD-ROM.  

 

 

A project is located in a workspace, which can include several projects. Project and workspace can 
be located in the same folder or subfolder or in different ones, and can have the same or different 
names. In the examples and demonstration programs used in this book we use the same folder for 
the project and the workspace. The result of this approach is that the workspace disappears as a 
separate entity, simplifying the creation process.  

 

 

A new project is started by selecting the New command from the Developer Studio File menu. 
When the New dialog box is displayed, click on the Project tab option and select a project type 
from the displayed list. In this case our project is Win32 Application. Make sure that the project 
location entry corresponds to the desired drive and folder. If not, click the button to the right of the 
location text box and select another one. Next, enter a project name in the corresponding text box 
at the upper right of the form. The name of the project is the same one used by Development 
Studio to create a project folder. In this example we create a project named Do Nothing Demo, 
which is located in a folder named 3DBPROJECTS. You can use these same names or create 
your own. Note that as you type the project name it is added to the path shown in the location text 
box. At this point the New dialog box appears as in Figure 6-1.  

 



 

  
 
 Figure 6-1: Using the New command in Developer Studio FileMenu 

   
 

 

Make sure that the radio button labeled Create new workspace is selected so that clicking OK on 
the dialog box creates both the project and the workspace. At this point, you have created a 
project, as well as a workspace of the same name, but there are no program files in it yet. How you 
proceed from here depends on whether you are using another source file as a base or template or 
starting from scratch.  

 

 

If you wish to start a source file from scratch, click the Developer Studio Project menu, select Add 
To Project, and then New commands. This action displays the same dialog box as when creating a 
project, but now the Files tab is open. In the case of a source file, select the C++ Source File 
option from the displayed list and type a filename in the corresponding text box. The dialog 
appears as shown in Figure 6-2.  

 

 

  
 
 Figure 6-2: Creating a new source file in Developer Studio 

   
 

 The development method we use in this book is based on using source code templates. To use a 
template as a base, or another source file, you must follow a different series of steps. Assuming 
that you have created a project, the next step is to select and load the program template or source 



file. We use the template named Templ01.cpp. If you installed the book's CD-ROM in your system, 
the template file is in the path 3DB/Templates. If you did not install the CD-ROM, then you can 
copy the program file Templ01.cpp from the CD-ROM into your project folder.  

 

 

To load the source file into your current project, open the Developer Studio Project menu, select 
Add To Project item, and then the Files commands. This action dis-plays an Insert Files into 
Project dialog box. Use the buttons to the right of the Look in text box to navigate into the desired 
drive and folder until the desired file is selected. Figure 6-3 shows the file WinHello.cpp highlighted 
and ready for inserting into the project.  

 

 

  
 
 Figure 6-3: Inserting an existing source file into a project 

   
 

 

When using a template file to start a new project you must be careful not to destroy or change the 
original source. The template file is usually renamed when it is inserted into the project. It is 
possible to insert a template file in a project, rename it, delete it from the project, and then reinsert 
the renamed file. However, it is easier to rename a copy of the template file before it is inserted 
into the project. The following sequence of operations is used:  

 

   
1.Click the File menu and select the Open command. Navigate through the directory structure to 
locate the file to be used as a template. In this case the file Templ01.cpp is located in 
3DB/Templates folder.  

 

   
2.With the cursor still in Developer Studio editor pane, open the File menu and click Save As. 
Navigate through the directory structure again until you reach the 3DB_PROJECTS\Program Zero 
Demo folder. Save the file using the name Prog_zero.cpp.  

 
   3.Click on the Project menu and select the commands Add to Project and Files. Locate the file 

named Prog_zero.cpp in the Insert Files into Project dialog box, select it, and click OK.  
 
 The file Prog_zero.cpp now appears in the Program Zero Demo file list in Developer Studio 
workspace pane. It is also displayed in the Editor window.  

 

 The Developer Studio main screen is configurable by the user. Furthermore, the size of its display 
areas is determined by the system resolution. For this reason, it is impossible to depict a 
Developer Studio screen display that matches the one that every user will see. In the illustrations 



and screen dumps throughout this book we have used a resolution of 1152 X 854 pixels in 16-bit 
color with large fonts. However, our screen format may not match yours exactly. Figure 6-4 shows 
a full screen display of Developer Studio with the file Progzero.cpp loaded in the Editor area.  

 

 

  
 
 Figure 6-4: Developer Studio Project Workspace, Editor, and Output pane 

   
 

 
The Project Workspace pane of Developer Studio was introduced in version 4.0. It has four 
possible views: Class View, File View, Info View, and Resource View. The Resource View is not 
visible in Figure 6-4. To display the source file in the editor pane, you must first select File View tab 
and double-click on the Prog_zero.cpp filename.  

 

 

At this point, you can proceed to develop the new project using the renamed template file as the 
main source. The first step is to make sure that the development software is working correctly. To 
do this, open the Developer Studio Build menu and click Rebuild All. Developer Studio compiles 
and builds your program, which is at this stage nothing more than the renamed template file. The 
results are shown in the Output area. If compilation and linking took place without error, reopen the 
Build menu and select the Execute Prog_zero.exe command button. If everything is in order, a do-
nothing program executes in your system.  

 
 Now click Save on the File menu to make sure that all project files are saved on your hard drive.  
 
 Elements of a Windows program  
 

 

The template file Templ01.cpp, which we used and renamed in the previous example, is a bare 
bones Windows program with no functionality except to display a window on the screen. Before 
proceeding to edit this template into a useful program, you should become acquainted with its 
fundamental elements. In this section, we take apart the template file Templ01.cpp for a detailed 
look into each of its components. The program contains two fundamental components: 
WinMain() and the window procedure.  

 
 WinMain()  



 

 

All Windows GUI applications must have a WinMain() function. WinMain() is to a Windows GUI 
program what main() is to a DOS application. It is usually said that WinMain() is the program's 
entry point, but this is not exactly true. C/C++ compilers generate a startup code that calls 
WinMain(), so it is the startup code and not WinMain() that is actually called by Windows. The 
WinMain() header line is as follows:  

 
 |------------------- Return type  
 | |-------------- One of the standard calling conventions  
 | | defined in windows.h  
 | | |------- Function name  
 | | |  
 | | | [ parameter list ....  
 --- ------ ------- ---------------------------------------------  
 int WINAPI WinMain (_HINSTANCE hInstance, HINSTANCE hPrevInstance,  
 PSTR szCmdLine, int iCmdShow) {  
 

 

WINAPI is a macro defined in the windows.h header file, which translates the function call to the 
appropriate calling convention. Recall that calling conventions refer to how the function arguments 
are placed in the stack at call time, and if the caller or the called routine is responsible for restoring 
stack integrity after the call. Microsoft versions of Basic, FORTRAN, and Pascal push the 
parameters onto the stack in the same order in which they are declared. In these languages the 
stack must be restored by the caller. In C and C++, the parameters are pushed in reverse order, 
and the stack is restored automatically after the call returns. For historical reasons (and to take 
advantage of hardware features of the Intel processors) Windows requires the Pascal calling 
convention. In previous versions of Windows the calling convention for WinMain() was PASCAL 
or FARPASCAL. You can still replace WINAPI with FARPASCAL and the program will compile and 
link correctly, but using the WINAPI macro makes your program more portable.  

 
 Parameters  
 

 
Most often parameters are passed to WinMain() by Windows but some can be passed by 
whatever program executes your application. Your code can inspect these parameters to obtain 
information about the conditions in which the program executes. Four parameters are passed to 
WinMain():  

 

   

•HINSTANCE.HINSTANCE is a handle-type identifier. The variable hInstance is an integer that 
identifies the instance of the program. Consider a multitasking environment where several copies 
(instances) of the same program are running simultaneously. In this case Windows sets the value 
of the instance and passes it to your code. Your program needs to access this parameter to enter 
it in the WNDCLASSEX structure, and to call the CreateWindow() function. Because the handle to 
the instance is required outside of WinMain() by many functions of the Windows API, the 
template file stores it in a public variable, named pInstance. In general, the use of public 
variables is undesirable in Windows programming, but this case is one of the valid exceptions to 
the rule.  

 



   

•hPrevInstance. The variable hPrevInstance is also of type HINSTANCE. This parameter is 
included in the call for compatibility with previous versions of Windows, which used a single copy 
of the code to run more than one program instance. In 16-bit Windows the first instance had a 
special role in the management of resources. Therefore, an application needed to know if it was 
the first instance. hPrevInstance held the handle of the previous instance. In Windows 
95/98/NT this parameter is unused and its value is set to NULL.  

 

   
•PSTR szCmdLine. This is a pointer to a string that contains the command tail entered by the 
user when the program is executed. It works only when the program name is entered from the 
DOS command line or from the Run dialog box. For this reason, it is rarely used by code.  

 

   
•int iCmdShow. This parameter determines how the window is to be initially displayed. The 
program that executes your application (normally Windows) assigns a value to this parameter, as 
shown in Table 6-1.  

 
 Table 6-1: WinMain() Display Mode Parameter  
 
    
 
 Value  

 
Meaning  

 

 
    
 
 SWHIDE  

 
Hides the window and activates another window.  

 

 
 SWMINIMIZE  

 
Minimizes the specified window and activates the top-
level window in the system's list.  

 

 
 SWRESTORE  

 
Activates and displays a window. If the window is 
minimized or maximized, Windows restores it to its 
original size and position (same as SWSHOWNORMAL).  

 

 
 SWSHOW  

 
Activates a window and displays it in its current size and 
position.  

 

 
 SWSHOWMAXIMIZED  

 
Activates a window and displays it as a maximized 
window.  

 

 
 SWSHOWMINIMIZED  

 
Activates a window and displays it as an icon.  

 

 
 SWSHOWMINNOACTIVE  

 
Displays a window as an icon. The active window remains 
active.  

 

 
 SWSHOWNA  

 
Displays a window in its current state. The active window 
remains active.  

 



 
 SWSHOWNOACTIVATE  

 
Displays a window in its most recent size and position. 
The active window remains active.  

 

 
 SWSHOWNORMAL  

 
Activates and displays a window. If the window is 
minimized or maximized, Windows restores it to its 
original size and position (same as SWRESTORE).  

 

 
    
 
 Data variables  
 

 
The program file Templ01.cpp defines several variables. One of them, the handle to the program's 
main window, is defined globally. The other variables are local to WinMain() or the window 
procedure. The variable defined globally is  

 
 HWND hwnd ;  
 

 
HWND is a 16-bit unsigned integer that serves as a handle to a window. The variable HWND refers 
to the actual program window. The variable is initialized when we make the call to 
CreateWindow() service, described later in this section.  

 
 The variables defined in WinMain() are as follows:  
 
 static char szClassName[] = "MainClass" ; // Class name  
 MSG msg ;  
 

 
The first one is an array of char that shows the application's class name. In the template it is given 
the name MainClass, which you can replace for a more meaningful one. The application class 
name must be the same one used in the WNDCLASSEX structure.  

 
 MSG is a message-type structure of which msg is a variable. The MSG structure is defined in the 
Windows header files as follows:  

 
 typedef struct tagMSG { // msg   
 HWND hwnd; // Handle to window receiving message  
 UINT message; // message number  
 WPARAM wParam; // Context-dependent additional information  
 LPARAM lParam; // about the message  
 DWORD time; // Time at which message was posted  
 POINT pt; // Cursor position when message was posted  
 } MSG;   
 



 
The comments to the structure members show that the variable holds information that is important 
to the executing code. The values of the message variable are reloaded every time a new 
message is received.  

 
 WNDCLASSEX structure  
 
 This structure is defined in the Windows header files, as follows:  
 
 typedef struct tagWNDCLASSEX {  
 UINT cbSize ;  
 UINT style ;  
 WNDPROC lpfnWndProc ;  
 int cbClsExtra ;  
 int cbWndExtra ;  
 HINSTANCE hInstance ;  
 HICON hIcon ;  
 HCURSOR hCursor ;  
 HBRUSH hbrBackground ;  
 LPCSTR lpszMenuName ;  
 LPCSTR lpszClassName ;  
 HICON hIconSm ;  
 } WNDCLASSEX;  
 

 

The WNDCLASSEX structure contains window class information. It is used with the 
RegisterClassEx() and GetClassInfoEx() functions. The structure is similar to the 
WNDCLASS structure used in 16-bit Windows. The differences between the two structures is that 
WNDCLASSEX has a cbSize member, which specifies the size of the structure, and the hIconSm 
member, which contains a handle to a small icon associated with the window class. In the template 
file Templ01.cpp the structure is declared and the variable initialized as follows:  

 
 // Defining a structure of type WNDCLASSEX  
 WNDCLASSEX wndclass ;  
 wndclass.cbSize = sizeof (WNDCLASSEX) ;  
 wndclass.style = CSHREDRAW | CSVREDRAW ;  
 wndclass.lpfnWndProc = WndProc ;  
 wndclass.cbClsExtra = 0 ;  
 wndclass.cbWndExtra = 0 ;  
 wndclass.hInstance = hInstance ;  
 wndclass.hIcon = LoadIcon (NULL, IDIAPPLICATION) ;  
 wndclass.hCursor = LoadCursor (NULL, IDCARROW) ;  
 wndclass.hbrBackground = (HBRUSH) GetStockObject  



 (WHITEBRUSH) ;  
 wndclass.lpszMenuName = NULL ;  
 wndclass.lpszClassName = szClassName ;   
 wndclass.hIconSm = LoadIcon (NULL, IDIAPPLICATION) ;  
 

 
The window class is a template that defines the characteristics of a particular window, such as the 
type of cursor and the background color. The class also specifies the address of the window 
procedure that carries out the work for the window. The structure variables define the window 
class, as follows:  

 
   1.The cbSize variable specifies the size, in bytes, of the structure. The member is set using the 
sizeof operator in the statement:  

 
 sizeof(WNDCLASSEX);  
 

   
2.The style variable specifies the class style or styles. Two or more styles can be combined by 
means of the C bitwise OR (|) operator. This member can be any combination of the values in 
Table 6-2.  

 
 Table 6-2: Summary of Window Class Styles  
 
    
 
 Symbolic Constant  

 
Action  

 

 
    
 
 CSBYTEALIGNCLIENT  

 
Aligns the window's client area on the byte boundary (in 
the x direction) to enhance performance during drawing 
operations. This style affects the width of the window and 
its horizontal position on the display.  

 

 
 CSBYTEALIGNWINDOW  

 
Aligns a window on a byte boundary (in the x direction) to 
enhance performance during operations that involve 
moving or sizing the window. This style affects the width 
of the window and its horizontal position on the display.  

 

 
 CSCLASSDC  

 
Allocates one device context to be shared by all windows 
in the class. Window classes are process specific; 
therefore, different threads can create windows of the 
same class.  

 

 
 CSDBLCLKS  

 
Sends double-click messages to the window procedure 
when the user double-clicks the mouse while the cursor is 
within a window belonging to the class.  

 



 
 CSGLOBALCLASS  

 
Allows an application to create a window of the class 
regardless of the value of the hInstance parameter 
passed to the CreateWindowEx() function. If you do not 
specify this style, the hInstance parameter passed to 
CreateWindowEx() function must be the same as the 
one passed to the RegisterClass() function.  

 

 
 CSHREDRAW  

 
Redraws the entire window if a movement or size 
adjustment changes the width of the client area.  

 

 
 CSNOCLOSE  

 
Disables the Close command on the System menu.  

 

 
 CSOWNDC  

 
Allocates a unique device context for each window in the 
class.  

 

 
 CSPARENTDC  

 
Specifies that child windows inherit their parent window's 
device context. Specifying CSPARENTDC enhances an 
application's performance.  

 

 
 CSSAVEBITS  

 
Saves, as a bitmap, the portion of the screen image 
obscured by a window. Windows uses the saved bitmap 
to recreate the screen image when the window is 
removed. This style is useful for small windows (such as 
menus or dialog boxes) that are displayed briefly and then 
removed before other screen activity takes place.  

 

 
 CSVREDRAW  

 
Redraws the entire window if a movement or size 
adjustment changes the height of the client area.  

 

 
    
 

 
Of these, the styles CSHREDRAW and CSVREDRAW are most commonly used. They can be 
combined by means of the OR operator to produce a window that is auto-matically redrawn if it is 
resized vertically or horizontally, as implemented in the Templ01.cpp code.  

 
 lpfnWndProc is a pointer to the window procedure, described later in this chapter. In the 
template Templ01.cpp it is initialized to the name of the window procedure as follows:  

 
 wndclass.lpfnWndProc = WndProc;  
 

 
cbClsExtra is a count of the number of extra bytes to be allocated following the window class 
structure. The operating system initializes the bytes to zero. In the template this member is set to 
zero.  

 
 cbWndExtra is a count of the number of extra bytes to allocate following the window instance. 
The operating system initializes the bytes to zero. In the template this member is set to zero.  



 
 hInstance is a handle to the instance of the window procedure.  
 

 
hIcon is a handle to the class icon. If this member is NULL, an application must draw an icon 
whenever the user minimizes the application's window. In the template this member is initialized by 
calling the LoadIcon() function.  

 

 
hCursor is a handle to the class cursor. If this member is NULL, an application must explicitly set 
the cursor shape whenever the mouse moves into the application's window. In the template this 
member is initialized by calling the LoadCursor() function.  

 

 
hbrBackground is a background brush. This member can be a handle to the physical brush to be 
used for painting the background, or it can be a color value. If it is a color value, then it must be 
one of the standard system colors listed in Table 6-3.  

 
 Table 6-3: Common Windows Standard System Colors  
 
    
 
 Symbolic Constant  

 
Meaning  

 

 
    
 
 COLORACTIVEBORDER  

 
Border color of the active window  

 

 
 COLORACTIVECAPTION  

 
Caption color of the active window  

 

 
 COLORAPPWORKSPACE  

 
Window background of MDI clients  

 

 
 COLORBACKGROUND  

 
Desktop color  

 

 
 COLORBTNFACE  

 
Face color for buttons  

 

 
 COLORBTNSHADOW  

 
Shadow color for buttons  

 

 
 COLORBTNTEXT  

 
Text color on buttons  

 

 
 COLORCAPTIONTEXT  

 
Text color for captions, size boxes, and scroll bar arrow 
boxes  

 

 
 COLORGRAYTEXT  

 
Color for disabled text  

 

   



 COLORHIGHLIGHT  Color of a selected item  
 
 COLORHIGHLIGHTTEXT  

 
Text color of a selected item  

 

 
 COLORINACTIVEBORDER  

 
Border color of inactive window  

 

 
 COLORINACTIVECAPTION  

 
Caption color of an inactive window  

 

 
 COLORMENU  

 
Background color of a menu  

 

 
 COLORMENUTEXT  

 
Text color of a menu  

 

 
 COLORScroll bar  

 
Color of a scroll bar's gray area  

 

 
 COLORWINDOW  

 
Background color of a window  

 

 
 COLORWINDOWFRAME  

 
Frame color of a window  

 

 
 COLORWINDOWTEXT  

 
Text color of a window  

 

 
    
 

 
When this member is NULL, an application must paint its own background whenever it is required 
to paint its client area. In the template this member is initialized by calling the 
GetStockObject() function.  

 

 
lpszMenuName is a pointer to a null-terminated character string that specifies the resource name 
of the class menu, as it appears in the resource file. If you use an integer to identify the menu, then 
you must use the MAKEINTRESOURCE macro. If this member is NULL, the windows belonging to 
this class have no default menu, as is the case in the template file.  

 

 

lpszClassName is a pointer to a null-terminated string or it is an atom. If this parameter is an 
atom, it must be a global atom created by a previous call to the GlobalAddAtom() function. The 
atom, a 16-bit value, must be in the low-order word of lpszClassName; the high-order word must 
be zero. If lpszClassName is a string, it specifies the window class name. In Templ01.cpp this 
member is set to the szClassName[] array.  

 

 

In Windows 95/98, hIconSm is a handle to a small icon that is associated with the window class. 
This is the icon shown in Windows Explorer and in dialog boxes that list filenames. A Windows 
95/98 application can use a predefined icon in this case, using the LoadIcon function with the 
same parameters as for the hIcon member. In Windows NT this member is not used and should 
be set to NULL. Windows 95/98 applications that set the small icon to NULL still have the default 
small icon displayed on the task bar.  



 
In most cases it is better to create both the large and the small icon than to let Windows create the 
small one from the large bitmap. Later in this chapter we describe how to create both icons as a 
program resource and how to make these resources available to the application.  

 

 
Contrary to what is sometimes stated, the LoadIcon() function cannot be used to load both large 
and small icons from the same resource. For example, if the icon resource is named IDIICON1, 
and we proceed as follows:  

 
 wndclass.hicon = LoadIcon (hInstance,  
 MAKEINTRESOURCE(IDIICON1);  
 .  
 .  
 .  
 wndclass.hiconSm = LoadIcon (hInstance,  
 MAKEINTRESOURCE(IDIICON1);  
 

 
the result is that the large icon is loaded from the resource file, but not the small one. This happens 
even if the resource file contains both images. Instead, you must use the LoadImage() function, 
as follows:  

 
 wndclass.hIcon = LoadImage(hInstance,  
 MAKEINTRESOURCE(IDIICON1),  
 IMAGEICON, // Type   
 32, 32, // Pixel size  
 LRDEFAULTCOLOR) ;  
 .  
 .  
 .  
 wndclass.hIconSm = LoadImage(hInstance,  
 MAKEINTRESOURCE(IDIICON1),  
 IMAGEICON, // Type  
 16, 16, // Pixel size  
 LRDEFAULTCOLOR) ;  
 
 Now both the large and the small icon resources are loaded correctly and are used as required.  
 
 Registering the window class  
 

 After your code has declared the WNDCLASSEX structure and initialized its member variables, it has 
defined a window class that encompasses all the structure attri-butes. The most important ones 
are the window style (wndclass.style), the pointer to the window procedure 



RegisterClassEx() function is used to notify Windows of the existence of a particular window 
class, as defined in the WNDCLASSEX structure variable. The address-of (&) operator is used to 
reference the location of the specific structure variable, as in the following statement:  

 
 RegisterClassEx (&wndclass) ;  
 

 
The RegisterClassEx() function returns an atom (16-bit value). This value is nonzero if the 
class is successfully registered. Code should check for a successful registration because you 
cannot create a window otherwise. The following construct ensures that execution does not 
proceed if the function fails.  

 
 if(!RegisterClassEx (&wndclass))  
 return(0);  
 
 This coding style is the one used in the template Templ01.cpp.  
 
 Creating the window  
 

 

A window class is a general classification. Other data must be provided at the time the actual 
window is created. The CreateWindowEx() function receives the addi-tional information as 
parameters. CreateWindowEx() is a Windows 95 version of the CreateWindow() function. 
The only difference between them is that the new version supports an extended window style 
passed as its first parameter.  

 

 
The CreateWindowEx() function is very rich in arguments, many of which apply only to special 
window styles. For example, buttons, combo boxes, list boxes, edit boxes, and static controls can 
be created with a CreateWindowEx() call. At this time, we refer only to the most important 
function parameters that relate to a program's main window.  

 
 In the file Templ01.cpp the call to CreateWindowEx() is coded as follows:  
 
 hwnd = CreateWindowEx (  
 WSEXLEFT, // left aligned (default)  
 szClassName, // pointer to class name  
 "Window Caption", // window caption (title bar)  
 WSOVERLAPPEDWINDOW, // window style  
 CWUSEDEFAULT, // initial x position  
 CWUSEDEFAULT, // initial y position  
 CWUSEDEFAULT, // initial x size  
 CWUSEDEFAULT, // initial y size  
 NULL, // parent window handle  
 NULL, // window menu handle  
 hInstance, // program instance handle  



 NULL) ; // creation parameters  
 

 
The first parameter passed to the CreateWindowEx() function is the extended window style 
introduced in the Win32 API. The one used in the file Templ01.cpp, WSEXLEFT, acts as a 
placeholder for others that you may want to select because it is actually the default value. Table 6-
4 lists some of the most common extended styles.  

 
 Table 6-4: Most Commonly Used Windows Extended Styles  
 
    
 
 Symbolic Constant  

 
Meaning  

 

 
    
 
 WSEXACCEPTFILES  

 
The window created with this style accepts drag-and-drop 
files.  

 

 
 WSEXAPPWINDOW  

 
A top-level window is forced onto the application taskbar 
when the window is minimized.  

 

 
 WSEXCLIENTEDGE  

 
The window has a border with a sunken edge.  

 

 
 WSEXCONTEXTHELP  

 
The title bar includes a question mark. When the user 
clicks the question mark, the cursor changes to a question 
mark with a pointer. If the user then clicks a child window, 
it receives a WMHELP message.  

 

 
 WSEXCONTROLPARENT  

 
Enables the user to navigate among the child windows of 
the window by using the Tab key.  

 

 
 WSEXDLGMODALFRAME  

 
The window has a double border. Optionally, the window 
can be created with a title bar by specifying the 
WSCAPTION style in the dwStyle parameter.  

 

 
 WSEXLEFT  

 
The window has generic "left-aligned" properties. This is 
the default.  

 

 
 WSEXMDICHILD  

 
This style creates an MDI child window.  

 

 
 WSEXNOPARENTNOTIFY  

 
This style creates a child window that does not send the 
WMPARENTNOTIFY message to its parent window when it 
is created or destroyed.  

 

   



 WSEXOVERLAPPEDWINDOW  This style combines the WSEXCLIENTEDGE and 
WSEXWINDOWEDGE styles.  

 
 WSEXPALETTEWINDOW  

 
This style combines the WSEXWINDOWEDGE, 
WSEXTOOLWINDOW, and WSEXTOPMOST styles.  

 

 
 WSEXRIGHTScroll bar  

 
The vertical scroll bar (if present) is to the right of the 
client area. This is the default placement for the vertical 
scrollbar.  

 

 
 WSEXSTATICEDGE  

 
This style creates a window with a three-dimensional 
border style intended for use with items that do not accept 
user input.  

 

 
 WSEXTOOLWINDOW  

 
This style creates a tool window. This type of window's 
intended use is as a floating toolbar.  

 

 
 WSEXTOPMOST  

 
A window created with this style should be placed above 
all non-topmost windows and should stay above them, 
even when the window is deactivated.  

 

 
 WSEXTRANSPARENT  

 
A window created with this style is transparent. That is, 
any windows that are beneath it are not obscured by it.  

 

 
 WSEXWINDOWEDGE  

 
The window has a border with a raised edge.  

 

 
    
 

 
The second parameter passed to the CreateWindowEx() function call is either a pointer to a 
string with the name of the window type, a string enclosed in double quotation marks, or a 
predefined name for a control class.  

 

 

In the template file, szClassName is a pointer to the string defined at the start of WinMain(), with 
the text "MainClass." You can edit this string in your own applications so that the class name is 
more meaningful. For example, if you were coding an editor program you may rename the 
application class as TextEdClass. However, this is merely a name used by Windows to associate a 
window with its class; it is not displayed as a caption or used otherwise.  

 
 Control classes can also be used as a window class name. These classes are the symbolic 
constants BUTTON, Combo box, EDIT, List box, MDICLIENT, Scroll bar, and STATIC.  

 

 
The third parameter can be a pointer to a string or a string enclosed in double quotation marks 
entered directly as a parameter. In either case, this string is used as the caption to the program 
window and is displayed in the program's title bar. Often this caption coincides with the name of 
the program. You should edit this string to suit your own program.  

The fourth parameter is the window style. Over 25 styles are defined as symbolic constants. The 



most used styles are listed in Table 6-5.  
 
 Table 6-5: Window Styles  
 
    
 
 Symbolic Constant  

 
Meaning  

 

 
    
 
 WSBORDER  

 
Creates a window that has a thin-line border.  

 

 
 WSCAPTION  

 
Creates a window that has a title bar (includes the 
WSBORDER style).  

 

 
 WSCHILD  

 
Creates a child window. This style cannot be used with 
the WSPOPUP style.  

 

 
 WSCLIPCHILDREN  

 
Excludes the area occupied by child windows when 
drawing occurs within the parent window.  

 

 
 WSCLIPSIBLINGS  

 
Clips child windows relative to each other. When a 
particular child window receives a WMPAINT message, 
this style clips all other overlapping child windows out of 
the region of the child window to be updated. If 
WSCLIPSIBLINGS is not specified and child windows 
overlap, it is possible to draw within the client area of a 
neighboring child window.  

 

 
 WSDISABLED  

 
Disables the window. A disabled window cannot receive 
input from the user.  

 

 
 WSDLGFRAME  

 
Creates a window that has a border of a style typically 
used with dialog boxes. The window does not have a title 
bar.  

 

 
 WSHSCROLL  

 
Creates a window that has a horizontal scroll bar.  

 

 
 WSICONIC  

 
Minimizes the Window; same as the WSMINIMIZE style.  

 

 
 WSMAXIMIZE  

 
Maximizes the window.  

 

 
 WSMAXIMIZEBOX  

 
Creates a window that has a Maximize button. Cannot be 
combined with the WSEXCONTEXTHELP style.  

 



 
 WSMINIMIZE  

 
Minimizes the window; same as the WSICONIC style.  

 

 
 WSMINIMIZEBOX  

 
Creates a window that has a Minimize button. Cannot be 
combined with the WSEXCONTEXTHELP style.  

 

 
 WSOVERLAPPED  

 
Overlapped window. Has a title bar and a border.  

 

 
 WSOVERLAPPEDWINDOW  

 
Overlapped window with the WSOVERLAPPED, 
WSCAPTION, WSSYSMENU, WSTHICKFRAME, 
WSMINIMIZEBOX, and WSMAXIMIZEBOX styles. Same as 
the WSTILEDWINDOW style.  

 

 
 WSPOPUP  

 
Creates a pop-up window. Cannot be used with the 
WSCHILD style.  

 

 
 WSPOPUPWINDOW  

 
Creates a pop-up window with WSBORDER, WSPOPUP, and 
WSSYSMENU styles. The WSCAPTION and 
WSPOPUPWINDOW styles must be combined to make the 
System menu visible.  

 

 
 WSSIZEBOX  

 
Creates a window that has a sizing border. Same as the 
WSTHICKFRAME style.  

 

 
 WSSYSMENU  

 
Creates a window that has a System–menu box in its title 
bar. The WSCAPTION style must also be specified.  

 

 
 WSTILED  

 
Overlapped window. Has a title bar and a border. Same 
as the WSOVERLAPPED style.  

 

 
 WSTILEDWINDOW  

 
Overlapped window with the WSOVERLAPPED, 
WSCAPTION, WSSYSMENU, WSTHICKFRAME, 
WSMINIMIZEBOX, and WSMAXIMIZEBOX styles. Same as 
the WSOVERLAPPEDWINDOW style.  

 

 
 WSVISIBLE  

 
Window is initially visible.  

 

 
 WSVSCROLL  

 
Creates a window that has a vertical scroll bar.  

 

 
    
 

 
The style defined in the template file Templ01.ccp is WSOVERLAPPEDWINDOW. This style creates a 
window that has the styles WSOVERLAPPED, WSCAPTION, WSSYSMENU, WSTHICKFRAME, 
WSMINIMIZEBOX, and WSMAXIMIZEBOX. It is the most common style of windows.  

 



 
The fifth parameter to the CreateWindowEx() service defines the initial horizontal position of the 
window. The value CSUSERDEFAULT (0x80000000) determines the use of the default position. The 
template file uses the same CSUSERDEFAULT symbolic constant for the y position, and the 
windows x and y size.  

 
 The ninth and tenth parameters are set to NULL because this window has no parent and no 
default menu.  

 
 The eleventh parameter, hInstance, is the handle to the instance that was passed to 
WinMain() by Windows.  

 

 

The last entry, called the creation parameters, can be used to pass data to a program. A 
CREATESTRUCT-type structure is used to store the initialization parameters passed to the window 
procedure of an application. The data can include an instance handle, a new menu, the window's 
size and location, the style, the window's name and class name, and the extended style. Because 
no creation parameters are passed, the field is set to NULL.  

 

 
The CreateWindowEx() function returns a handle to the window of type HWND. The template file 
Templ01.cpp stores this handle in a global variable named hwnd. The reason for this is that many 
functions in the Windows API require this handle. By storing it in a global variable, we make it 
visible throughout the code.  

 
 If CreateWindowsEx() fails, it returns NULL. Code in WinMain() can test for this error 
condition with the statement  

 
 if(!hwnd)  
 return(0);  
 

 
We do not use this test in the template file Templ01.cpp because it is usually not necessary. If 
WinMain() fails, you may use the debugger to inspect the value of hwnd after 
CreateWindowEx()to make sure that a valid handle was returned.  

 
 Displaying the window  
 

 

CreateWindowEx() creates the window internally but does not display it. To display the window 
your code must call two other functions: ShowWindow() and UpdateWindow(). ShowWindow() 
sets the window's show state and UpdateWindow() updates the window's client area. In the case 
of the program's main window, ShowWindow() must be called once, using as a parameter the 
iCmdShow value passed by Windows to WinMain(). In the template file the call is coded as 
follows:  

 
 ShowWindow (hwnd, iCmdShow) ;  



 
The first parameter to ShowWindow() is the handle to the window returned by 
CreateWindowEx(). The second parameter is the window's display mode param-eter, which 
determines how the window must be initially displayed. The display mode parameters are listed in 
Table 6-1, but in this first call to ShowWindow() you must use the value received by WinMain(). 

 

 
UpdateWindow() actually instructs the window to paint itself by sending a WMPAINT message to 
the window procedure. The processing of the WMPAINT message is described later in this chapter. 
The actual code in the template file is as follows:  

 
 UpdateWindow (hwnd) ;  
 
 If all has gone well, at this point your program is displayed on the screen. It is now time to 
implement the message passing mechanisms that are at the heart of event-driven programming.  

 
 The message loop  
 

 

In an event-driven environment there can be no guarantee that messages are processed faster 
than they originate. For this reason Windows maintains two message queues. The first type of 
queue, called the system queue, is used to store messages that originate in hardware devices, 
such as the keyboard and the mouse. In addition, every thread of execution has its own message 
queue. The message handling mechanism can be described with a simplified example: when a 
keyboard event occurs, the device driver software places a message in the system queue. 
Windows uses information about the input focus to decide which thread should handle the 
message. It then moves the message from the system queue into the corresponding thread queue. 

 

 
A simple block of code, called the message loop, removes a message from the thread queue and 
dispatches it to the function or routine that must handle it. When a special message is received, 
the message loop terminates, and so does the thread. The message loop in Templ01.cpp is coded 
as follows:  

 
 while (GetMessage (&msg, NULL, 0, 0))  
 {  
 TranslateMessage (&msg) ;  
 DispatchMessage (&msg) ;  
 }  
 return msg.wParam ;  
 

 

The while statement calls the function GetMessage(). The first parameter to GetMessage() is a 
variable of the structure type MSG, described earlier in this chapter and reproduced in Appendix A. 
The structure variable is filled with information about the message in the queue, if there is one. If 
no message is waiting in the queue, Windows suspends the application and assigns its time slice 
to other threads of execution. In an event-driven environment, programs act only in response to 
events. If no event occurs no message is sent and no action takes place.  

 

 The second parameter to GetMessage() is the handle to a window for which to retrieve a 
message. Most applications set this parameter to NULL, which signals that all messages for 
windows that belong to the application making the call should be retrieved. The third and the fourth 
parameters to GetMessage() are the lowest and the highest message numbers to be retrieved. 



parameters to GetMessage() are the lowest and the highest message numbers to be retrieved. 
Threads that only retrieve messages within a particular range can use these parameters as a filter. 
When the special value 0 is assigned to both of these parameters (as is the case in our message 
loop) then no filtering is performed and all messages are passed to the application.  

 

 

There are two functions inside the message loop. TranslateMessage() is a key-board 
processing function that converts keystrokes into characters. The characters are then posted to the 
message queue. If the message is not a keystroke that needs translation, then no special action is 
taken. The DispatchMessage() function sends the message to the window procedure, where it 
is further processed and either acted upon or ignored. The window procedure is discussed in the 
following section. GetMessage() returns 0 when a message labeled WMQUIT is received. This 
signals the end of the message loop; at this point execution returns from WinMain(), and the 
application terminates.  

 



The Window Procedure  
 

 

At this moment in a program's execution the window class has been registered, the window has 
been created and displayed, and all messages are being routed to your code. The window 
procedure, sometimes called the window function, is where you write code to handle the 
messages received from the message loop. It is in the window procedure that you respond to the 
events that pertain to your program.  

 

 

Every window must have a window procedure. Although the name WinProc() is commonly used, 
you can use any other name for the window procedure provided that it appears in the procedure 
header, the prototype, in the corresponding entry of the WNDCLASSEX structure, and that it does 
not conflict with another name in your application. Also, a Windows program can have more than 
one window procedure. The program's main window is usually registered in WinMain() but others 
can be registered elsewhere in an application. Here again, each window procedure corresponds to 
a window class, has its own WNDCLASSEX structure, as well as a unique name.  

 
 In the template, the window procedure is coded as follows:  
 
 |------------------------ _Return type, equivalent to a long type  
 | |---------------- _Same as FAR PASCAL calling convention.  
 | | _Used in windows and dialog procedures.  
 | | |------- Procedure name  
 | | | [ parameter list ... ]   
 ------- -------- ------- -----------------------------------------  
 LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam,  
 LPARAM lParam) {  
 

 

The window procedure is of callback type. The CALLBACK symbol was first introduced in Windows 
3.1 and is equivalent to FAR PASCAL, and also to WINAPI because all of them currently 
correspond to the stdcall calling convention. Although it is possible to substitute stdcall for 
CALLBACK in the function header, it is not advisable because this could compromise the 
application's portability to other platforms or to future versions of the operating system.  

 

 
The return value of a window procedure is of type LRESULT, which is a 32-bit integer. The actual 
value depends on the message, but it is rarely used by application code. However, there are a few 
messages for which the window procedure is expected to return a specific value. It is a good idea 
to check the Windows documentation when in doubt.  

 
 Window procedure parameters  
 

 
The four parameters to the window procedure are the first four fields in the MSG structure. Because 
the window procedure is called by Windows, the parameters are provided by the operating system 
at call time, as follows:  

 
•hwnd is the handle to the window receiving the message. This is the same handle returned by 



CreateWindow().  
 

   
•iMsg is a 32-bit unsigned integer (UINT) that identifies each particular message. The constants 
for the various messages are defined in the Windows header files. They all start with the letters 
WM, which stand for window message.  

 
   •wParam and lParam are called the message parameters. They provide additional information 

about the message. Both values are specific to each message.  
 

 
The last two members of the message structure, which correspond to the message's time of 
posting and cursor position, are not passed to the window procedure. However, application code 
can use the functions GetMessageTime() and GetMessagePos() to retrieve these values.  

 
 Window procedure variables  
 
 The implementation of the window procedure in Templ01.cpp starts by declaring a scalar of type 
HDC and two structure variables of type HWND and MSG, respectively. The variables are as follows: 

 

   
•hdc is a handle to the device context. A device context is a data structure maintained by 
Windows, which is used in defining the graphics objects and their attributes, as well as their 
associated graphics modes. Devices such as the video display, printers, and plotters must be 
accessed through a handle to their device contexts, which is obtained from Windows.  

 
   •ps is a PAINTSTRUCT variable. The structure is defined by Windows as follows:  
 
 typedef struct tagPAINTSTRUCT  
 {  
 HDC hdc; // identifies display device  
 BOOL fErase; // not-zero if background must be  
 // erased  
 RECT rcPaint; // Rectangle structure in which   
 // painting is requested  
 BOOL fRestore; // RESERVED  
 BOOL fIncUpdate; // RESERVED  
 BYTE rgbReserved[32]; // RESERVED  
 } PAINTSTRUCT;   
 
 The structure contains information that is used by the application to paint its own client area.  
 
   •rect is a RECT structure variable. The RECT structure is also defined by Windows:  
 typdef struct RECT {  
 LONG left; // x coordinate of upper-left corner  



 LONG top; // y of upper-left corner  
 LONG right; // x coordinate of bottom-right corner  
 LONG bottom; // y of bottom-right  
 } RECT;  
 
 The RECT structure is used to define the corners of a rectangle, in this case of the application's 
display area, which is also called the client area.  

 
 Message processing  
 
 The window procedure receives and processes messages. The message can originate as follows: 
 

   

•Some messages are dispatched by WinMain(). In this group are the messages placed in the 
thread's message queue by the DispatchMessage() function in the message loop. Messages 
handled in this manner are referred to as queued messages. Queued messages originate in 
keystrokes, mouse movements, mouse button clicks, the system timer, and in orders to redraw the 
window.  

 
   •All other messages come directly from Windows. These are called nonqueued messages.  
 

 
The window procedure examines each message, queue or nonqueued, and either takes action or 
passes the message back for default processing. In the template file Templ01.cpp the message 
processing skeleton is coded as follows:  

 
 switch (iMsg)  
 {  
 // Windows message processing  
 // Preliminary operations  
 case WMCREATE:  
 return (0);  
   
 // Redraw window  
 case WMPAINT :  
 hdc = BeginPaint (hwnd, &ps) ;  
 GetClientRect (hwnd, &rect) ;  
 // Initial display operations here  
 EndPaint (hwnd, &ps) ;  
 return 0 ;  
   
 // End of program execution  
 case WMDESTROY :  



 PostQuitMessage (0) ;  
 return 0 ;  
 }  
 return DefWindowProc (hwnd, iMsg, wParam, lParam) ;  
 

 
Messages are identified by uppercase symbolic constants that start with the characters WM 
(window message). Over two hundred message constants are defined in Windows. Three 
messages are processed in the template file: WMCREATE, WMPAINT, and WMDESTROY.  

 
 When the window procedure processes a message it must return 0. If it does not process a 
particular message, then the function DefWindowsProc() is called to provide a default action.  

 
 WM_CREATE message processing  
 

 

The WMCREATE message is sent to an application as a result of the CreateWindowEx() function 
in WinMain(). This message gives the application a chance to perform preliminary initialization, 
such as displaying a greeting screen, or playing a sound file. In the template, the WMCREATE 
processing routine does nothing. It serves as a placeholder where the programmer can insert the 
appropriate code.  

 
 WM_PAINT message processing  
 

 
The WMPAINT message informs the program that all or part of the client window must be repainted. 
This happens when the user minimizes, overlaps, or resizes the client window area. Recall that the 
style of the program's main window is defined in the template with the statement:  

 
 wndclass.style = CSHREDRAW | CSVREDRAW ;  
 
 This style determines that the screen is redrawn if it is resized vertically or horizontally.  
 

 

In WMPAINT, processing begins with the BeginPaint() function. BeginPaint() serves to 
prepare the window for a paint operation by filling a variable of type PAINTSTRUCT, previously 
discussed. The call to BeginPaint() requires the hwndvariable, which is the handle to the 
window that will be painted. ps, a PAINTSTRUCT variable, is also filled by the call. During 
BeginPaint() Windows erases the background using the currently defined brush.  

 

 

The call to GetClientRect() requires two parameters. The first one is the handle to the window 
(hwnd), which is passed to the window procedure as a parameter. In the template file this value is 
also stored in a public variable. The second parameter is the address of a structure variable of 
type RECT, where Windows places the coordinates of the rectangle that defines the client area. 
The left and top values are always set to zero.  

 

 
Processing ends with EndPaint(). EndPaint() notifies Windows that the paint operation has 
concluded. The parameters passed to EndPaint() are the same ones passed to 
BeginPaint(): the handle to the window and the address of the structure variable of type 



PAINTSTRUCT.  
 
 WM_DESTROY message processing  
 

 
The WMDESTROY message is received by the window procedure when the user takes an action to 
destroy the window, usually by clicking the Close button or selecting the Close or Exit commands 
from the File or the System menus. The standard processing performed in WMDESTROY is  

 
 PostQuitMessage (0) ;  
 
 The PostQuitMessage() function inserts a WMQUIT message in the message queue, thus 
terminating the GetMessage loop and ending the program.  

 
 The default windows procedure  
 
 The code in the template file contains a return statement for each of the messages that it handles. 
For example  

 
 case WMPAINT :  
 hdc = BeginPaint (hwnd, &ps) ;  
 GetClientRect (hwnd, &rect) ;  
 // Initial display operations here  
 EndPaint (hwnd, &ps) ;  
 return 0 ;  
 

 
The last statement in this routine returns a value of zero to Windows. The Windows documentation 
states that zero must be returned when an application processes the WMPAINT message. Some 
Windows messages, not many, require a return value other than zero.   

 

 

Many of the messages received from Windows, or retrieved from the message queue, are of no 
interest to your application. In this case, code must provide a default action for those messages 
that it does not handle. Windows contains a function, named DefWindowsProc(), that ensures 
this default action. DefWindowsProc() provides specific processing for those messages that 
require it, thus implementing a default behavior. For those messages that can be ignored, 
DefWindowsProc() returns zero. Your application uses the return value of DefWindowsProc()
as its own return value from the window procedure. This action is coded as follows in the template 
file:  

 
 return DefWindowProc (hwnd, iMsg, wParam, lParam) ;  
 
 The parameters passed to DefWindowsProc() are the same message parameters received by 
your window procedure from the operating system.  

 



The WinHello Program  
 

 

In the first walkthrough, at the beginning of this chapter, we used the template file Templ01.cpp to 
create a new project, which we named Program Zero Demo. Program Zero Demo resulted in a do-
nothing program because no modifications were made to the template file at that time. In the 
present walkthrough we proceed to make modifications to the template file to create a Windows 
program different from the template. This project, which we named Hello Windows, is a Windows 
version of the classic "Hello World" program.  

 

 

We first create a new project and use the template file Templ01.cpp as the source code base for it. 
To do this we must follow all the steps in the first walkthrough, except that the project name is now 
Hello Windows and the name template file Templ01.cpp is copied and renamed WinHello.cpp. 
After you have finished all the steps in the walkthrough you will have a project named Hello 
Windows and the source file named WinHello.cpp listed in the Project Workspace and displayed in 
the Editor window. After the source file is renamed, you should edit the header block to reflect the 
file's new name and the program's purpose. Figure 6-5 shows the Developer Studio screen at this 
point.  

 

 

  
 
 Figure 6-5: Developer Studio main screen showing the Hello Windows Project and source file 

   
 
 The project Hello Windows, which we are about to code, has the following features:  
 
   •The caption displayed on the program title bar is changed to "Hello Windows."  
 
   •When the program executes, it displays a greeting message on the center of its client area.  
 

   
•The program now contains a customized icon. A small version of the icon is displayed in the title 
bar and a larger one is used when the program's executable is represented by a shortcut on the 
Windows desktop.  

 
After you create the project named Hello Windows and include in it the source file WinHello.cpp, 

d ki difi i h d i i l i h



you are ready to start making modifications to the source and inserting new elements into the 
project.  

 
 Modifying the program caption  
 

 

The first modification that we make to the source is to change the caption that is displayed on the 
title bar when the program executes. This requires editing the third parameter passed to the 
CreateWindowsEx() function in WinMain(). The parameter now reads "Hello Windows." 
Throughout this book we use the project's name, or a variation of it, as the title bar caption. Our 
reason for this is to make it easy to find the project files from a screen dump of the executable.  

 
 Displaying text in the client area  
 
 The second modification requires entering a call to the DrawText() API function, in the case 
WM_PAINT processing routine. The routine now is  

 
 case WM_PAINT :  
 hdc = BeginPaint (hwnd, &ps) ;  
 GetClientRect (hwnd, &rect) ;  
   
 // Display message in the client area  
 DrawText (hdc,  
 "Hello World from Windows",  
 -1,  
 &rect,  
 DT_SINGLELINE | DT_CENTER | DT_VCENTER);  
   
 EndPaint (hwnd, &ps) ;  
 return 0 ;  
 

 
The call to DrawText() requires five parameters. When calls require several parameters, we can 
improve the readability of the source by devoting a separate text line to each parameter, or to 
several associated parameters, as in the previous listing.  

 
 The first parameter to DrawText() is the handle to the device context. This value was returned 
by the call to BeginPaint(), described previously in this chapter.  

 
 The second parameter to DrawText() points to the string to be displayed. The string can also be 
enclosed in double quotation marks, as in the previous listing.  

 
 The third parameter is -1 if the string defined in the second parameter terminates in NULL. If not, 
then the third parameter is the count of the number of characters in the string.  



 
The fourth parameter is the address of a structure of type RECT, which contains the logical 
coordinates of the area in which the string is to be displayed. The call to GetClientRect(), 
made in the WM_PAINT message intercept, filled the members of the rect structure variable.  

 
 In the fifth parameter are the text formatting options. Table 6-6 lists the most used of these 
controls.  

 
 Table 6-6: Symbolic Constants Used in DrawText() Function  
 
    
 
 Value  

 
Meaning  

 

 
    
 
 DTBOTTOM  

 
Bottom-justifies text. Must be combined with 
DTSINGLELINE.  

 

 
 DTCALCRECT  

 
This constant is used to determine the width and height of 
the rectangle. If there are multiple lines of text, DrawText
uses the width of the rectangle in the RECT structure 
variable supplied in the call and extends the base of the 
rectangle to bound the last line of text. If there is only one 
line of text, DrawText modifies the right side of the 
rectangle so that no text is displayed.  

 

 
 DTCENTER  

 
Centers text horizontally.  

 

 
 DTEXPANDTABS  

 
Expands tab characters. The default number of characters 
per tab is eight.  

 

 
 DTEXTERNALLEADING  

 
Includes the font external leading in line height. Normally, 
it is not included.  

 

 
 DTLEFT  

 
Aligns text to the left.  

 

 
 DTNOCLIP  

 
Draws without clipping. The function executes somewhat 
faster when DTNOCLIP is used.  

 

 
 DTNOPREFIX  

 
DrawText() interprets the control character & as a 
command to underscore the character that follows. The 
control characters && print a single &. This processing is 
turned off by specifying DTNOPREFIX.  

 

 
 DTRIGHT  

 
Aligns text to the right.  

 



 
 DTSINGLELINE  

 
Displays text on a single line only. Carriage returns and 
linefeeds are ignored.  

 

 
 DTTOP  

 
Top-justifies text (single line only).  

 

 
 DTVCENTER  

 
Centers text vertically (single line only).  

 

 
 DTWORDBREAK  

 
Breaks words. Lines are automatically broken between 
words if a word extends past the edge of the rectangle 
specified by the lpRect parameter. A carriage-return–
linefeed sequence also breaks the line.  

 

 
    
 
 Creating a program resource  
 

 

The last customization that you have to perform on the template file is to create two customized 
icons, which are associated with the program window. The icons correspond to the hIcon and 
hIconSm members of the WNDCLASSEX structure described previously and listed in Appendix A. 
hIcon is the window's standard icon. Its default size is 32-by-32 pixels, although Windows 
automatically resizes this icon as required. The standard icon is used on the Windows desktop 
when a shortcut is created and in some file listing modes of utilities like Windows Explorer. The 
small icon is 16-by-16 pixels, which makes it one-fourth the size of the large one. This is the icon 
shown in dialog boxes that list filenames, by Windows Explorer, and in the program's title bar. 
Windows NT uses a scaled version of the standard icon when a smaller one is required.  

 

 
An icon is a resource. Resources are stored in read-only, binary data files, which the application 
can access by means of a handle. We introduce icons at this time because other program 
resources such as cursors, menus, dialog boxes, bitmaps, and fonts are handled similarly. The 
icons that we create in this walkthrough are considered an application-defined resource.  

 

 

The most convenient way of creating and using resources is to take advantage of the facilities in 
the development environment. Visual C++ provides several resource editors, and Developer 
Studio facilitates the creation and manipulation of the support files required for using resources. 
Graphics programmers often want to retain the highest possible control over their code; however, 
the use of these facilities in creating and managing resources does not compromise this principle. 
The files created by the development environment are both visible and editable. As you gain 
confidence and knowledge about them, you can progressively take over some or all of the 
operations performed by the development software. In this book, we sometimes let the 
development environment generate one or more of the program files and then proceed to edit 
them so that it better suits our purpose.  

 

 
The convenience of using the automated functions of the development environment is made 
evident by the fact that a simple resource often requires several software elements. For example, 
a program icon requires the following components:  

 
•A bitmap that graphically encodes the icon. If the operating system and the application support 
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the small icon, then two bitmaps are required.  
 

   

•A script file (also called a resource definition file), which lists all the resources in the application 
and may describe some of them in detail. The resource script can also reference other files and 
may include comments and pre-processor directives. The resource compiler (RC.EXE) compiles 
the script file into a binary file with the extension .RES. This binary file is referenced at link time. 
The resource file has the extension .RC.  

 

   
•The script file uses a resource header file, with the default filename resource.h, which contains 
preprocessor directives related to the resources used by the application. The application must 
reference this file with an #include statement.  

 
 Creating the icon bitmap  
 

 
Developer Studio provides support for the following resources: dialog boxes, menus, cursors, 
icons, bitmaps, toolbars, accelerators, string tables, and version controls. Each resource has either 
a graphics editor or a wizard that helps create the resource. In this discussion we refer to either 
one of them as a resource editor.  

 

 

Resource editors can be activated by clicking Resource in the Insert menu. At this time Developer 
Studio displays a dialog box with an entry for each type of resource. Alternatively, you can access 
the resource editors faster by displaying the Resource toolbar. In Visual C++ 4 and later this is 
accomplished by clicking Toolbars in the View menu, and then selecting the check box for the 
Resource option. In versions 5 and 6 select Customize in the Tools menu, open the Toolbars tab 
in the Customize dialog box, and select the check box for the Resource option. The Graphics and 
Colors boxes should also be checked to display the normal controls in the resource editors. The 
resulting toolbar is identical in both cases. When the Resource toolbar is displayed, you can drag it 
into the toolbar area or to any other convenient screen location. The Insert Resource dialog screen 
and the resource toolbar are shown in Figure 6-6.  

 

 

  
 
 Figure 6-6: Developer Studio Insert Resource dialog screen and toolbar 

   



 

 

You can activate the icon editor either by selecting the icon option in the Resource dialog box or by 
clicking the appropriate button on the toolbar. The icon editor is simple to use and serves well in 
most cases. It enables you to create the bitmap for several sizes of icons. Although the interface to 
the icon editor is simple, it is also powerful and flexible. You should experiment with the icon editor, 
as well as with the other resource editors, until you have mastered all their options and modes. 
Figure 6-7 shows the icon editor in Developer Studio.  

 

 

  
 
 Figure 6-7: Creating an icon resource with Developer Studio icon editor 

   
 

 
The toolbar on the right of the icon editor is similar to the one used in the Windows Paint utility and 
in other popular graphics programs. There are several tools that enable you to draw lines, curves, 
and geometrical figures in outline or filled form. Also, there is a palette box from which colors for 
foreground and background can be selected.  

 

 

Developer Studio makes possible the creation of a large and a small icon from the same resource. 
To request the small icon, click on the New Device Image button and then select the 16-by-16 
icon. The two icons, 32-by-32 pixels and 16-by-16 pixels, can be developed alternatively by 
selecting one of them in the Open Device Image scroll box in the icon editor. Windows 
automatically uses the large and the small icons as required.  

 
 In the WinHello program the WNDCLASSEX structure is edited to support user-created large and 
small icons, as follows:  

 
 // The program icon is loaded in the hIcon and hIconSm  
 // structure members  
 WNDCLASSEX wndclass ;  
 wndclass.hIcon = LoadImage(hInstance,  
 MAKEINTRESOURCE(IDIICON1),  
 IMAGEICON, // Type   
 32, 32, // Pixel size  
 LRDEFAULTCOLOR) ;  



 .  
 .  
 .  
 wndclass.hIconSm = LoadImage(hInstance,  
 MAKEINTRESOURCE(IDIICON1),  
 IMAGEICON, // Type  
 16, 16, // Pixel size  
 LRDEFAULTCOLOR) ;  
 

 

The MAKEINTRESOURCE macro is used to convert an integer value into a resource. Although 
resources can also be referenced by their string names, Microsoft recom-mends the use of the 
integer value. The name of the icon resource, IDIICON1, can be obtained from the resource script 
file. However, an easier way of finding the resource name is to click the Resource Symbols button 
on the Resource toolbar (labeled ID=) or select Resource Symbols in the View menu. Either the 
symbolic name or the numerical value for the icon resource that is shown on the Resource 
Symbols screen can also be used in the MAKEINTRESOURCE macro.  

 

 

In the process of creating an icon bitmap, Developer Studio also creates a new script file, or adds 
the information to an existing one. However, when working outside of the Microsoft Foundation 
Class library, you must manually insert the script file into the project. You can do this by selecting 
Add to Project in the Project menu and then clicking on the Files option. In the Insert Files into 
Project dialog box, select the script file, which in this case is the one named Script1.rc, and then 
press OK. The script file now appears on the Source Files list in the Files View window of the 
Project Workspace.  

 

 
In addition to the script file, Developer Studio also creates a header file for resources. The default 
name of this file is resource.h. In order for resources to be available to the code you must enter an 
#include statement in the main source file, as follows:  

 
 #include "resource.h"  
 
 Notice that the double quotation marks surrounding the filename indicate that it is in the current 
folder.  

 

 
At this point, all that is left to do is to compile the resources, the source files, and link the program 
into an executable. You can do this by selecting Rebuild All in the Build menu. Figure 6-8 shows 
the screen display of the WinHello program.  

 



 

  
 
 Figure 6-8: Screen dump of the WinHello Program 

   
 



WinHello Program Listing  
 
 The following is a listing of the WinHello program. We excluded the header block to economize 
space.  

 
 // WinHello.cpp  
   
 #include <windows.h>  
 #include "resource.h" // Load resource file  
   
 // Storage for program instance  
 HINSTANCE pInstance;  
   
 // Predeclaration of the Window Procedure  
 LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;  
   
 //****************************  
 // WinMain  
 //****************************  
 int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,  
 PSTR szCmdLine, int iCmdShow)  
 {  
 static char szClassName[] = "MainClass" ; // Class name  
 HWND hwnd ;  
 MSG msg ;  
   
 // Defining a structure of type WNDCLASSEX  
 // The program icon is loaded in the hIcon and hIconSm  
 // structure members  
 WNDCLASSEX wndclass ;  
 wndclass.cbSize = sizeof (wndclass) ;  
 wndclass.style = CSHREDRAW | CSVREDRAW ;  
 wndclass.lpfnWndProc = WndProc ;  
 wndclass.cbClsExtra = 0 ;  
 wndclass.cbWndExtra = 0 ;  
 wndclass.hInstance = hInstance ;  
 wndclass.hIcon = LoadImage(hInstance,  
 MAKEINTRESOURCE(IDIICON1),  
 IMAGEICON, // Type   



 32, 32, // Pixel size  
 LRDEFAULTCOLOR) ;  
 wndclass.hCursor = LoadCursor (NULL, IDCARROW) ;  
 wndclass.hbrBackground = (HBRUSH) GetStockObject  
 (WHITEBRUSH) ;  
 wndclass.lpszMenuName = NULL ;  
 wndclass.lpszClassName = szClassName ;   
 wndclass.hIconSm = LoadImage(hInstance,  
 MAKEINTRESOURCE(IDIICON1),  
 IMAGEICON, // Type  
 16, 16, // Pixel size  
 LRDEFAULTCOLOR) ;  
   
 // Store program instance  
 pInstance = hInstance;  
   
 // Registering the structure wmdclass  
 RegisterClassEx (&wndclass) ;  
   
 // CreateWindow()  
 hwnd = CreateWindowEx (  
 WSEXLEFT, // Left aligned (default)  
 szClassName, // pointer to class name  
 "WinHello Program", // window caption  
 WSOVERLAPPEDWINDOW, // window style  
 CWUSEDEFAULT, // initial x position  
 CWUSEDEFAULT, // initial y position  
 CWUSEDEFAULT, // initial x size  
 CWUSEDEFAULT, // initial y size  
 NULL, // parent window handle  
 NULL, // window menu handle  
 hInstance, // program instance handle  
 NULL) ; // creation parameters  
   
 ShowWindow (hwnd, iCmdShow) ;  
 UpdateWindow (hwnd) ;  
   
 // Message loop  



 while (GetMessage (&msg, NULL, 0, 0))  
 {  
 TranslateMessage (&msg) ;  
 DispatchMessage (&msg) ;  
 }  
 return msg.wParam ;  
 }  
 //****************************  
 // Window Procedure  
 //****************************  
 LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam,  
 LPARAM lParam)  
 {  
 HDC hdc ;  
 PAINTSTRUCT ps ;  
 RECT rect ;  
   
 switch (iMsg)  
 {  
 // Windows message processing  
 case WMCREATE:  
 return 0;  
   
 case WMPAINT :  
 hdc = BeginPaint (hwnd, &ps) ;  
 GetClientRect (hwnd, &rect) ;  
   
 // Display message in the client area  
 DrawText (hdc,  
 "Hello World from Windows",  
 -1,  
 &rect,  
 TSINGLELINE | DTCENTER | DTVCENTER);  
   
 EndPaint (hwnd, &ps) ;  
 return 0 ;  
   
 // End of program execution  



 case WMDESTROY :  
 PostQuitMessage (0) ;  
 return 0 ;  
 }  
 return DefWindowProc (hwnd, iMsg, wParam, lParam) ;  
 }  
 



Summary  
 

 

In this chapter we concluded our review of API programming in Windows. At this point we 
established the programming environment for the chapters that follow and showed you our 
program development methodology. In addition, you gained some familiarity with the Developer 
Studio environment so that you are able to create a simple project using the program templates 
furnished in the book's CD-ROM. The chapter includes two walkthroughs: in the first one you 
created a do-nothing program by simply inserting the template file into a project. In the second 
walkthrough you edited the template file to create an actual Windows program, with its own icons, 
and which displays a message on its client area.  

 

 
Here we conclude Part I of the book, devoted to the fundamentals, and now proceed with 
DirectDraw programming. DirectDraw is the rendering engine of Direct3D; therefore it is a core 
subject in our context.  

 



Chapter 7: DirectDraw Fundamentals  
 
 Overview  
 

 

With this chapter we begin our discussion on DirectDraw. DirectDraw is one of the components of 
Microsoft's DirectX Software Development Kit, version 7, usually called the DirectX 7 SDK. It 
provides graphics programmers with direct access to video memory and to special hardware 
features in the video card. This results in better performance and a higher level of control. The 
disadvantage is that direct access to the video memory and hardware complicates programming 
and creates portability and device dependency problems.  

 



Game Development on the PC  
 

 
Computer games, and other high-performance graphics programs, require interactive graphics, 
animation, and realistic object rendering: all of these features rapidly consume CPU cycles and 
video resources. In their effort to achieve maximum quality for their products, game programmers 
are constantly pressing the boundaries of machine performance.  

 

 

PC game development started in DOS. In this environment, applications can use any operation 
code or operand in the instruction set. In this case the running application is the "god of the 
machine." But this power can be dangerous. A DOS program can accidentally (or intentionally) 
destroy files and resources that are not its own, including the operating system itself. As the PC 
gradually evolved into a serious business machine, the possibility that an application could destroy 
code, erase data belonging to other programs, and even create havoc with the operating system 
became intolerable. How would anyone trust its valuable business information and processing to 
such an unsafe environment?   

 

 

The problem had to be addressed both in hardware and software. An operating system capable of 
providing a safe and reliable environment requires hardware that supports this protection. Intel 
started on this route with the 286 micropro-cessor, which came equipped with hardware features 
that allow the operating system to detect and prevent access to restricted memory areas and to 
disallow instructions that are considered dangerous to the integrity of other programs or to the 
environment's stability. The features were enhanced in the 386 and the various versions of the 
Pentium. In the mid 1980s Microsoft and others started developing operating systems that would 
take advantage of the CPU features recently introduced. The results were several protected-mode 
operating systems, of which Windows has been the only survivor.  

 

 

Although safer and more reliable, Microsoft Windows imposed many restrictions on applications. 
One result of this situation was that games, and other high-performance graphics applications, 
could no longer access the hardware resources directly in order to maximize performance and 
expand functionalities. For several years game programmers continued to exercise the craft in 
DOS, and Windows users had to switch to the DOS mode to run games, simulations, and other 
graphics programs. The resulting situation implied a major contradiction: a graphical operating 
system in which graphics applications would execute with marginal performance.  

 

 

Microsoft decided to remedy the situation by providing programmers with limited access to 
hardware and system resources. The goal was to allow appli-cations sufficient control of video 
hardware and other resources so as to improve performance and control, and to do it in a way that 
would not compromise system stability. The first effort in this direction was a product named WinG, 
in reference to Windows for Games. WinG was first made available in 1994 and it required Win32 
in Windows 3.1. Its main feature is that WinG enabled the game programmer to rapidly transfer 
bitmaps from system memory into video memory. This made possible the creation of Windows 
games that executed with much better performance. Because of the success of WinG, Microsoft 
developed a more elaborate product called the Game Software Development Kit, or Game SDK.  

 
 DirectX  
 

 

The Microsoft Game SDK made evident that the usefulness of direct access to video memory and 
hardware was not limited to games. Many multimedia applications, and other graphics programs 
that required high performance, could benefit from these enhanced facilities. In response, 
Microsoft renamed the new version of the Game SDK, calling it DirectX 2. Other versions later 
released were named DirectX 3, DirectX 5, DirectX 6, and currently, DirectX 7. Note that no 



DirectX 4 version exists. DirectX version 7 SDK, released in 1999, is discussed in this book.  
 

 

The functionality of the DirectX SDKs is available to applications running in Windows 95/98 and 
Windows NT 3.1 and later. In fact, the full functionality of DirectX 7 SDK is incorporated into 
Windows 98 and will also be found in Windows NT 5.0 and Windows 2000. This means that 
applications running under Windows 98 and later will be able to execute programs that use DirectX 
without loading additional drivers or other support software. In addition, Microsoft provides a setup 
utility that enables you to upgrade a compatible machine to a new version of DirectX.  

 
 Installing the SDK  
 

 

Several versions of the DirectX SDK are available for download, at no cost, on the Microsoft Web 
sites. DirectX has grown in size during its evolution. The current version takes up approximately 
360MB, which requires several hours online, even with the fastest commercial modems. For this 
reason we have included the DirectX 7 SDK in the book's CD-ROM. DirectX SDK CD-ROMs can 
also be ordered from Microsoft.  

 

 

DirectX 7 contains an installation utility that loads and sets up the software on the target system. 
Microsoft recommends that you uninstall any previous versions of the SDK before the setup 
program is executed; however, only the most recent versions of the SDK are equipped with 
uninstall utilities. The SDK installs to a default folder c:\mssdk. Certain uncommon features of the 
SDK directory structure are designed for compatibility with Microsoft Developers Network (MSDN) 
Platform SDK, which duplicates most of DirectX 7.  

 
 Compiler support  
 

 
DirectX 7 is compatible with Microsoft Visual C++ version 4.2 and later as well as with Watcom 
11.0 and Borland C Builder 3 and 4. Visual C++ project files (.mdp) are included in the 
demonstration programs contained in the package. Microsoft states in the SDK documentation that 
some of the sample programs are not compatible with Borland or Watcom.  

 
 Testing the installation  
 

 

The folder mssdk\bin\DXUtils of the installed DirectX 7 SDK contains several programs that can be 
used for testing DirectX in the host system. The most useful one, named dxdiag, allows testing the 
DirectDraw, Direct3D, and DirectSound components of the SDK. The tests also provide a brief 
demonstration of the capabilities of each of these components. Figure 7-1 shows the Display test 
tab of the DirectX diagnostics program.  



 

  
 
 Figure 7-1: Display test function of the DirectX diagnostics program 

   
 

 
When the Test button associated with the DirectDraw function is clicked, the program executes 
several tests to determine compatibility. A series of tests related to the Direct3D function activate 
when the corresponding test button is selected. In the Still Stuck? tab the program provides 
several troubleshooting options. Figure 7-2 shows the initial display of the troubleshooting screen. 

 

 

  
 
 Figure 7-2: Troubleshooting screen of the DirectX diagnostics program 

   
 
 DirectX components  
 
 The DirectX SDK includes the following components:  

•DirectDraw provides hardware acceleration and direct access to video memory. This component 



performance.  
 
   •DirectSound provides hardware and software sound mixing and playback.  
 
   •DirectMusic works with message-based musical data. It supports the Musical Instrument Digital 

Interface (MIDI) and provides authoring tools for creating interactive music.  
 
   •DirectPlay makes possible the connecting of applications over a modem link or a network.  
 

   
•Direct3D is a 3D graphics package that provides a high-level interface that enables you to 
implement a 3D graphical system. It also contains a low-level interface that lets applications take 
complete control of the rendering pipeline.  

 
   •DirectInput provides support for input devices including joystick, mouse, keyboard, and game 

controllers. It also provides support for feedback game devices.  
 
   •DirectSetup provides a simple installation procedure for DirectX. It simplifies the updating of 

display and audio drivers and makes sure that there are no software or hardware conflicts.  
 
   •AutoPlay enables you to create a CD-ROM disc that installs automatically after it is inserted in the 

drive. AutoPlay is not unique to DirectX since it is part of the Microsoft Win32 API.  
 
 The SDK also includes several sample programs with the corresponding source code.  
 
 In this section we mainly discuss the DirectDraw component of the DirectX SDK.  
 
 DirectX and COM  
 

 

Microsoft's Component Object Model (COM) is a foundation for an object-oriented system that 
attempts to improve on the C++ model. COM is also an object model at the operating system level, 
which supports and promotes the reuse of interfaces. DirectDraw is presented to the programmer 
using the Component Object Model. The COM object is defined as a data structure that contains a 
pointer to the associated functions. One of the advantages of the COM is that it does not require 
C++. Programs written in C, or even in a non-C development system, can use APIs based on the 
COM protocol.  

 

 

The DirectX Programmer has several ways of accessing the COM interface. From C++, the COM 
object appears like an abstract class. In this case access is by means of the pointer to the 
DirectDraw COM object. However, when using straight C, the function must pass the pointer to the 
COM object as an additional parameter. In addition, the call must include a pointer to a property of 
the COM object called the vtable. Because this book assumes C++ programming, we use the 
simpler interface to the COM.  

 



Introduction to DirectDraw  
 

 

DirectDraw is usually considered the most basic and useful component of DirectX. It enables an 
application to access display memory as well as some of the hardware functions in the video card. 
The result is that a Windows program can obtain a high level of graphics performance without 
sacrificing device independence and while maintaining compatibility with the Graphics Device 
Interface (GDI). DirectDraw is implemented as a software interface to the card's video memory and 
graphics functions. Although its original intention was merely to facilitate game development under 
Windows, many other types of graphics applications can benefit from the higher degree of control 
and the performance gains that it provides.  

 

 

In this sense DirectDraw can be described as a display memory manager, which also furnishes 
access to some hardware acceleration features and other graphics facilities that may be available 
on the video card. Most current video cards used in the PC support DirectDraw, but some do so to 
a limited extent. Furthermore, there is no uniform set of acceleration features and graphics 
functions that all DirectDraw devices must provide. For these reasons, the decision to use 
DirectDraw also entails the burden of accommodating varying degrees of DirectDraw 
functionalities. DirectDraw provides services that enable applications to query the capabilities of a 
particular video card as well as the level of hardware support. Most features not supported by the 
hardware are emulated in software by DirectX, but at a substantial performance penalty.  

 

 
A DirectDraw system implements its functionality both in hardware and in software emulation, each 
one with its own capabilities. Applications can query DirectDraw to retrieve the hardware and 
software capabilities of the specific implementation in the installed video card. DirectDraw is 
furnished as a 32-bit dynamic link library named DDRAW.DLL.  

 
 DirectDraw features  
 
 The following are the most important features of DirectDraw:  
 
   •Direct access to video memory  
 
   •Manipulation of multiple display surfaces  
 
   •Page flipping  
 
   •Back buffering  
 
   •Clipping  
 
   •Palette management  
 
   •Video system support level information  
 
 Advantages and drawbacks  



 
 The possible advantages of using DirectDraw are:  
 

   
1.It provides direct access to video memory, thus increasing performance and allowing the 
graphics programmer a higher degree of control. This feature also makes it easier to port some 
DOS graphics programs and routines into the Windows environment.  

 

   
2.It improves application performance by making use of video hardware capabilities. For example, 
if the video card supports hardware blits, DirectDraw uses this feature. DirectDraw also provides a 
hardware emulation layer (HEL) to simulate features that are not supported by the hardware.  

 
   3.DirectDraw uses 32-bit flat memory addressing of video memory. This model is much easier to 

handle by code than one that is based on the Intel segmented architecture.  
 

   
4.In full screen, exclusive mode applications, DirectDraw supports page flipping with multiple back 
buffers. This technique enables you to implement animation effects that were previously 
unsatisfactory. In windowed programs DirectDraw supports clipping, hardware-assisted overlays, 
image stretching, and other graphics manipulations.  

 
 The major disadvantages are:  
 

   
1.Programming in DirectDraw is more complicated and difficult than using the Windows GDI. 
Programs that do not need the additional performance or control provided by DirectDraw might 
find little additional justification for using it.  

 
   2.The graphics functions emulated by DirectDraw are often slower than those in the GDI.  
 
   3.Applications that rely on DirectDraw are less portable than those that do not.  
 



Architecture  
 
 The architecture of DirectDraw is defined by its interface, its object composition, the hardware 
abstraction layer (HAL), and the hardware emulation layer (HEL).  

 
 Interface  
 

 

DirectDraw provides services through COM-based interfaces. The various versions of this 
interface are named IDirectDraw, IDirectDraw2, and IDirectDraw4. Note that 
IDirectDraw3 does not exist, although it is erroneously mentioned in some Microsoft 
documents. These interfaces to DirectDraw correspond to different releases of the Game SDK and 
of DirectX.  

 

 
Programs can gain access to DirectDraw by means of the DirectDrawCreate() function or by 
the CoCreateInstance() COM function. In this book we use DirectDrawCreate(), which is 
the easier and more common one. Later in this chapter we discuss how a program can query 
which of the three DirectDraw interfaces is available at run time.  

 
 Object composition  
 

 
DirectX APIs are sometimes implemented as instances of COM objects. Communication with 
these objects is by means of methods; for example, if IDirectDraw4 is the interface, the method 
SetDisplayMode is accessed through the interface as follows:  

 IDirectDraw4::SetDisplayMode  
 

 
COM interfaces are derived from a base class called IUnknown. The following DirectDraw object 
types are currently defined: DirectDraw, DirectDrawSurface, DirectDrawPalette, 
DirectDrawClipper, and DirectDrawVideoPort. Figure 7-3 shows the object composition of 
the IDirectDraw interface.  

 

 

  
 
 Figure 7-3: IDirectDraw object types 



   
 
 The DirectDraw objects are described as follows:  
 

   

•DirectDraw is the basic object of all applications. It is considered to represent the display 
adapter card. The corresponding COM object is named IDirectDraw. This is the first object 
created by a program, and it relates to all other DirectDraw objects. A call to 
DirectDrawCreate() creates a DirectDraw object. If the call is successful, it returns a pointer 
to either IDirectDraw, IDirectDraw2, or IDirectDraw4 interfaces.  

 

   
•DirectDrawSurface object, sometimes called a surface, represents an area in memory. The 
COM object name is IDirectDrawSurface. This object holds the image data to be displayed, or 
images to be moved to other surfaces. Applications usually create a surface by calling the 
IDirectDraw::CreateSurface method of the DirectDraw object.  

 

   

•DirectDrawPalette object, sometimes referred to as a palette, represents a 16- or 256-color 
indexed palette. The palette object simplifies palette manipulations. It contains a series of indexed 
RGB triplets that describe colors associated with values within a surface. Palettes are limited to 
surfaces that use a pixel format of 8 bits or less. Palette objects are usually associated with 
corresponding surface objects, whose color attributes the palette object defines.  

 

   
•DirectDrawClipper object, sometimes referred to as a clipper, serves to prevent applications 
from drawing outside a predefined area. Clipper objects are usually convenient when a DirectDraw 
application is displayed in a window. In this case the clipper object prevents the application from 
drawing outside of its client area.  

 

   
•DirectDrawVideoPort object, which was introduced in DirectX 5, represents the video-port 
hardware present in some systems. It allows direct access to the frame buffer without intervention 
of the CPU or the PCI bus.  

 
 Hardware Abstraction Layer (HAL)  
 

 

DirectDraw ensures device independence by implementing a Hardware Abstraction Layer, or HAL. 
The HAL is provided by the video card manufacturer, board manufacturer, or OEM, according to 
Microsoft's DirectDraw specifications. However, applications have no direct access to the HAL, but 
to the interfaces exposed by DirectDraw. It is this indirect access mechanism that ensures HAL 
consistency and reliability.  

 

 

In Windows 95/98, device manufacturers implement the HAL in both 16-bit and 32-bit code. In 
Windows NT the HAL is always in 32-bit code. It can be furnished as part of the card's display 
driver or as a separate DLL. The HAL contains device-dependent code. It performs no emulation 
and provides no programmer-accessible services. The only point of contact between an 
application and the HAL is when the application needs to query DirectDraw to find out what 
capabilities are directly supported.  

 
 Hardware Emulation Layer (HEL)  



 

DirectDraw emulates in software those basic features that are not supported through the HAL. The 
Hardware Emulation Layer (HEL) is the part of DirectDraw that provides this functionality. 
Applications do not access the HEL directly. Whether a given functionality is provided through 
hardware features, or through emulation, is transparent to an application using DirectDraw. Code 
must specifically query DirectDraw to determine the origin of a given functionality. The GetCaps()
function, discussed later in this chapter, furnishes this information.  

 

 

Unfortunately, some combinations of hardware-supported and emulated functions may lead to 
slower performance than pure emulation. DirectDraw documentation cites an example in which a 
display device driver supports DirectDraw but not stretch blitting. When the stretch blit function is 
emulated in video memory, a noticeable performance loss occurs. The reason is that video 
memory is often slower than system memory; therefore, the CPU is forced to wait when accessing 
video memory surfaces. Such cases make evident one of the greatest drawbacks of DirectDraw, 
which is that applications must provide alternate processing for hardware dependencies.  

 
 Relations with Windows  
 
 Several Windows graphics components lie between the application code and the video card 
hardware. Figure 7-4 shows the relations between the various Windows graphics components.  

 

 

  
 
 Figure 7-4: Relations between Windows graphics components 

   
 

 

The right-hand side of Figure 7-4 shows that an application can access the Windows video 
functions through the GDI, which, in turn, uses the Display Device Interface (DDI). On the left-hand 
side you can see that, alternatively, an application can access the video functions through 
DirectDraw. DirectDraw, in turn, uses the Hardware Abstraction Layer and the Hardware Emulation 
Layer to provide the necessary functionality. The horizontal arrow connecting the HAL and the DDI 
indicates that applications that use DirectDraw can also use the GDI functions because both 
channels of video card access are open simultaneously.  

 



DirectDraw Fundamentals  
 

 
There are several core topics that relate specifically to DirectDraw. Understanding these 
fundamental concepts is a prerequisite to successful DirectDraw programming. Following are the 
core topics of DirectDraw:  

 
   •Cooperative levels  
 
   •Display modes  
 
   •Surfaces  
 
   •Palettes  
 
   •Clippers  
 
 Cooperative levels  
 

 

The notion of cooperative levels refers to the relation between DirectDraw and other Windows 
applications. A DirectDraw program can execute full-screen, with exclusive access to the display 
resources, or it can execute in a window and share the video resources with other running 
programs. In this last case the DirectDraw application and the other Windows programs executing 
concurrently must cooperate in their use of the video resources. When a DirectDraw application 
requests and obtains total control of the video functions it is said to execute in exclusive mode. 
DirectDraw applications that do not execute in exclusive mode are usually referred to as windowed 
DirectDraw programs.  

 

 

The SetCooperativeLevel() function is used by an application to set cooperative levels. The 
predefined constants DDSCLFULLSCREEN and DDSCLEXCLUSIVE enable the application to 
execute full-screen and to ensure control of the display mode and the palette. In this case the 
DirectDraw program has almost exclusive control of the video resources. The use of this function 
is described later in this chapter.  

 
 DirectDraw cooperative levels have the following additional features:  
 

   
•You can enable a DirectDraw application to use a nonstandard VGA resolution known as Mode X. 
Mode X, which executes in 320 X 240 pixels in 256 colors, was a very popular mode with DOS 
game programmers.  

 
   •You can prevent DirectDraw applications that execute in exclusive mode from responding to 

CTRL + ALT + DEL keystrokes.  
 
   •You can enable a DirectDraw application to minimize or maximize itself.  
 
Microsoft considers the normal cooperative level the one in which the DirectDraw application 
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cooperates as a windowed program. However, the DirectDraw applica-tions that execute in 
windowed mode are not capable of changing the display mode or of performing page flipping. 
Display mode control and page flipping are essential to many high-performance graphics 
programs, especially those that use animation. Therefore, many high-performance DirectDraw 
programs execute in exclusive mode.  

 
 Display modes  
 

 

Display modes were introduced with the first video system used in the PC. The Video Graphics 
Array (VGA) video system, released in 1987, supports 18 display modes. A display mode, which 
enables a particular resolution and color depth, is a hardware configuration of the video system 
internal registers. For this reason, display modes are described by their pixel width, height, and bit-
depth. For example, VGA mode 18H has a resolution of 640 by 480 by 4. This means that it 
displays 640 pixel columns and 480 pixel rows in 16 colors. The last digit of the mode specification 
is the number of bits used in the pixel color encoding. In VGA mode 18H the color range is 16, 
which is the maximum number of combinations of the 4 binary digits devoted to the color encoding. 

 

 

PC display modes are often classified as palettized and nonpalettized. In palettized display modes 
each color value is an index into an associated color table, called the palette. The bit depth of the 
display mode determines the number of colors in the palette. For example, in a 4-bit palettized 
display mode, such as VGA mode 18H, each pixel attribute is a value from 0 to 15, which makes 
possible a palette with 16 entries. The actual colors displayed depend on the palette settings. The 
programmer can select and change the palette colors at any time, thus selecting a subrange of 
displayed colors. However, when the palette is changed, all displayed objects are shown with the 
new settings.  

 

 
Nonpalettized display modes, on the other hand, encode pixel colors directly. In this case the bit 
depth represents the total number of color attributes that can be assigned to each pixel. In 
nonpalettized modes there is no look-up table to define the color attributes.  

 

 

The higher the resolution and the color depth of a display mode, the more video memory is 
required in the adapter. Because not all video adapters contain the same amount of memory, not 
all of them support the same video modes. The DirectDraw EnumDisplayModes() function is 
used to list all the display modes supported by a device, or to confirm if a particular display mode 
is available in the video card.  

 

 

Applications using DirectDraw can call the SetDisplayMode() function. The parameters passed 
to the call describe the dimensions, bit depth, and refresh rate of the mode to be set. A fifth 
parameter indicates special options for the given mode. Currently, this parameter is used only to 
differentiate between Mode 13H, with 320 by 200 resolution and 16 colors, and VGA Mode X, also 
with 320 by 200 resolution but in 256 colors. Although an application can request a specific display 
mode resolution and bit depth, it cannot specify how the pixel depth is achieved by the hardware. 
After a mode is set, the application can call the GetDisplayMode() function to determine if the 
mode is palettized and to examine the pixel format. In other words, DirectDraw reserves the right 
to implement a particular color depth in a palettized or nonpalettized mode.  

DirectDraw programs that do not execute in exclusive mode allow other applications to change the 



the display mode or manipulate the palette.  
 

 
A DirectDraw application can explicitly restore the display hardware to its original mode by calling 
the RestoreDisplayMode(). Since the DirectDraw2 interface, a DirectDraw exclusive mode 
application that sets the display mode by calling SetDisplayMode() can restore the original 
display mode automatically by calling RestoreDisplayMode().  

 

 
DirectDraw supports all screen resolutions and pixel depths that are available in the card's device 
driver. Thus, a DirectDraw application can change to any mode supported by the display driver, 
including all 24- and 32-bit True-color modes.  

 
 Surfaces  
 

 

A DirectDraw surface is a linear memory area used to hold image data. A DirectDrawSurface 
object is a COM object derived from IUnknown, as shown in Figure 7-3. Surfaces can reside in 
display memory, which is located in the video card, or in system memory. Applications create a 
DirectDraw surface by calling the CreateSurface() function. The call can create a single 
surface object, a complex surface-flipping chain, or a three-dimensional surface. The 
IDirectDrawSurface interface allows an application to indirectly access memory through blit 
functions, such as Blt() and BltFast(). In addition, a surface provides a device context to the 
display, which can be used with GDI functions.  

 

 

IDirectDrawSurface surface functions can be used to access display memory directly. The 
Lock() function retrieves the address of an area of display memory and ensures exclusive 
access to this area. This operation is said to lock the surface. A primary surface is one in which the 
display memory area is mapped to the video display. Alternatively, a surface can refer to a 
nondisplayed area. In this case the surface is called an off-screen or overlay surface. Nonvisible 
buffers usually reside in display memory, but they can be created in system memory if DirectDraw 
is performing a hardware emulation, or if it is otherwise necessary because of hardware limitations. 
Surface objects that use a pixel depth of 8 bits or less are assigned a palette that defines the color 
attributes in the encoding. Figure 7-5 shows the surface-based layout of video memory.  

 

 

  
 
 Figure 7-5: Primary and overlay surfaces in video memory 

   



 

 

When a DirectDraw application receives a pointer to video memory it can use this pointer to draw 
on the screen, with considerable gain in control and performance. However, a program that 
accesses video memory directly must concern itself with many video system layout details that are 
transparent at a higher programming level. The first complicating factor is that video buffer 
mapping may be different in two modes with the same resolution but different color depths. The 
reason for this variation is related to the fact that the video buffer is actually storage for pixel 
attributes. If an attribute is encoded in 8 bits, then the buffer requires one byte per pixel. However, 
if a pixel attribute is stored in 24 bits, then the buffer requires 3 bytes per pixel.  

 

 

Figure 7-6 shows two video modes with different pixel depths. In the 8 bits per pixel mode the 
fourth memory byte is mapped to the fourth screen pixel. However, in the 24 bits per pixel mode, 
the thirteenth to the fifteenth video memory bytes are mapped to the fourth pixel. The calculations 
required to obtain the offset in video memory for a particular screen pixel will be different in each 
case.  

 

 

  
 
 Figure 7-6: Variations in memory-to-video mapping 

   
 

 

There is another complication in direct access programming: in some display modes the number of 
bytes in each video buffer row is not the product of the number of pixels on each video display row 
by the number of bytes per pixel. The reason is related usually to video system design and 
performance considerations, which make it necessary to allocate a number of bytes in each buffer 
row that is a multiple of some specific number. This determines that some display modes have 
data areas in each row that are not mapped to screen pixels. For example, a display mode with a 
resolution of 640 pixels per row and a color depth of 24 bits per pixel requires 1920 bytes to store 
the data corresponding to a single row of screen pixels. However, the video card designers may 
have assigned 2560 bytes of video buffer space for each screen row, so that the same buffer size 
can be used in a 32-bits-per-pixel mapping. The result is that in the 24-bit mode there is an area of 
640 unmapped bytes at the end of each row. The term pitch is used to describe the actual byte 
length of each row in the video buffer, while the term width refers to the number of pixels in each 
screen row.  

 
 Palettes  



 

 

A palette is a color look-up table. It provides a convenient way of indirectly mapping pixel 
attributes, which results in extending the number of displayable colors in modes with limited color 
depths. For example, a display mode with a 4-bits-per-pixel color depth represents 16 different 
color attributes. When a palette is associated with the display surface, each video buffer value 
serves as an index into the palette, which in turn defines the pixel color. By changing the palette, 
the application can map many 16-color sets to the display attributes. By means of the palette 
scheme the number of simultaneously displayable colors remains the same, but the actual colors 
mapped to the video buffer values can be changed by the application. Figure 7-7 shows how a 
palette provides an indirect mapping for the color attributes stored in the video buffer.  

 

 

  
 
 Figure 7-7: Palette-based pixel attribute mapping 

   
 

 

In DirectDraw palettes are linked to surfaces. Surfaces that use a 16-bit or greater pixel format do 
not use palettes. Therefore, the so-called real color modes (16 bits per pixel) and True-color 
modes (24 and 32 bits per pixel) are nonpalettized. A DirectDraw palette can have 2, 4, 16, or 256 
entries. A palette can only be attached to a surface with the same color depth. In addition, it is 
possible to create palettes that do not contain a color table. In these so-called index palettes, the 
palette values serve as an index into another palette's color table.  

 

 

Each palette entry is in the form of an RGB triplet that describes the color to be used when 
displaying pixel values at the corresponding entry. The RGB values in the color table can be in 16- 
or 24-bit format. In 16-bit RGB format each palette entry is encoded in 5-6-5 form. The first 5 pixels 
are mapped to the red attribute, the second 6 pixels to the green attribute, and the last 5 pixels to 
the blue attribute. This is the same mapping scheme used in the real color modes. In the 24-bit 
RGB palette format each of the primary colors (red, green, and blue) is mapped to 8 pixels, as is 
the case in the True-color modes.  

 

 

An application creates a palette by calling the DirectDraw CreatePalette() function. At call 
time the application defines if the palette contains 2, 4, 16, or 256 entries and provides a pointer to 
a color table used in initializing the palette. If the call is successful, DirectDraw returns the address 
of the newly created DirectDrawPalette object. This palette object can then be used to attach 
the palette to a DirectDraw surface. The same palette can be attached to multiple surfaces. After a 
palette is attached to a surface, an application can call the GetPalette() and SetPalette() 
functions to query or change the palette entries.  



 

 

A type of animation is based on changing the appearance of a surface object by modifying the 
palette attached to the surface that contains it. By repeatedly changing the palette, the surface 
object can be made to appear differently without actually modifying the contents of video memory. 
Two different types of palette manipulations can be used for this. The first method is based on 
modifying the values in a single palette. The second method is based on switching between 
several palettes. Because palette modifications are not hardware intensive, either method often 
produces satisfactory results.  

 

 

The development and use of palettes were a direct consequence of the memory limitations of the 
original video systems used in the PC. In VGA the video space was limited to a few hundred 
kilobytes, whereas the low-end PCs of today are furnished with video cards that have 2 or 4 MB of 
space on board video memory. This abundance of video memory makes palette modes almost 
obsolete. Perhaps the one remaining justification for palettized modes relates to some interesting 
animation effects that can be achieved by performing palette manipulations. For example, you can 
make an object disappear from the screen by changing to a palette in which the object attributes 
are the same as the background. Then you can make the object reappear by restoring the original 
palette.  

 
 Clipping  
 

 

DirectDraw clipping is a manipulation by which video output is limited to one or more rectangular-
shaped regions. DirectDraw supports clipping in applications that execute in exclusive mode and 
windowed. The term, clippers, is often used to refer to DirectDrawClipper objects. A single 
bounding rectangle is sometimes used to limit the display to the application's client area. Several 
associated bounding rectangles are called a clip list.  

 

 

The most common use for a clipper is to define the boundaries of the screen or of a rectangular 
window. A DirectDraw clipper can be used to define the screen area of an application so as to 
ensure that a bitmap is progressively displayed as it moves into this area. If a clipping area is not 
defined, then the blit fails because the destination drawing surface is outside the display limits. 
However, when the boundaries of the video display area are defined by means of a clipper, 
DirectDraw knows not to display outside this area and the blit succeeds. Blitting a bitmap to 
unclipped and clipped display areas is shown in Figure 7-8.  

 

 

  



 
 Figure 7-8: Blitting a bitmap to unclipped and clipped display areas 

   
 

 

In Figure 7-8 we see that clipping makes it possible to display a bitmap that does not entirely fit in 
the display area. Without clipping, the blit operation fails if the source bitmap doesn't fit in the 
destination area, as shown in the top part of the illustration. With clipping it is possible to display 
the bitmap of the automobile as it progressively enters the screen area, instead of making it pop 
onto the screen all at once. All that is required to implement clipping in DirectDraw is to create a 
clipper with the screen rectangle as its clip list. Trimming of the bitmap is performed automatically. 
Clipper objects are also used to designate areas within a destination surface. The designated 
areas are tagged as writable, while DirectDraw automatically crops images that fall outside this 
area. Figure 7-9 shows a display area with a clipper defined by two rectangles. When the text 
bitmap is blitted onto the screen, only those parts that fall inside the clipper are displayed. The 
pixel data is preserved in the screen areas not included in the clipper. In this case the clip list 
consists of the two rectangles for which output is validated.  

 

 

  
 
 Figure 7-9: A clipper consisting of two rectangular areas 

   
 



Summary  
 

 

In this chapter you learned the essential elements of DirectDraw. The discussion included topics 
related to computer games, Windows programming using the DirectX 7 SDK, as well as an 
overview of DirectDraw features, architecture, and basic concepts. Now that you are acquainted 
with DirectDraw, we can proceed with DirectDraw installation and setup operations, which are the 
topics discussed in Chapter 8.  

 



Chapter 8: DirectDraw Configuration and Setup  
 
 Overview  
 

 
Before an application can use DirectDraw it must initialize the software and perform a series of 
configuration tests to determine how the program cooperates with concurrent Windows programs. 
In this chapter we describe the initialization and setup operations and develop the code that serves 
as a backbone for a DirectDraw program.  

 



DirectDraw Setup  
 

 
Before you can develop a DirectDraw program you must first set up your development system so 
that it can access the DirectDraw software. The first step is to include the DirectDraw header file, 
named ddraw.h. The file is furnished with the DirectX package and also with the newer versions of 
the Windows operating system.  

 
 DirectDraw header file  
 

 

As a system is updated with newer versions of the DirectX SDK, and perhaps with operating 
system patches and new releases, it is possible to find several versions of the ddraw.h file on the 
same machine. The developer needs to make sure that the software is using the most recent 
release of the header file. One way to accomplish this is to search for all files named ddraw.h by 
means of the file-finding feature of Windows Explorer, or of a similar utility. After the files are 
located, you can rename or delete the older versions of ddraw.h. In most cases the directory path, 
the date stamp, and the file size can serve to identify the most recent one. It is unwise to assume 
that the installation program for the operating system, the SDK, or the development environment, 
performs the necessary setup operations.  

 

 

In addition, the newest version of the ddraw.h file must be located so that it is accessible to the 
development software. This may require moving or copying the newest version of ddraw.h to the 
corresponding include directory, as well as making certain that the path in the development 
environment corresponds with this directory. In Visual C++ the directories searched by the 
development system can be viewed by clicking Options in the Tools menu. In this case the Show 
directories for: scroll box should be set for include files. You may now enter the path to the 
DirectDraw include and library files in the edit box at the bottom of the Directories: window. Once 
entered, the boxes can be dragged to the top of the list so that these directories are searched first. 
If DirectX is installed in the default drive and path, then the results are as shown in Figure 8-1.  

 

 

  
 
 Figure 8-1: Directories tab in Developer Studio Options dialog box 

   
 
 DirectDraw libraries  
 
The second software element necessary for DirectDraw programming is the ddraw.lib library file. 
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What was said in relation to ddraw.h also applies to ddraw.lib: possible duplicated versions of the 
software must be identified and all but the most recent one eliminated. Here again, a search 
function can be used to find the duplicate files. After the most recent library file is identified, the 
older ones can be deleted or renamed. If after performing this step, the development system is still 
unable to locate the library files, then you must copy ddraw.lib to the corresponding include 
directory or modify the path, as previously explained for the ddraw.h file.  

 

 

In addition to finding the newest version of the library, and installing it in the system's library path, 
Visual C++ users must also make sure that the development environment is set up to look for the 
DirectDraw libraries. To make sure of this you can inspect the dialog box that is displayed when 
Settings is selected in the Developer Studio Project menu. The ddraw.lib and dxguid.lib files must 
be listed in both the Object/library modules and the Project Options windows of the Link tab in the 
Project Settings dialog box, as shown in Figure 8-2. If not, you can manually insert the library 
names in the Object/library modules edit box. The library names are copied automatically to the 
Project Options box.  

 

 

  
 
 Figure 8-2: Link tab in Developer Studio Project Settings dialog box 

   
 

 
The ddraw.lib file contains the DirectDraw functions, and the dxguid.lib file has the GUID identifiers 
required for accessing the various interface versions. When access to the DirectDraw header file 
and the libraries are in place, the development system is ready to use.  

 



Creating the DirectDraw Object  
 

 

In order to use DirectDraw, an application must first create a DirectDraw object. This object is 
actually a pointer to the DirectDraw interface as implemented in the video card. The pointer is 
required for accessing all other DirectDraw functions, which means that a DirectDraw application 
can do little else without this object. The DirectDrawCreate() function creates an instance of 
the DirectDraw object. The function's general form is as follows:  

 
 HRESULT DirectDrawCreate (  
 GUID FAR lpGUID, // 1  
 LPDIRECTDRAW FAR *lplpDD, // 2  
 IUnknown FAR *pUnkOutter, // 3  
 );  
 

 
The first parameter is a globally unique identifier (GUID) that represents the driver to be created. If 
this parameter is NULL, then the call refers to the active display driver. The newer versions of 
DirectDraw allow passing one of two flags in this parameter. The flags control the behavior of the 
active display, as follows:  

 
   •DDCREATE_EMULATIONONLY: DirectDraw uses only emulation. Hardware support features 

cannot be used.  
 
   •DDCREATE_HARDWAREONLY: DirectDraw object does not use emulated features. If a hardware 

supported features is not available the call returns DDERR_UNSUPPORTED.  
 

 
The second parameter is a pointer that the call initializes if it succeeds. This is the object returned 
by DirectDrawCreate(). The third parameter is provided for future compatibility with the COM 
interface. At present it should be set to NULL. The call returns DD_OK if it succeeds. If it fails, one 
of the following predefined constants is returned:  

 
 DDERR_DIRECTDRAWALREADYCREATED  
 
 DDERR_GENERIC  
 
 DDERR_INVALIDDIRECTDRAWGUID  
 
 DDERR_INVALIDPARAMS  
 
 DDERR_NODIRECTDRAWHW  
 
 DDERR_OUTOFMEMORY  
 

 
On systems with multiple monitors, specifying NULL for the first parameter causes the DirectDraw 
object to run in emulation mode. In these systems the call must specify the device's GUID to use 



hardware acceleration.  
 
 Obtaining the interface version  
 

 

The component object model (COM) requires that objects update their functionality by means of 
new interfaces that provide the new features, rather than by changing methods within existing 
interfaces. The objective is to keep existing interfaces static so that older applications continue to 
be compatible with the newer interfaces. DirectX, and therefore, DirectDraw, follow the COM 
object model.  

 

 

Although the availability of various interfaces facilitates component updating, it also creates some 
coding complications. For example, currently the DirectDraw surface object supports three 
different interfaces, named IDirectDrawSurface, IDirectDrawSurface2, and 
IDirectDrawSurface4. Each version supports all the methods of its predecessor and adds new 
ones for the new features. For an application to use these new features it must query DirectDraw 
to determine which interface or interfaces are available in the host, then provide alternative 
processing routes for each case. The situation is further complicated by the fact that, at least in 
some instances, a new interface may not support methods provided in a previous one. The result 
is a return to device-dependent programming that Windows was designed to avoid in the first 
place. This is the price that must be paid for the power and functionality of direct hardware access. 

 

 

Once the DirectDraw application has used the DirectDrawCreate() function to obtain a pointer 
to the DirectDraw object, COM provides a mechanism that enables you to find out whether the 
object supports other interfaces. The QueryInterface() method of IUnknown can be used for 
this purpose. If a particular interface is supported, the call returns a pointer to this interface. It is 
through this pointer that code gains access to the methods of the new interface. If the 
QueryInterface() function returns NULL, or an error, then the calling code must decide if it can 
use the previous interface, if it can provide some sort of work-around the missing functionalities, or 
if it must abort execution for lack of processing capabilities in the host machine. The processing 
usually consists of one or more tests and the contingency code required in each case.  

 
 The QueryInterface() has the following general form:  
 
 HRESULT QueryInterface(  
 REFIID riid, // 1  
 LPVOID* obj, // 2  
 );  
 

 
The first parameter is a reference identifier for the object being queried. The calling code must 
know this unique identifier before the call is made. The second parameter is the address of a 
variable that will contain a pointer to the new interface if the call is successful. The return value is 
S_OK if the call succeeds, or one of the following error messages if it fails:  

 
 DDERR_INVALIDOBJECT  
 
 DDERR_INVALIDPARAMS  
 
 DDERR_OUTOFMEMORY 



 DDERR_OUTOFMEMORY  
 

 
The DDERRR_OUTOFMEMORY error message is returned by IDirectDrawSurface2 and 
IDirectDrawSurface4 objects only. If after making the call, the application determines that it 
does not need to use the interface, it must call the Release() function to free it.  

 

 

At this time there are three IDirectDraw interfaces implemented. The corresponding reference 
identifiers are IID_DirectDraw, IID_DirectDraw2, and IID_DirectDraw4. It is not 
recommended that an application mix methods from two or more interfaces because the results 
are sometimes unpredictable. Furthermore, it is virtually impossible to code a DirectDraw 
application of any substance that executes in more than one implementation. In the first place, the 
pointers returned by the various versions are often of formally different types. For example, 
IID_DirectDraw returns a pointer of type LPDIRECTDRAW, IID_DirectDraw2 returns a 
pointer of type LPDIRECTDRAW2, and IID_DirectDraw4 returns a pointer of type 
LPDIRECTDRAW4. The same is true of other objects and data structures, as well as the parameters 
to some calls. For instance, the SetDisplayMode() function takes three parameters in 
IID_DirectDraw and five parameters in IID_DirectDraw2 and IID_DirectDraw4.  

 

 

Microsoft attempts to ensure the portability of applications that commit to a specific DirectX 
implementation by furnishing an installation utility that upgrades the host system to the newest 
components. In the DirectSetup element of DirectX there are the diagnostics and installation 
programs, as well as the drivers and library files, that serve to update a system to the 
corresponding version of the SDK. DirectSetup also includes a ready-to-use installation utility, 
which copies all the system components to the corresponding directories of the client's hard drive 
and performs the necessary modifications in the Windows registry. In the DirectX SDK Microsoft 
also provides all the required project files for a sample installation application named dinstall. The 
DirectX programmer can use the source code of the dinstall program as a base on which to create 
a customized installation utility for DirectX.  

 
 The following code fragment shows the necessary processing for obtaining the version of DirectX 
installed in the host system:  

 
 // Global variables for DirectDraw operations  
 HRESULT DDConnect;  
 // Interfaces pointers  
 LPDIRECTDRAW lpDD;  
 LPDIRECTDRAW2 lpDD2;  
 LPDIRECTDRAW4 lpDD4;  
 int dDLevel = 0; // Implementation level  
 //*************************  
 // DirectDraw Init  
 //*************************  
 // Create a DirectDraw object   
 DDConnect = DirectDrawCreate ( NULL,  
 &lpDD, // Pointer to object  



 NULL);  
 // Querying the interface to determine most recent  
 // version  
 if(DDConnect == DD_OK) {  
 dDLevel = 1; // Store level  
 // Query the next interface level   
 DDConnect = lpDD->QueryInterface(  
 IID_IDirectDraw2,  
 (LPVOID *) &lpDD2);  
 }  
 if(DDConnect == S_OK){  
 dDLevel = 2; // Update level  
 lpDD->Release(); // Release old pointer  
 // Query the next interface level  
 DDConnect = lpDD2->QueryInterface(  
 IID_IDirectDraw4,  
 (LPVOID *) &lpDD4);  
 }  
 if(DDConnect == S_OK){  
 dDLevel = 4; // Update level  
 lpDD2->Release(); // Release old pointer  
 lpDD4->Release(); // and current one   
 }  
 // ASSERT:  
 // dDlevel holds the current interface levels (values are  
 // 1, 2 or 4). If dDLevel == 0, then no DirectDraw interface  
 // was found.  
 // All pointers to interfaces have been released  
 

 

Some of the examples in the DirectDraw literature use the return value from the 
DirectDrawCreate() or QueryInterface() calls to determine if a DirectDraw object is 
available. In the previous code fragment we use the dDlevel variable for this same purpose. If 
this variable is zero, then no DirectDraw object has been created and DirectDraw functions are 
unavailable. Notice in the code that as each new valid object is found, the preceding one is 
released by means of the Release() function. The reason is that the COM interface maintains a 
count of the number of objects created. IUnknown contains a function named AddRef() which 
increments the object's reference count by 1 when an interface or an application binds itself to an 
object. The Release() function then decrements the object's reference count by 1 when it is no 
longer needed. When the count reaches 0, the object is deallocated.  

 
Normally, every function that returns a pointer to an interface calls AddRef() to increment the 



object reference count. By the same token, the application calls Release() to decrement the 
object reference count. When an object's reference count reaches 0, it is destroyed and all 
interfaces to it become invalid. In the previous sample code we need not call the AddRef() 
method because QueryInterface() implicitly calls AddRef() when a valid object is found. 
However, the code must still call Release() to decrement the reference object count and destroy 
the pointer to the interface.  

 
 Setting the cooperative level  
 

 

A DirectDraw application can obtain almost exclusive control over the hardware resources that a 
normal Windows application must share. Control over the video system is necessary for 
implementing some types of interactive, animated games and other high-performance graphics 
programs. On the other hand, some DirectDraw programs may not need this special functionality 
and behave more like a normal Windows application. The SetCooperativeLevel() function is 
used to request a specific level of resource control which establishes the level of cooperation with 
other Windows programs.  

 

 

The function SetCooperativeLevel() has slightly different implementations in the 
IDirectDraw, IDirectDraw2, and IDirectDraw4 interfaces. The basic decision that must be 
made at the time of calling SetCooperativeLevel() is whether the application is to run full-
screen, with exclusive access to the display resources, or as a normal windowed program. In 
addition, DirectDraw cooperative levels enable the use of Mode X resolutions, prevent DirectDraw 
from releasing exclusive control of the display and from rebooting if the user presses Ctrl+Alt+Del, 
and enable DirectDraw to minimize or maximize the application in response to user events. Table 
8-1 lists the predefined constants that are recognized by the SetCooperativeLevel() function. 

 
 Table 8-1: Cooperative Level Symbolic Constants  
 
    
 
 Flag  

 
Description  

 

 
    
 
 DDSCL_ALLOWMODEX  

 
Enables the use of Mode X display modes. This flag can 
only be used with the DDSCL_EXCLUSIVE and 
DDSCL_FULLSCREEN modes.  

 

 
 DDSCL_ALLOWREBOOT  

 
Enables the Ctrl+Alt+Del keystroke to function while in 
exclusive mode.  

 

 
 DDSCL_CREATEDEVICE 

 
 WINDOW  

 
DirectDraw creates and manages a default device window 
for this DirectDraw object; supported by Windows 98 
and NT 5.0 only.  

 

 
 DDSCL_EXCLUSIVE  Requests the exclusive level. This flag must be used with  



DDSCL_FULLSCREEN.  
 
 DDSCL_FPUSETUP  

 
Indicates that the DirectDraw application will keep the 
math unit set up for single precision and exceptions 
disabled, which is the best setting for optimal Direct3D 
performance.  

 

 
 DDSCL_FULLSCREEN  

 
The exclusive-mode owner is responsible for the entire 
primary surface. GDI is ignored. This flag must be used 
with DDSCL_EXCLUSIVE.  

 

 
 DDSCL_MULTITHREADED  

 
Requests multithread-safe DirectDraw behavior. This 
causes Direct3D to execute the global critical section 
more frequently.  

 

 
 DDSCL_NORMAL  

 
Indicates a regular Windows application. Cannot be used 
with the DDSCL_ALLOWMODEX, DDSCL_EXCLUSIVE, or 
DDSCL_FULLSCREEN flags. Applications executing in this 
mode cannot perform page flipping or change the primary 
palette.  

 

 
 DDSCL_NOWINDOWCHANGES  

 
DirectDraw is not allowed to minimize or restore the 
application window.  

 

 
 DDSCL_SETDEVICEWINDOW  

 
The hWnd parameter is the window handle of the device 
window for this DirectDraw object. This flag cannot be 
used with the DDSCL_SETFOCUSWINDOW flag. Supported 
by Windows 98 and NT 5.0 only.  

 

 
 DDSCL_SETFOCUSWINDOW  

 
The hWnd parameter is the window handle of the focus 
window for the DirectDraw object. Cannot be used with 
the DDSCL_SETDEVICEWINDOW flag. Supported by 
Windows 98 and NT 5.0 only.  

 

 
    
 
 The SetCooperativeLevel() function's general form is as follows:  
 
 HRESULT SetCooperativeLevel(  
 HWND hwnd, // 1  
 DWORD dword // 2  
 );  

 The first parameter is the handle to the application window; however, if an application requests 



function returns DD_OK if the call succeeds, or one of the following error messages:  
 
 DDERR_EXCLUSIVEMODEALREADYSET  DDERR_INVALIDOBJECT  

 

 
 DDERR_HWNDALREADYSET  DDERR_INVALIDPARAMS  

 

 
 DDERR_HWNDSUBCLASSED  DDERR_OUTOFMEMORY  

 

 

 
The DDERR_EXCLUSIVEMODEALREADYSET message refers to the fact that only one application 
can request the exclusive mode. If this message is received, then there is another application that 
has been granted the exclusive mode and code should provide alternative processing or an exit.  

 

 
Full-screen applications receive the DDERR_NOEXCLUSIVEMODE return value if they lose exclusive 
device access, as is the case when the user presses Alt+Tab to switch to another program. In this 
event one possible coding alternative is to call the TestCooperativeLevel() function in a loop, 
exiting only when it returns DD_OK, which indicates that exclusive mode is now available.  

 

 
Applications that use the normal cooperative level (DDSCL_NORMAL flag) receive 
DDERR_EXCLUSIVEMODEALREADYSET if another application has taken exclusive device access. 
In this case a windowed application can be coded to loop until TestCooperativeLevel() 
returns DD_OK.  

 

 
The two most common flag combinations used in the SetCooperativeLevel() call are the 
ones used for programs that execute in exclusive mode and those that are windowed. The 
following code fragment shows the call to SetCooperativeLevel() for a DirectDraw application 
that requests exclusive mode:  

 
 LPDIRECTDRAW lpDD4; // DirectDraw object  
 HWND hwnd; // Handle to the window  
 ...  
 lpDD4->SetCooperativeLevel(hwnd, DDSCL_EXCLUSIVE | DDSCL_FULLSCREEN);  
 

 
Two flags are required to set DirectDraw exclusive mode: DDSCL_EXCLUSIVE and 
DDSCL_FULLSCREEN. In reality all exclusive mode applications execute full-screen so the second 
flag is actually redundant.  

 
 To set the cooperative level to the normal mode the code can be as follows:  
 
 LPDIRECTDRAW lpDD4; // DirectDraw object  
 ...  
 lpDD4->SetCooperativeLevel(NULL, DDSCL_NORMAL);  

Note that exclusive mode applications pass the handle to the window (hWnd) parameter so that 



This is not required for normal Windows programs that use conventional recovery procedures.  
 
 Hardware capabilities  
 

 

Whereas in conventional Windows programming application code often ignores the specific 
configuration of the system hardware, this is not the case in programs that use DirectDraw. Video 
cards that support DirectDraw do so at varying degrees of hardware compatibility and of 
DirectDraw functionality. In most cases an application needs to know what level of DirectDraw 
hardware support is available in a particular machine, as well as the amount of available video 
memory, before deciding if the code is compatible with the host, or how to proceed if a given 
functionality is not present.  

 

 

Applications can enumerate the capabilities of the hardware to determine the supported hardware-
accelerated features. DirectX emulates most features that are not implemented in hardware; 
however, there are a few in which this is not the case. It is this emulation that makes possible 
some degree of device independence. The DirectDraw GetCaps() function returns run-time 
information about video resources and hardware capabilities. By examining these capabilities 
during the initialization stage, an application can decide whether the available functionality is 
insufficient and abort execution, or make other adjustments to provide the best possible 
performance over varying levels of support.  

 
 For this reason, applications that use features not supported by the hardware are usually better off 
creating surfaces in system memory, rather than in video memory.  

 

 
The GetCaps() function returns the capabilities of the device driver for the hardware abstraction 
layer (HAL) and for the hardware emulation layer (HEL). The general form of the GetCaps() 
function is as follows:  

 
 HRESULT GetCaps(  
 LPDDCAPS lpDDDriverCaps, // 1  
 LPDDCAPS lpDDHelCaps // 2  
 );  
 

 

The first parameter is the address of a structure of type DDCAPS that is filled with the capabilities of 
the HAL, as reported by the device driver. Code can set this parameter to NULL if the hardware 
capabilities are not necessary. The second parameter is the address of a structure, also of type 
DDCAPS, which is filled with the capabilities of the HEL. This parameter can also be set to NULL if 
these capabilities should not be retrieved. Code can set only one of the two parameters to NULL. If 
the method succeeds, the return value is DD_OK. If the method fails, the return value is one of the 
following error constants:  

 
 DDERR_INVALIDOBJECT  
 
 DDERR_INVALIDPARAMS  
 
 The DDCAPS structure is a large one indeed; it contains 58 members in the DirectDraw4 version. 
The structure is defined as follows:  



 
 typedef struct _DDCAPS {   
 DWORD dwSize; // size of structure DDCAPS  
 DWORD dwCaps; // driver-specific caps  
 DWORD dwCaps2; // more driver-specific // caps  
 DWORD dwCKeyCaps; // color key caps  
 DWORD dwFXCaps; // stretching and effects // caps  
 DWORD dwFXAlphaCaps; // alpha caps  
 DWORD dwPalCaps; // palette caps  
 DWORD dwSVCaps; // stereo vision caps  
 DWORD dwAlphaBltConstBitDepths;  
 // alpha bit-depth members  
 DWORD dwAlphaBltPixelBitDepths; // .  
 DWORD dwAlphaBltSurfaceBitDepths; // .  
 DWORD dwAlphaOverlayConstBitDepths; // .  
 DWORD dwAlphaOverlayPixelBitDepths; // .  
 DWORD dwAlphaOverlaySurfaceBitDepths; // .  
 DWORD dwZBufferBitDepths; // Z-buffer bit depth  
 DWORD dwVidMemTotal; // total video memory  
 DWORD dwVidMemFree; // total free video memory  
 DWORD dwMaxVisibleOverlays; // maximum visible overlays  
 DWORD dwCurrVisibleOverlays; // overlays currently // visible  
 DWORD dwNumFourCCCodes; // number of supported // FOURCC  
 // codes  
 DWORD dwAlignBoundarySrc; // overlay alignment  
 // restrictions  
 DWORD dwAlignSizeSrc; // .  
 DWORD dwAlignBoundaryDest; // .  
 DWORD dwAlignSizeDest; // .  
 DWORD dwAlignStrideAlign; // stride alignment  
 DWORD dwRops[DD_ROP_SPACE]; // supported raster ops  
 DWORD dwReservedCaps; // reserved  
 DWORD dwMinOverlayStretch; // overlay stretch factors  
 DWORD dwMaxOverlayStretch; // .  
 DWORD dwMinLiveVideoStretch; // obsolete  
 DWORD dwMaxLiveVideoStretch; // .  
 DWORD dwMinHwCodecStretch; // .  
 DWORD dwMaxHwCodecStretch; // .  



 DWORD dwReserved1; // reserved  
 DWORD dwReserved2; // .  
 DWORD dwReserved3; // .  
 DWORD dwSVBCaps; // system—to-video blit // related  
 // caps  
 DWORD dwSVBCKeyCaps; // .  
 DWORD dwSVBFXCaps; // .  
 DWORD dwSVBRops[DD_ROP_SPACE]; // .  
 DWORD dwVSBCaps; // video-to-system blit // related  
 // caps   
 DWORD dwVSBCKeyCaps; // .  
 DWORD dwVSBFXCaps; // .  
 DWORD dwVSBRops[DD_ROP_SPACE]; // .  
 DWORD dwSSBCaps; // system—to-system blit // related  
 // caps  
 DWORD dwSSBCKeyCaps; // .  
 DWORD dwSSBCFXCaps; // .  
 DWORD dwSSBRops[DD_ROP_SPACE]; // .  
 DWORD dwMaxVideoPorts; // maximum number of live // video  
 // ports  
 DWORD dwCurrVideoPorts; // current number of live // video  
 // ports  
 DWORD dwSVBCaps2; // additional system-to-// video  
 // blit  
 // caps  
 DWORD dwNLVBCaps; // nonlocal-to-local video  
 // memory  
 // blit caps  
 DWORD dwNLVBCaps2; // .  
 DWORD dwNLVBCKeyCaps; // .  
 DWORD dwNLVBFXCaps; // .  
 DWORD dwNLVBRops[DD_ROP_SPACE];// .  
 DDSCAPS2 ddsCaps; // general surface caps  
 DDCAPS,FAR* LPDDCAPS;  
 
 Most applications are concerned with only a few of the capabilities of a DirectDraw device. Table 
8-2 lists some of the most often needed capabilities.  

 
 Table 8-2: Selected Device Capabilities Reported by the GetCaps() Function  



 
    
 
 Capability  

 
Description  

 

 
    
 
 dwCaps member constants:  

 
  

 

 
 DDCAPS_3D  

 
Display hardware has 3D acceleration.  

 

 
 DDCAPS_ALPHA  

 
Display hardware supports alpha-only surfaces.  

 

 
 DDCAPS_BANKSWITCHED  

 
Display hardware is bank-switched. Therefore it is very 
slow at random access operations to display memory.  

 

 
 DDCAPS_BLT  

 
Display hardware is capable of blit operations.  

 

 
 DDCAPS_BLTCOLORFILL  

 
Display hardware is capable of color filling with a blitter.  

 

 
 DDCAPS_BLTSTRETCH  

 
Display hardware is capable of stretching during blit 
operations.  

 

 
 DDCAPS_CANBLTSYSMEM  

 
Display hardware is capable of blitting to or from system 
memory.  

 

 
 DDCAPS_CANCLIP  

 
Display hardware is capable of clipping with blitting.  

 

 
 DDCAPS_CANCLIPSTRETCHED  

 
Display hardware is capable of clipping while stretch 
blitting.  

 

 
 DDCAPS_COLORKEY  

 
System supports some form of color key in either overlay 
or blit operations.  

 

 
 DDCAPS_GDI  

 
Display hardware is shared with GDI.  

 

 
 DDCAPS_NOHARDWARE  

 
No hardware support.  

 

 
 DDCAPS_OVERLAY  

 
Display hardware supports overlays.  

 

 
 DDCAPS_OVERLAYCANTCLIP  

 
Display hardware supports overlays but cannot clip.  

 

   



 DDCAPS_PALETTE  DirectDraw is capable of creating and supporting 
DirectDrawPalette objects for more surfaces than the 
primary one.  

 
 DDCAPS_READSCANLINE  

 
Display hardware is capable of returning the current scan 
line.  

 

 
 DDCAPS_ZBLTS  

 
Supports the use of z-buffers with blit Operations.  

 

 
 dwCaps2 member constants:  

 
  

 

 
 DDCAPS2_VIDEOPORT  

 
Display hardware supports live video.  

 

 
 DDCAPS2_WIDESURFACES  

 
Display surfaces supports surfaces wider than the primary 
surface.  

 

 
 dwPalCaps member constants:  

 
  

 

 
 DDPCAPS_1BIT  

 
Supports 2-color palettes.  

 

 
 DDPCAPS_2BIT  

 
Supports 4-color palettes.  

 

 
 DDPCAPS_4BIT  

 
Supports 16-color palettes.  

 

 
 DDPCAPS_8BIT  

 
Supports 256-color palettes.  

 

 
 DDPCAPS_8BITENTRIES  

 
Specifies an index to an 8-bit color index. This field is 
valid only when used with the DDPCAPS_1BIT, 
DDPCAPS_2BIT, or DDPCAPS_4BIT capability.  

 

 
 DDPCAPS_ALPHA  

 
Supports palettes that include an alpha component.  

 

 
 DDPCAPS_ALLOW256  

 
Supports palettes that can have all 256 entries defined.  

 

 
 DDPCAPS_PRIMARYSURFACE  

 
The palette is attached to the primary surface. Changing 
the palette has an immediate effect on the display unless 
the DDPCAPS_VSYNC capability is specified and 
supported.  

 

 
 Other structure members:  

 
  

 

 
 dwVidMemTotal  

 
Total amount of display memory.  

 

 
 dwVidMemFree 

 
Amount of free display memory. 

 



 dwVidMemFree  Amount of free display memory.  
 
 dwMaxVisibleOverlays  

 
Maximum number of visible overlays or overlay sprites.  

 

 
 dwCurrVisibleOverlays  

 
Current number of visible overlays or overlay sprites.  

 

 
 dwReservedCaps  

 
Reserved. Prior to DirectX 6.0, this member contained 
general surface capabilities.  

 

 
 DwMinOverlayStretch  

 
  

 

 
 DwMaxOverlayStretch  

 
Minimum and maximum overlay stretch factors multiplied 
by 1000. For example, 1.3 = 1300.  

 

 
 dwSVBCaps  

 
Driver-specific capabilities for system-memory-to-display-
memory blits.  

 

 
 dwVSBRops  

 
Raster operations supported for display-memory-to-
system-memory blits.  

 

 
 dwSSBCaps  

 
Driver-specific capabilities for system-memory-to-system-
memory blits.  

 

 
    
 

 

The following code fragment shows the processing required to read the hardware capabilities 
using the DirectDraw GetCaps() function. The code reads various capabilities and displays the 
corresponding screen messages. After each message is displayed, the screen position is indexed 
by one or more lines. The project named DDInfo Demo, in the book's CD-ROM, uses similar 
processing.  

 
 DDCAPS DrawCaps; // DDCAPS structure  
 LPDIRECTDRAW4 lpDD4; // DirectDraw object  
 ...  
 //**********************************  
 // DirectDraw hardware capabilities  
 //**********************************  
 DrawCaps.dwSize = sizeof ( DrawCaps );  
 // Call to capabilities function  
 lpDD4->GetCaps (&DrawCaps, NULL );  
 // Video memory  
 strcpy ( message, " Total Video Memory: ");  
 sprintf ( message+strlen(" Total Video Memory: "),  



 "%i",DrawCaps.dwVidMemTotal );  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 // Free video memory   
 strcpy ( message, " Free Video Memory: ");  
 sprintf ( message+strlen(" Free Video Memory: "),  
 "%i",DrawCaps.dwVidMemFree );  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
   
 // Video card hardware  
 strcpy ( message,  
 " Video card hardware support as follows:");  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 text_x = 16;  
 if (DrawCaps.dwCaps & DDCAPS_NOHARDWARE)  
 {  
 strcpy ( message, " No DirectDraw hardware support available" );  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 return;  
 }  
 if (DrawCaps.dwCaps & DDCAPS_3D)  
 {  
 strcpy ( message, " 3D support" );  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 }  
 else  
 {  
 strcpy ( message, " No 3D support" );  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 }  
 if (DrawCaps.dwCaps & DDCAPS_BLT)  
 {  



 strcpy ( message, " Hardware Bitblt support" );  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 }  
 else  
 {  
 strcpy ( message, " No hardware Bitblt support" );  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 }  
 if (DrawCaps.dwCaps & DDCAPS_OVERLAY)  
 {  
 strcpy ( message, " Hardware overlays supported");  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 }  
 else  
 {  
 strcpy ( message, " No hardware overlays ");  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 }  
   
 if (DrawCaps.dwCaps & DDCAPS_CANCLIP)  
 {  
 strcpy ( message, " Clipping supported in hardware");  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 }  
 else  
 {  
 strcpy ( message, " No hardware clipping support ");  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 }  
 if (DrawCaps.dwCaps & DDCAPS_BANKSWITCHED)  
 {  
 strcpy ( message, " Memory is bank switched");  



 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 }  
 else  
 {  
 strcpy ( message, " Memory not bank switched");  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 }  
 if (DrawCaps.dwCaps & DDCAPS_BLTCOLORFILL)  
 {  
 strcpy ( message, " Color fill Blt support");  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 }  
 else  
 {  
 strcpy ( message, " No Blt color fill support");  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 }  
 if (DrawCaps.dwCaps & DDCAPS_COLORKEY)  
 {  
 strcpy ( message, " Color key hardware support ");  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 }  
 else  
 {  
 strcpy ( message, " No color key support");  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 }  
 if (DrawCaps.dwCaps & DDCAPS_ALPHA)  
 {  
 strcpy ( message, " Alpha channels supported");  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  



 }  
 else  
 {  
 strcpy ( message, " No Alpha channels support");  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 }  
 
 Display modes  
 

 

Earlier we discussed the concept of display modes in DirectDraw programming. In DirectDraw a 
display mode is defined by its resolution and color depth. Therefore, a display mode of 640 by 480 
by 8 executes with a resolution of 640 pixel columns, 480 pixel rows, and encodes the pixel 
attribute in 8 bits. Because 8 bits support 256 combinations, this mode supports a range of 256 
colors. DirectDraw applications can obtain the available display modes. An application that 
executes in exclusive mode can also set a display mode and restore the previous one when it 
concludes.  

 

 
Not all devices support all display modes. To determine the display modes supported on a given 
system, an application can call the EnumDisplayModes() functions. EnumDisplayModes() 
can be used to list all supported display modes or to confirm that a single display mode is available 
in the hardware. The function's general form is as follows:  

 
 HRESULT EnumDisplayModes(  
 DWORD dwFlags, // 1  
 LPDDSURFACEDESC2 lpDDSurfaceDesc, // 2  
 LPVOID lpContext, // 3  
 LPDDENUMMODESCALLBACK2 lpCallBack // 4  
 );  
 

 

The first parameter determines the function's options by means of two flags. 
DDEDM_REFRESHRATES enumerates the modes that have different refresh rates separately, even 
if they have the same resolution and color depth. The second flag DDEDM_STANDARDVGAMODES 
enumerates Mode X and VGA Mode 13H as different modes. This parameter can be set to zero to 
ignore both of these options. The second parameter is the address of a DDSURFACEDESC2 
structure. The structure is used to store the parameters of a particular display mode, which is 
confirmed or not by the call. Applications that request a listing of all available modes set this 
parameter to NULL. The third parameter is a pointer to an application-defined structure that is 
passed to the callback function associated with EnumDisplayModes(). This provides a 
mechanism whereby the application code can make local data visible to the callback function. If 
not used, as is most often the case, then the third parameter is set to NULL. The fourth parameter 
is the address of a special callback function, of prototype EnumModesCallback2(). This function 
is called every time a supported mode is found. Applications use this callback function to provide 
the necessary processing for each display mode found by the call.  

 
The callback function, for which your code supplies an address when it calls 



EnumDisplayModes(), must match the prototype for EnumModesCallback2(). Each time that 
a supported mode is found, the callback function receives control. The function's general form is:  

 
 HRESULT WINAPI EnumModesCallback(  
 LPDDSURFACEDESC2 lpDDSurfaceDesc2, // 1  
 LPVOID lpContext // 2  
 );  
 

 

The first parameter is the address of a DDSURFACEDESC2 structure that describes the display 
mode. The second one is the address of the application-defined data structure, which may have 
been passed in the third parameter of the EnumDisplay_Modes() function call. Code can 
examine the values in the DDSURFACEDESC2 structure to determine the characteristics of each 
available display mode. The most important members of the DDSURFACEDESC2 structure are 
dwWidth, dwHeight, and ddpfPixelFormat. The dwWidth and dwHeight hold the display 
mode's dimensions. The ddpfPixelFormat member is a DDPIXELFORMAT structure that 
contains information about the mode's bit depth and describes whether the display mode is 
palettized or not. If the dwFlags member contains the DDPF_PALETTEINDEXED1, 
DDPF_PALETTEINDEXED2, DDPF_PALETTEINDEXED4, or DDPF_PALETTEINDEXED8 flag, then 
the display mode's bit depth is 1, 2, 4, or 8 bits. In this case the pixel value is an index into the 
corresponding palette. If dwFlags contains DDPF_RGB, then the display mode's bit depth in the 
dwRGBBitCount member of the DDPIXELFORMAT structure is valid.  

 

 

Applications that call EnumDisplayModes() usually do most of the processing in the 
EnumModesCallback() function. For example, a program can list all the DirectDraw display 
modes on the screen by storing the display modes data in one or more arrays each time the 
callback function receives control. When execution returns to the caller, then all modes are stored 
or a predetermined maximum is reached. The calling code can now read the mode data from the 
arrays and display the values on the screen. In this case the callback function could be coded as 
follows:  

 
 // Global variables for DirectDraw operations  
 HRESULT DDConnect;  
 DDCAPS DrawCaps;  
 // DirectDraw object  
 LPDIRECTDRAW2 lpDD4;  
 int DDLevel = 0; // DirectDraw implementation  
 // DirectDraw modes data  
 int modesCount = 0; // Counter for DirectDraw modes  
 static int MAX_MODES = 30; // Maximum number of modes  
 DWORD modesArray[90]; // Array for mode parameters  
 ...  
 //*********************************************************  
 // Callback function for EnumDisplayModes()  
 //*********************************************************  



 static WINAPI ModesProc(LPDDSURFACEDESC aSurface,  
 LPVOID Context)  
 {  
 static int i; // Index into array  
 i = modesCount * 3; // Set array pointer  
 // Store mode parameters in public array  
 // Note: code assumes that the dwRGBBitFormat member of  
 // the DDPIXELFORMAT structure contains valid data  
 modesArray[i] = aSurface->dwWidth;  
 modesArray[i + 1] = aSurface->dwHeight;  
 modesArray[i + 2] = aSurface->ddpfPixelFormat.dwRGBBitCount;  
 modesCount++; // Bump display modes counter  
 // Check for maximum number of display modes  
 if( modesCount >= MAX_MODES )  
 return DDENUMRET_CANCEL; // Stop mode listing  
   
 else  
 return DDENUMRET_OK; // Continue  
 }  
 

 
The callback function, named ModesProc(), uses an array of type DWORD to store the height, 
width, and color depth for each mode reported by DirectDraw. A public variable named 
modesCount keeps track of the total number of modes. In this case the calling code can be 
implemented in a function called DDModes, as follows:  

 //*********************************************************  
 // DDModes - Obtain and list DD display modes  
 //*********************************************************  
 void DDModes ( HDC hdc )  
 {  
 TEXTMETRIC tm;  
 char message[255];  
 int j; // Display buffer offset  
 static int textLines; // Display lines counter  
 int text_x = 0;  
 int text_y = 0;  
 int cxChar;  
 GetTextMetrics ( hdc, &tm );  
 cxChar = tm.tmAveCharWidth ;  
 // Test for no DirectDraw interface  



 if (DDLevel == 0) {  
 strcpy ( message, "No DirectDraw interface" );  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 return;  
 }  
 //*******************************  
 // There is DirectDraw. Obtain  
 // and list display modes  
 //*******************************  
 strcpy ( message, " DirectDraw Display Modes" );  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 // Call EnumDisplayModes()   
 DDConnect = lpDD4->EnumDisplayModes(0, NULL, NULL, ModesProc);  
 if (DDConnect == DD_OK) {  
 strcpy ( message, " Number of display modes: ");  
 sprintf ( message+strlen(" Number of display modes: "),  
 "%i", modesCount);  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 // Format and display mode data  
 // First column  
 textLines = modesCount;  
 if(modesCount > 15){  
 textLines = modesCount - 15;  
 for(int x = 0; x < 15; x++){  
 j = sprintf ( message, " %d", modesArray[x*3] );  
 j += sprintf (message + j, " x %d", modesArray[x*3+1] );  
 j += sprintf (message + j, " x %d", modesArray[x*3+2] );  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 }  
 }  
 if(modesCount < 16)  
 return;  
 // Display second column if more than 15 modes  
 text_x = cxChar * 20;  
 text_y = 2 * tm.tmHeight+tm.tmExternalLeading;  



 for(int y = 15; y < modesCount; y++){  
 j = sprintf ( message, " %d", modesArray[y*3] );  
 j += sprintf (message + j, " x %d", modesArray[y*3+1] );  
 j += sprintf (message + j, " x %d", modesArray[y*3+2] );  
 TextOut ( hdc, text_x, text_y, message, strlen (message) );  
 text_y += tm.tmHeight+tm.tmExternalLeading;  
 text_x = cxChar * 20;  
 }  
 return;  
 }  
 }  
 
 The processing calls EnumDisplayModes() in the statement:  
 
 DDConnect = lpDD4->EnumDisplayModes(0, NULL, NULL, ModesProc);  
 

 

The first parameter is set to zero to indicate that no special control flags are required. Therefore, the 
refresh rate is not taken into consideration and Mode X is not reported separately. The second 
parameter is NULL to indicate that no structure data for checking against available modes is used. 
The NULL value for the third parameter relates to the fact that no user-defined data structure is 
being passed to the callback function. The last parameter is the address of the callback function, in 
this case the ModesProc() function previously listed. When the callback function returns, the code 
tests for a return value of DD_OK, which indicates that the call was successful, and then proceeds to 
display the header messages and to convert the code data stored in ModesArray[] into ASCII 
strings for display.  

 



DDInfo Demo Project  
 

 

The program named DDinfo.cpp, located in the DDInfo Demo project folder of the book's CD-
ROM, is a demonstration of the initialization and preparatory operations for a DirectDraw 
application. The program starts by initializing DirectDraw. The program's menu contains 
commands to read and display system hardware information and to list the available display 
modes. Figure 8-3 is a screen dump of both menu commands in a machine equipped with a 
Matrox Millennium video card and 2 MB of video memory.  

 

 

  
 
 Figure 8-3: Screen dump of the DD Information and Display Modes commands in DDInfo Demo 
project 

   
 

 

One of the first operations performed by the DDinfo.cpp program, which is the source for the DDInfo 
Demo Project, is to determine which version of the DirectDraw interface is installed in the target 
system. Then the code continues to obtain and display hardware support and lists the available 
display modes whatever DirectDraw interface is present. To accomplish this, the program typecasts 
the interface pointer, which can be of type LPDIRECTDRAW, LPDIRECTDRAW2, or LPDIRECTDRAW4, 
to a type LPDIRECTDRAW. This manipulation is not conventional and works only in very simple 
processing conditions. Application code should not typecast DirectDraw pointer into those of other 
interfaces.  

 



Summary  
 

 

You now have learned the essential elements of DirectDraw, as well as the fundamental steps in 
creating and initializing an application that uses DirectDraw functions. The programming operations 
discussed referred mainly to configuration and initialization. We have not yet discussed using 
DirectDraw to perform graphics display operations. In the following chapter we cover graphics 
programming with DirectDraw.  

 



Chapter 9: Direct Access to Video Memory  
 
 Overview  
 

 

You have seen how a DirectDraw application is set up and initialized and learned the basics of 
DirectDraw architecture in the context of a conventional, windowed program. However, the 
fundamental purpose of DirectDraw is to make possible high-performance graphics. Two elements 
are necessary to achieve this: accessing video memory directly and taking advantage of the 
hardware facilities furnished in the video card. In this chapter we cover the first of these topics.  

 

 
Before we tackle the complications of DirectDraw programming in exclusive mode, it is convenient 
to develop a code backbone that supports any such program. In this effort two tasks appear to be 
critical: creating a WinMain() function suited for Direct-Draw applications in exclusive mode, and 
ensuring access to the latest version of the interface, currently DirectX 7.  

 



 WinMain() Function for DirectDraw  
 

 

The WinMain() function for a DirectDraw program that operates in exclusive mode has some 
unique features. This implies making some variations in the conventional WinMain() function that is 
used for a standard Windows application. Our new WinMain() function needs to perform several 
DirectDraw-specific initializations that are not common in standard Windows programming. The 
result is a new template for DirectDraw exclusive mode programming.  

 

 
If the program's main window is created by DirectDraw, then a reasonable approach is to perform 
most of the initialization and setup operations in WinMain(). In addition to the usual windows 
initialization operations, the following DirectDraw-specific steps are typically required:  

 
   •Obtain the DirectDraw4 interface and store the pointer object for future use.  
 
   •Check that the desired mode is available in the host machine.  
 
   •Set the cooperative level.  
 
   •Set the display mode.  
 
   •Create the drawing surfaces. Most DirectDraw programs require at least a primary surface.  
 
   •Obtain the DirectDraw device context if the program is to execute GDI functions.  
 
 DirectDraw version of WinMain()  
 

 

Your first task is to code a WinMain() function that creates an application window compatible with a 
DirectDraw exclusive mode program. In addition to creating the program window you can perform 
DirectDraw-specific initialization and output operations in WinMain(). This part of the code is 
usually placed before the message loop. The fundamental parts of the WinMain() backbone are 
the same as those of any Windows program:  

 
   •Creating and filling the members of a data structure of type WNDCLASS  
 
   •Registering the window class  
 
   •Creating the DirectDraw-compatible window  
 
   •Setting the window's show state  
 
   •Providing a program message loop  
 
 Filling the WNDCLASSEX structure  



 

 

The WINDCLASSEX structure contains window class information. In this case it is used in the 
RegisterClassEx() function call. There are few differences between the WNDCLASSEX structure 
that you use in conventional Windows programming, and the one required for an exclusive mode 
DirectDraw application. One such difference relates to the fact that a DirectDraw window class 
does not use a private device context; therefore, the CSOWNDC constant is not present in the 
style member of the WNDCLASSEX structure member. The only other structure member that 
requires comment is hbrBackground. In this case the application can select a standard brush to 
color the initial program background. In the template file the structure is filled as follows:  

 
 WNDCLASSEX wndclass ;  
 wndclass.cbSize = sizeof (wndclass) ;  
 wndclass.style = CS_HREDRAW | CS_VREDRAW;  
 wndclass.lpfnWndProc = WndProc ;  
 wndclass.cbClsExtra = 0 ;  
 wndclass.cbWndExtra = 0 ;  
 wndclass.hInstance = hInstance ;  
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;  
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;  
 wndclass.hbrBackground = (HBRUSH) GetStockObject  
 (GRAY_BRUSH) ;  
 wndclass.lpszMenuName = szAppName;  
 wndclass.lpszClassName = szAppName;  
 wndclass.hIconSm = LoadIcon (NULL, IDI_APPLICATION) ;  
 
 Registering the window class  
 

 
The window class is a template that defines the characteristics of a particular window. It also 
defines the address of the window procedure, as in the preceding code fragment. After filling the 
structure members, code can now register the class, with the following call:  

 
 RegisterClass(&wndclass);  
 
 Creating the window  
 

 
It is now time to create the window using CreateWindowEx(). You can use many combinations 
of parameters in the call according to the characteristics desired for the particular application 
window that you are creating. In a DirectDraw exclusive mode application, many of the predefined 
values are meaningless.  

 

 

The extended style WS_EX_TOPMOST defines a window that is placed above all non-topmost 
windows. For a DirectDraw exclusive mode program, WS_EX_TOPMOST is usually the appropriate 
style. The window style parameter is WSPOPUP. If the DirectDraw application executes full screen, 
which is always the case in exclusive mode, then the horizontal and vertical origins are set to zero 



and the xsize and ysize parameters are filled using GetSystemMetrics(). The 
GetSystemMetrics() call returns the full pixel size of the screen area. In the template file the 
structure is filled as follows:  

 
 hWnd = CreateWindowEx(  
 WS_EX_TOPMOST, // Extended style  
 szAppName, // Application name  
 "DirectDraw Demo No. 2",  
 WS_POPUP, // Window style  
 0, // Horizontal origin  
 0, // Vertical origin  
 GetSystemMetrics(SM_CXSCREEN), // x size  
 GetSystemMetrics(SM_CYSCREEN), // y size  
 NULL, // Handle of parent  
 NULL, // Handle to menu  
 hInstance, // Application instance  
 NULL); // Additional data  
 if (!hWnd)  
 return FALSE;  
 
 Defining the window show state  
 

 

CreateWindowEx() creates the window internally but does not display it. When ShowWindow() 
is called, the code specifies how the window is shown. To display the window, a conventional 
Windows program first calls ShowWindow() to set the show state, and then calls 
UpdateWindow() to update the client area by sending a WM_PAINT message to the window 
procedure. It is different in a DirectDraw exclusive mode application. Because the DirectDraw 
interface has not yet been established, no WM_PAINT message can be sent at this point in the 
code. Therefore, the template file makes the call to the ShowWindow() function, but not the one to 
UpdateWindow(). The code is as follows:  

 ShowWindow (hwnd, iCmdShow) ;  
 

 
The first parameter is the handle to the window returned by CreateWindowEx() function. The 
second parameter is the window's display mode parameter. In this first call to ShowWindow() 
applications must use the value received by WinMain().  

 
 Creating the message loop  
 

 

The coding is now at a point in which WinMain() can initialize DirectDraw and perhaps perform 
some preliminary display operations. The processing details in the following sample program are 
discussed in the next section. The last step in WinMain() is the ever-present message loop. In a 
standard DirectDraw exclusive mode application, the message loop is no different than the one in 
a conventional windows program. In Chapter 11 we discuss a different type of message loop, used 
in DirectDraw animation. The present code is as follows:  



 
 while (GetMessage(&msg, NULL, 0, 0))  
 {  
 TranslateMessage(&msg);  
 DispatchMessage(&msg);  
 }  
 return msg.wParam;  
 }  
 
 DirectDraw initialization  
 

 

A DirectDraw exclusive mode application is often initialized in WinMain(). The reason for this is 
that an exclusive mode application cannot perform display operations until it obtains the interface 
and sets the cooperative level and display mode. If display operations are performed by means of 
GDI functions, then the application must also obtain the DirectDraw device context. Note that 
some DirectDraw applications draw on the screen using both GDI and direct memory access 
methods.  

 
 Typically, the DirectDraw initialization for exclusive mode operation includes the following steps:  
 
   •Obtain the current interface. In DirectX 6 this is IDirectDraw4.  
 
   •Check that the desired display mode is available in the host machine.  
 
   •Set the cooperative level and display mode.  
 
   •Create the drawing surfaces. This usually means at least a primary surface, but often other 

surfaces are also necessary.  
 
   •Display some initial screen text or graphics.  
 

 

This last operation can be accomplished by means of conventional GDI functions, by direct access 
to video memory, by DirectDraw-specific functions, or by a combination of these methods. 
Programs of greater complexity usually perform other initialization, setup, and initial display 
functions at this time. The sample program DD Access Demo, developed later in this chapter, has 
minimal DirectDraw functionality. In the chapters that follow we develop DirectDraw programs of a 
greater level of complexity.  

 

 
An important issue related to preliminary DirectDraw operations is to provide a mechanism 
whereby the application can recover if a terminal condition is encountered during the initialization 
process. In the DirectDraw template program we include a function named DDInitFailed() 
that creates a message   

 
box with the corresponding diagnostic prompt and waits for the user to press OK. When the user 
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acknowledges, the terminal error handler destroys the application window and returns control to 
the operating system. The function is coded as follows:  

 
 //***************************************  
 // Name: DDInitFailed()  
 // Desc: This function is called if an  
 // initialization operation fails  
 //***************************************  
 HRESULT DDInitFailed(HWND hWnd, HRESULT hRet, LPCTSTR szError)  
 {  
 char szBuff[128];  
   
 sprintf(szBuff, szError);  
 ReleaseObjects();  
 MessageBox(hWnd, szBuff, "DirectDraw Demo No. 2", MB_OK);  
 DestroyWindow(hWnd);  
 return hRet;  
 }  
 

 

The parameters for the DDInitFailed() function are the handle to the window, the result code 
from the call that caused the failure, and a string pointer with the diagnostic text to be displayed in 
the message box. All DirectDraw initialization calls performed in the template code test for a valid 
result code; and if no valid code is found, they exit execution through the DDInitFailed() 
function. The same is true of the DirectDraw examples used in the rest of the book.  

 
 Obtaining the current interface  
 

 
The first processing step is to obtain the DirectDraw object that corresponds to the current version 
of the interface. It is usually a good idea to store the pointer in a global variable, which can be 
accessed by other program elements. The function named DD4Interface() attempts to find this 
object. It is coded as follows:  

 
 // Global data  
 LPDIRECTDRAW4 lpDD4; // Pointer to current interface  
 . . .  
 //******************************************  
 // Name: DD4Interface()  
 // Desc: Finds DirectDraw4 object  
 // PRE CONDITIONS:  
 // lpDD4 is a global variable of type  
 // LPDIRECTDRAW4  



 //  
 // POST CONDITIONS:  
 // returns 0 if no DirectDraw4 interface  
 // returns 1 if DirectDraw4 found  
 //******************************************  
 int DD4Interface()  
 {  
   
 HRESULT DDConnect;  
 LPDIRECTDRAW lpDD; // Pointer to DirectDraw  
   
 DDConnect = DirectDrawCreate ( NULL, &lpDD, NULL);  
   
 if(DDConnect != DD_OK)  
 return 0;  
 // Attempt to locate DirectDraw4 interface  
 DDConnect = lpDD->QueryInterface( IID_IDirectDraw4,  
 (LPVOID *) &lpDD4);  
 if(DDConnect != S_OK)  
 return 0;  
 lpDD->Release(); // Release old pointer  
 return 1;  
 }  
 

 
The preceding code releases the local pointer to DirectDraw if the DirectDraw4 pointer is found. 
In this manner the application code need only be concerned with releasing the object actually in 
use. Note that the pointer to the DirectDraw4 interface is defined globally, so that it can be seen 
throughout the application. In WinMain() the call to the DD4Interface() function is as follows:  

 
 // Attempt to fetch the DirectDraw4 interface  
 hRet = DD4Interface();  
 if (hRet == 0)  
 return DDInitFailed(hWnd, hRet,  
 "QueryInterface() call failed");  
 

 

If the DirectDraw4 interface is not found, then the program exits through the DDInitFailed() 
function previously described. In the template file the diagnostic messages simply express the 
name of the failed function. In your own programs you will probably substitute these text messages 
for more appropriate ones. For example, the failure of the QueryInterface() call can be 
interpreted to mean that the user needs to upgrade the host system to DirectX 7. A more detailed 
diagnostic function may be advisable in this case.  



 
 Checking mode availability  
 

 

If the call succeeds, you have obtained a pointer to the DirectDraw4 interface. You can use the 
pointer in all other DirectDraw function calls. The fact that you have a pointer to the newest version 
of the DirectDraw interface does not mean that the application will execute correctly. DirectDraw 
programming sometimes introduces hardware dependencies that are not a found in conventional 
Windows programming. This fact is evident in operations related to the display mode. For this 
reason, before you attempt to set a display mode, it is usually a good idea to investigate if the 
desired mode is available in the host system. This gives our code the opportunity to select an 
alternative mode if the ideal one is not available, or to exit with a diagnostic message if no 
satisfactory display mode is found.  

 

 
In Chapter 8 we explored the use of the EnumDisplayModes() function; at that time it was used 
to list the display modes available in a system. You can use the same function to determine if a 
particular mode is available. The code used in the template file is as follows:  

 
 //***********************************************  
 // Name: ModesProc  
 // Desc: Callback function for EnumDisplayModes()  
 //***********************************************  
 HRESULT WINAPI ModesProc(LPDDSURFACEDESC2 aSurface,  
 LPVOID Context)  
 {  
 static int i; // Index into array of mode data  
   
 i = modesCount * 3; // Set array pointer  
   
 if( modesCount >= MAX_MODES )  
 return DDENUMRET_CANCEL; // Stop mode listing  
   
 // Store mode parameters in public array  
 // Note: code assumes that the dwRGBBitFormat member if  
 // the DDPIXELFORMAT structure contains valid data  
 modesArray[i] = aSurface->dwWidth;  
 modesArray[i + 1] = aSurface->dwHeight;  
 modesArray[i + 2] = aSurface->ddpfPixelFormat.dwRGBBitCount;  
   
 modesCount++; // Bump display modes counter  
 return DDENUMRET_OK; // Continue  
 }  
   



 //*************************************************************  
 // Name: hasDDMode  
 // Desc: Tests for mode availability  
 //*************************************************************  
 // PRE CONDITIONS:  
 // 1. Public variable modesArray[] to store mode data  
 // 2. Public int variable modesCount to store number of  
 // display modes  
 // 3. ModesProc() is an associated function that stores  
 // mode data in array and count modes  
 //  
 // POST CONDITIONS:  
 // 1. Returns 1 if mode is available  
 //*************************************************************  
   
 int HasDDMode(DWORD pixWidth, DWORD pixHeight, DWORD pixBits)  
 {  
   
 static HRESULT DDConnect;  
   
 // Call EnumDisplayModes()   
 if(MODES_ON == 0){  
 MODES_ON = 1; // set switch  
 DDConnect = lpDD4->EnumDisplayModes(0, NULL, NULL,  
 ModesProc);  
 }  
 // Modes are now stored in modeArray[] as triplets encoding  
 // width, height, and pixel bit size  
 // Variable modesCount holds the total number of display modes  
 for(int x = 0; x < (modesCount * 3); x += 3){  
 if(modesArray[x]==pixWidth && modesArray[x+1]==pixHeight\  
 && modesArray[x+2]==pixBits)  
 return 1;  
 }  
 return 0;  
 }  
 
DirectDraw documentation states the EnumDisplayModes() function can be passed the 
address of a DDSURFACEDESC2 structure that is checked for a specific mode. We found that this 



mode of operation is not always reliable. To make sure that all available modes are checked, the 
HasDDMode() function loads all the available modes into a global array variable and then 
searches the array for the desired one.  

 
 In the WinMain() template, the call to the HasDDMode() function is coded as follows:  
 // Check for available mode (640 X 480 in 24-bit color)  
 if (HasDDMode(640, 480, 24) == 0)   
 return DDInitFailed(hWnd, hRet, "Display mode not available");  
 

 
We provided no alternative processing for the case in which the desired True-color mode is not 
available in the system. In your own programs you may want to provide alternative modes if the 
ideal one is not found. Here again, you should note that this programming style creates device-
dependent code that may bring about other complications.  

 
 Setting the cooperative level and mode  
 

 
If the desired mode is available, then the code must determine the cooperative level and proceed 
to set the mode. Exclusive mode DirectDraw programs require the constants DDSLC_EXCLUSIVE 
and DDSCL_FULLSCREEN, which were discussed in Chapter 8. The processing is as follows:  

 
 // Set cooperative level to exclusive and full screen  
 hRet = lpDD4->SetCooperativeLevel(hWnd, DDSCL_EXCLUSIVE  
 | DDSCL_FULLSCREEN);  
 if (hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "SetCooperativeLevel() call failed");  
 // Set the video mode to 640 x 480 x 24  
 hRet = lpDD4->SetDisplayMode(640, 480, 24, 0, 0);  
 if (hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "SetDisplayMode() call failed");  
 
 Creating the surfaces  
 

 

In Chapter 7 we first learned about DirectDraw surfaces. At that time we defineda drawing surface 
as an area of video memory, typically used to hold image data, and DirectDrawSurface as a 
COM object in itself. Most DirectDraw4 applications require at least two types of COM objects: 
one, of type LPDIRECTDRAW4, is a pointer to the DirectDraw object. The second one, of type 
LPDIRECTDRAWSURFACE4, is a pointer to a surface. All surface-related functions use this second 
pointer type, whereas the core DirectDraw calls require the first one. Applications that manipulate 
several surfaces often cast a pointer for each surface. A third type of object, called a DirectDraw 
palette object, is necessary for programs that perform palette manipulations, whereas DirectDraw 
clipper objects are used in clipping operations.  



 

 

Before accessing a DirectDraw surface you must create it by means of a call to the 
CreateSurface() function. The call can produce a single surface object, a complex surface-
flipping chain, or a three-dimensional surface. The call to CreateSurface() specifies the 
dimensions of the surface, whether it is a single surface or a complex surface, and the pixel 
format. These characteristics are previously stored in a DDSURFACEDESC2 structure, for which an 
address is included in call's parameters. The function's general form is as follows:  

 
 HRESULT CreateSurface(  
 LPDDSURFACEDESC2 lpDDSurfaceDesc, // 1  
 LPDIRECTDRAWSURFACE4 FAR *lplpDDSurface, // 2  
 IUnknown FAR *pkUnkOutter // 3  
 );  
 

 

The first parameter is the address of a structure variable of type LPDDSURFACEDESC2. The 
CreateSurface() API requires that all unused members of the structure are set to zero. In the 
code sample that follows you will see how this can be accomplished easily. The second parameter 
is the address of a variable of type LPDIRECTDRAWSURFACE4, which is set to the interface 
address if the call succeeds. This is the pointer used in the calls that relate to this surface. 
Applications often store this pointer in a global variable so that it is visible throughout the code. 
The third parameter is provided for future expansion of the COM. Presently, applications must set 
this parameter to NULL.  

 
 If the call succeeds, the return value is DD_OK. If it fails the following self-explanatory error values 
are returned:  

 
 DDERRINCOMPATIBLEPRIMARY  
 
 DDERRINVALIDCAPS  
 
 DDERRINVALIDOBJECT  
 
 DDERRINVALIDPARAMS  
 
 DDERRINVALIDPIXELFORMAT  
 
 DDERRNOALPHAHW  
 
 DDERRNOCOOPERATIVELEVELSET  
 
 DDERRNODIRECTDRAWHW  
 
 DDERRNOEMULATION  



 
 DDERRNOEXCLUSIVEMODE  
 
 DDERRNOFLIPHW  
 
 DDERRNOMIPMAPHW  
 
 DDERRNOOVERLAYHW  
 
 DDERRNOZBUFFERHW  
 
 DDERROUTOFMEMORY  
 
 DDERROUTOFVIDEOMEMORY  
 
 DDERRPRIMARYSURFACEALREADYEXISTS  
 
 DDERRUNSUPPORTEDMODE  
 

 

DirectDraw always attempts to create a surface in local video memory. If there is not enough local 
video memory available, then DirectDraw tries to use nonlocal video memory. Finally, if no video 
memory is available at all, then the surface is created in system memory. The call to 
CreateSurface() can explicitly request that a surface is created in a certain type of memory. 
This is done by means of the appropriate flags in the associated DDSCAPS2 structure, which is part 
of DDSURFACEDESC2.  

 

 

The primary surface is the one currently displayed on the monitor and is identified by the 
DDSCAPS_PRIMARYSURFACE flag. There is only one primary surface for each DirectDraw object. 
The dimensions and pixel format of the primary surface must match the current display mode. It is 
not necessary to explicitly enter these values when calling CreateSurface(); in fact, specifying 
these parameters generates an error even if they match the ones in the current display mode. In 
this template program you create the simplest possible surface object, which is the one that 
corresponds to a primary surface. The code is as follows:  

 
 // Global data  
 LPDIRECTDRAWSURFACE4 lpDDSPrimary = NULL; // DirectDraw primary   
 DDSURFACEDESC2 ddsd;   
 . . .  
 // Create a primary surface  
 // ddsd is a structure of type DDSRUFACEDESC2  
 // First, zero all structure variables using the ZeroMemory()  
 // function  
 ZeroMemory(&ddsd, sizeof(ddsd));   



 // Now fill in the required members  
 ddsd.dwSize = sizeof(ddsd); // Structure size  
 ddsd.dwFlags = DDSD_CAPS ;  
 ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;  
   
 hRet = lpDD4->CreateSurface(&ddsd, &lpDDSPrimary, NULL);  
 if (hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "CreateSurface() call failed");  
 

 

If the call succeeds, you obtain a pointer by which to access the functions that relate to DirectDraw 
surfaces. The pointer, named lpDDSPrimary, is stored in a global variable of type 
LPDIRECTDRAWSURFACE4. You can use the surface pointer to obtain a DirectDraw device 
context, which enables you to use GDI graphics in the application, or to lock the surface for direct 
access and retrieve its base address and pitch.  

 
 Performing display operations  
 

 
If the application now needs to display some screen text, such as a "Hello World" message, it has 
to obtain a handle to the device context. The DirectDrawSurface4 interface contains a function 
called GetDC() that you can use for this purpose. This function is not the same one as GetDC() 
in the general Windows API. Its general form is as follows:  

 
 HRESULT GetDC( HDC );  
 

 
The function's only parameter is the address of the handle to the device context that is associated 
with the surface. If the call succeeds it returns DD_OK. If it fails it returns one of the following error 
codes:  

 
 DDERRDCALREADYCREATED  
 
 DDERRGENERIC  
 
 DDERRINVALIDOBJECT  
 
 DDERRINVALIDPARAMS  
 
 DDERRINVALIDSURFACETYPE  
 
 DDERRSURFACELOST  
 
 DDERRUNSUPPORTED  



 
 DDERRWASSTILLDRAWING  
 

 
Note that the GetDC() function uses an internal version of the IDirectDraw-Surface4::Lock 
function to lock the surface. The surface remains locked until the 
IDirectDrawSurface4::ReleaseDC function is called. In the template program the code 
proceeds as follows:  

 
 static char szDDMessage1[] =   
 "Hello World -- Press <Esc> to end program";  
 . . .  
 // Display some text on the primary surface  
 if(lpDDSPrimary->GetDC(&hdc) != DD_OK)  
 return DDInitFailed(hWnd, hRet, "GetDC() call failed");  
 // Display screen message  
 SetBkColor(hdc, RGB(0, 0, 255)); // Blue background  
 SetTextColor(hdc, RGB(255, 255, 0)); // Yellow letters  
 TextOut(hdc, 120, 200, szDDMessage1, lstrlen(szDDMessage1));  
 lpDDSPrimary->ReleaseDC(hdc);  
 
 The DD Exc Mode project  
 

 

The project file named DD Exc Mode in the book's CD-ROM contains the program DD Exc 
Mode.cpp which you can use as a template for developing simple DirectDraw applications in 
exclusive mode. The template contains all of the support functions previously mentioned, that is, 
functions to find a DirectDraw4 interface object, to test for availability of a particular display mode, 
to release objects, and to handle terminal errors during DirectDraw initialization. The processing 
consists of displaying a screen message using the text output GDI service. The code also includes 
a skeletal window procedure to handle keyboard input, disable the cursor, and terminate execution. 

 



Direct Access Programming  
 

 

The program found in the DD Exc Mode Project directory initializes DirectDraw, defines the 
cooperative level, sets a display mode, and draws text on the screen using a GDI function. These 
are necessary in many DirectDraw applications, but bring little advantages over conventional 
Windows programming. Not much is gained in performance and control by a DirectDraw 
application that is limited to the GDI functions. The purpose of DirectDraw is to obtain a higher 
level of control and to improve graphics performance. Neither of these is achieved by merely 
setting a display mode and displaying text or graphics to the screen using the GDI services. Before 
an application's performance is improved by the advantages that derived from the DirectDraw 
interface, it must gain access to video memory. The second level of DirectDraw advantages, those 
that result from using the hardware features in the video card, are discussed in the chapters that 
follow.  

 
 Memory-mapped video  
 

 

Graphics programming in DOS is based on the fact that PC video functions are mapped to a 
specific area of system memory. The DOS graphics programmer determines the base address to 
which the video system is mapped, and the pixel format used in the current display mode. The 
code then proceeds to store pixel data in this memory area, and the video hardware takes care of 
automatically updating the display by reflecting the contents of the memory region to which it is 
mapped. The process is simple, although in some display modes the manipulations can become 
relatively complicated.  

 

 

One of the difficulties of direct access to video memory in DOS programming relates to the 
segmented architecture of the Intel CPUs. The 16-bit internal architecture of the original Intel 
CPUs consisted of 16 segments, each segment containing 64 KB. A display mode of 640 X 480 
pixels in which each pixel is stored in 1 byte of data, requires 307,200 bytes, which exceeds the 
span of a single segment. In fact, 307,200 data bytes require five segments for storing the pixel 
information. This forces the programming into the so-called banking mechanisms. By switching a 
hardware element called the bank, it is possible to map several areas of system memory to the 
same segment. The programming appears complicated, but after the access routines are 
developed for a particular display mode, the code can set any screen pixel to any desired color 
attribute by simply passing the pixel's screen column and row address and the desired color code. 

 

 

Until the advent of DirectDraw, Windows graphics programmers had no way of accessing video 
memory directly. Even if a Windows programmer had been capable of finding the address to which 
the video display was mapped in a particular system, any attempt to access this area of memory 
generated a general protection fault at the operating system level. DirectDraw solves both 
problems: it temporarily relaxes the operating system's access restriction, and it provides 
information about the location and mapping of the video system.  

 

 
An additional advantage is that in Win32, video display area is defined in a flat, unsegmented 
memory space. When the application obtains the base address of video memory, and its bit-to-
pixel mapping, it can proceed to perform display operations without any banking complications nor 
attribute mapping schemes that complicate DOS graphics.  

 
 Hi-color modes  
 
The development of SuperVGA video cards, which contained more video memory than the 
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standard VGA, made possible display modes with a much richer color range than had been 
previously available on the PC. The modes that devote 16 or more bits for the color encoding of 
each screen pixel are called the hi-color modes. Although no formal designation for these modes 
has been established, the 16-bit per pixel modes are usually referred to as real-color modes, and 
those with 24- and 32-bits per pixel are called the True-color modes. An adapter with 2MB of video 
memory, which is common in today's hardware, enables several real-color and True-color modes. 
Real-color modes are available up to a resolution of 1600 X 1200 pixels, and True-color modes up 
to 1280 X 1024 pixels. The graphics programmer working with current video system technology 
can safely assume that most PCs support real-color and True-color modes with standard 
resolutions.  

 

 

In Windows, all display modes with a resolution of 16-bits per pixel or higher are nonpalettized. 
Palettes were developed mostly to increase the colors available in modes with limited pixel depth. 
For general graphics programming the use of palette-independent display modes considerably 
simplifies the design and coding effort. In today's video cards, with several megabytes of display 
memory, there is little justification for using palettized modes. All real-color and true-color modes 
are, by definition, nonpalettized. Figure 9-1 shows the mapping of video memory bits to pixel 
attributes in a real-color mode.  

 

 

  
 
 Figure 9-1: Pixel mapping in real-color modes 

   
 

 

Real-color modes are often mapped differently in the various SuperVGA cards. One problem 
results from the fact that 16 bits cannot be divided exactly into the three primary colors. One 
possible solution is to leave one bit unused and map each primary color to a 5-bit field. A more 
reasonable alternative is to map green to a 6-bit field because the human eye is more sensitive to 
this color than to red and blue. This scheme, sometimes called a 5-6-5 mapping, is the one shown 
in Figure 9-1.  

 

 

The fact that the individual colors are not located at a byte boundary introduces some 
programming in the real-color modes. In this case code must perform bitwise operations to set the 
corresponding fields to the required values. In the true-color modes, on the other hand, eight bits 
are mapped to each of the primary colors. This makes the direct access operations much easier to 
implement.  



 
 True-color modes  
 

 

In the True-color modes each primary color (red, green, and blue) is mapped to an 8-bit field. The 
name True-color relates to the opinion that these modes are capable of reproducing a color range 
that is approximately equivalent to the sensitivity of the human eye. It is often said that the True-
color modes produce a rendition that |is of photographic quality. Two different mappings are used 
in the True-color modes. The 24-bit mapping, shown at the top of Figure 9-2, uses three 
consecutive bytes to represent each of the primary colors. In the 32-bit mapping, shown at the 
bottom of Figure 9-2, there is an extra byte, which is unused, at the end of each pixel field.  

 

 

  
 
 Figure 9-2: Pixel mapping in the True-color modes 

   
 

 

The reason for the unused byte in the 32-bit True-color modes relates to the 32-bit architecture of 
the Intel CPUs, which is also the bus width of most video cards. By assigning 4 bytes to encoding 
the color attribute it is possible to fill a pixel with a single 32-bit memory transfer. A low-level 
program running in an Intel machine can store the pixel attribute in an extended machine register, 
such as EAX, and then transfer it into video memory with a single move instruction. By the same 
token, a C or C++ program can place the value into a variable of type LONG and use a pointer to 
LONG to move the data, also in a single operation. In the 32-bit mapping scheme, memory storage 
space is sacrificed for the sake of faster access.  

 
 Locking the surface  
 



 

Applications directly access the video buffer, or any surface memory area, by first calling the 
Lock() function. The Lock() function returns a pointer to the top-left corner of the rectangle that 
defines the surface, as well as the surface pitch and |other relevant information necessary for 
accessing the surface. When calling the Lock() function the application can define a rectangular 
area within the surface, or the entire surface. If the surface is a primary surface, and the entire 
area is requested, then Lock() returns the base address of the video buffer and the number of 
bytes in each buffer row. This last parameter is called the surface pitch. At this point the 
DirectDraw application gains total control as well as direct access to the video display.  

 

 
The Lock() function is related to the surface; therefore, it is accessed by means of the surface 
object returned by the call to CreateSurface(), not by a DirectDraw object. The function's 
general form is as follows:  

 
 HRESULT Lock(  
 LPRECT lpDestRect, // 1  
 LPDDSURFACEDESC2 lpDDSurfaceDesc, // 2  
 DWORD dwFlags, // 3  
 HANDLE hEvent // 4  
 );  
 

 

The first parameter is a pointer to a RECT structure that describes a rectangular area on the 
surface that is to be accessed directly. To lock the entire surface this parameter is set to NULL. If 
more than one rectangle is locked, they cannot overlap. The second parameter is the address of a 
structure variable of type DDSURFACEDESC2, which is filled with all the information necessary to 
access the surface memory directly. The information that is returned in this structure includes the 
base address of the surface, its pitch, and its pixel format. Applications should never make 
assumptions about the surface pitch because this value changes according to the location of 
surface memory and even the version of the DirectDraw driver. The third parameter contains one 
or more flags that define the function's mode of operation. Table 9-1 lists the constants currently 
implemented in the IDirectDrawSurface4 interface.  

 
 Table 9-1: Flags Used in the IDirectDrawSurface4::Lock Function  
 
    
 
 Flag  

 
Meaning  

 

 
    
 
 DDLOCK_NOSYSLOCK  

 
Do not take the Win16Mutex. This flag is 
ignored when locking the primary surface.  

 

 
 DDLOCK_READONLY  

 
The surface being locked will only be read.  

 

 
 DDLOCK_SURFACEMEMORYPTR  

  



the specified rectangle should be returned. If no 
rectangle is specified, a pointer to the top of the 
surface is returned. This is the default and does 
not need to be entered explicitly.  

 
 DDLOCK_WAIT  

 
Retries the Lock() function if it cannot be 
obtained because a blit operation is in 
progress.  

 

 
 DDLOCK_WRITEONLY  

 
The surface being locked will be write-enabled. 

 

 
    
 

 
The fourth parameter to the Lock() call was originally documented to be a handle to a system 
event that is triggered when the surface is ready to be locked. The newest version of the 
DirectDraw documentation states that it is not used and should always be set to NULL.  

 

 

The DDLOCK_NOSYSLOCK flag relates to the fact that while a surface is locked DirectDraw usually 
holds the Win16Mutex (also known as the Win16Lock) so that gaining access to surface memory 
can occur safely. The Win16Mutex in effect shuts down Windows for the time that elapses 
between the Lock() and the Unlock() calls. If the DDLOCK_NOSYSLOCK flag is present, and the 
locked surface is not a primary surface, then the Win16Mutex does not take place. If a blit is in 
progress when Lock() is called, the function returns an error. You can prevent this by including 
the DDLOCK_WAIT flag, which causes the call to wait until a lock can be successfully obtained.  

 
 Lock() returns DDOK if it succeeds or one of the following error codes if it fails:  
 
 DDERR_INVALIDOBJECT  
 
 DDERR_INVALIDPARAMS  
 
 DDERR_OUTOFMEMORY  
 
 DDERR_SURFACEBUSY  
 
 DDERR_SURFACELOST  
 
 DDERR_WASSTILLDRAWING  
 

 

When Lock() succeeds, the application can retrieve a surface memory pointer and other 
necessary data and start accessing surface memory directly. Code can continue to access surface 
memory until a call to the Unlock() function is made. As soon as the surface is unlocked, the 
surface memory pointer becomes invalid. While the lock is in progress, applications cannot blit to 
or from surface memory. GDI functions fail when used on a locked surface.  



 Obtaining surface data  
 

 

When the Lock() call returns DD_OK, the application can access the corresponding members of 
the DDSURFACEDESC2 structure variable passed in the call to obtain the data necessary for direct 
access. Assuming that application code knows the display mode and its corresponding pixel 
format, then the two data elements necessary for accessing the locked surface are its base 
address and the surface pitch. The base address is returned in a structure member of type 
LPVOID, and the surface pitch in a structure member of type LONG. Applications that plan to de-
reference the surface pointer typically cast it into one that matches the surface's color format. For 
example, a program that has set a 24-bit True-color mode is likely to access surface memory in 
byte-size units. In this case the pointer can be cast into a variable of type LPBYTE. On the other 
hand, an application executing in a 16-bit real-color mode typecasts the pointer into a LPWORD 
type, and one that has set a 32-bit True-color mode may typecast into an LPLONG data type.  

 

 
The following code fragment shows the use of the Lock() function in a routine that fills a 50 X 50 
pixel box in a 24-bit True-color video mode. The box is arbitrarily located at screen row number 80 
and pixel column number 300. The pixels are filled with the red attribute by setting each third 
surface byte to 0xff and the other three color bytes to 0x0.  

 
 LONG localPitch; // Local variable for surface pitch  
 LPBYTE localStart; // and for buffer start  
 LPBYTE lastRow; // Storage for row start  
 . . .  
 // Attempt to lock the surface for direct access  
 if (lpDDSPrimary->Lock(NULL, &ddsd, DDLOCK_WAIT, NULL)\  
 != DD_OK)  
 DDInitFailed(hWnd, hRet, "Lock failed");  
 // Store video system data  
 vidPitch = ddsd.lPitch; // Pitch  
 vidStart = ddsd.lpSurface; // Buffer address  
   
 // Surface is locked. Global video data is as follows:  
 // vidPitch holds surface pitch  
 // vidStart holds video buffer start  
 // Copy to local variables typecasting void pointer  
 localPitch = vidPitch;   
 localStart = (LPBYTE) vidStart;  
   
 // Index to row 80  
 localStart = localStart + (80 * localPitch);  
 // Move right 300 pixels  
 localStart += (400 * 3);  



   
 // Display 50 rows, 50 times  
 for(int i = 0; i < 50; i++){  
 lastRow = localStart; // Save start of row  
 for(int j = 0; j < 50; j++) {  
 *localStart = 0x0; // blue attribute  
 localStart++;  
 *localStart = 0x0; // green attribute  
 localStart++;  
 *localStart = 0xff; // red attribute  
 localStart++;  
 }  
 localStart = lastRow + localPitch;  
 }  
   
 lpDDSPrimary->Unlock(NULL);  
 



Low-Level Programming  
 

 

The maximum advantages of direct access to video memory are realized when the code is highly 
optimized: this means programming in 80x86 assembly language. Although an entire Windows 
application can be coded in assembly language, this approach usually entails more difficulties and 
complications than can be justified by the relatively few advantages. On the other hand, most C 
and C++ compilers provide in-line assemblers that allow embedding assembly language code in a 
C or C++ program. The result is an easy-to-produce multilanguage program with the advantages 
of both environments.  

 

 

An added benefit of in-line assembly is that the low-level code can reference, by name, any C++ 
language variable or function that is in scope. This makes it easier to access data and processing 
routines than is the case when the assembly language source is in a module that must be 
assembled and linked separately. In-line assembly also avoids many of the complication and 
portability problems usually associated with parameter passing conventions in multilanguage 
programming. The resulting development environment has all the advantages of high-level 
programming, as well as the power and flexibility of low-level code. A graphics programmer cannot 
ignore the potential of this language combination. Visual C++ and Borland C Builder support in-line 
assembly.  

 

 

DirectDraw has made assembly language coding in Windows applications an attractive option. 
Direct access to video memory, made possible by DirectX, opens the possibility of using assembly 
language to maximize performance and control. The result is a DOS-like development 
environment. However, in conventional GDI programming there is little justification for using low-
level code.  

 
 _asm keyword  
 

 

The _asm keyword is used in Visual C++ to produce assembly language instructions, one at a 
time, or in blocks. When the compiler encounters the _asm symbol it invokes the in-line 
assembler. The assembler, in turn, generates the necessary opcodes and inserts them into the 
object file. In this process the development system limits its action to that of an assembler 
program; no modification of the coding takes place and no interpretation or optimization effort is 
made. Thus, the programmer is certain that the resulting code is identical to the source. The fact 
that no separate assembly or linking is necessary considerably simplifies the development 
process.  

 

 
Although the _asm keyword can precede a single instruction, it is more common to use it to 
generate a block of several assembly language lines. Braces are used to delimit the source block, 
as in the following example:  

 
 _asm  
 {  
 ; Assembly language code follows:  
 PUSH EBX ; EBX to stack  
 MOV EAX,vidPitch ; vidPitch is a C variable  
 MOV EBX,80 ; Constant to register   
 MUL EBX ; Integer multiply  



 POP EBX ; Restore EBX  
 }  
 

 
The second instruction of the preceding code fragment loads a variable defined in C++ code into a 
machine register. Accessing high-level language variables is one of the most convenient features 
of in-line assembly. Assembly language code can also store results in high-level variables.  

 
 Coding restrictions  
 

 

There are a few rules and conventions that in-line assembly language code must follow. Perhaps 
the most important one is to preserve the registers that are used by C++. A source of problems is 
when the C++ program is compiled with the _fastcall switch or the /Gr compiler option. In these 
cases, arguments to functions are passed in the ECX and EDX machine registers; therefore, they 
must be preserved by the assembly language program section. The easiest way to avoid this 
concern is to make sure that programs that use in-line assembly are not compiled with either of 
these options. In Visual C++ the compiler options can be examined by selecting Settings in the 
Project Menu and then clicking the C/C++ tab. The Project Options window in this dialog box 
shows the compiler switches and options that are active. Make sure that you inspect the settings 
for both the Release and the Debug options, as shown in the Settings For: scroll box. Figure 9-3 is 
a screen snapshot of Developer Studio Project Settings dialog box.  

 

 

  
 
 Figure 9-3: Inspecting compiler switches and options in the Project Settings dialog box 

   
 

 

It has been consistently documented in the Microsoft literature that programs that do not use the 
_fastcall switch or the /Gr compiler options can assume that the four general- purpose 
registers do not need to be preserved. Consequently, EAX, EBX, ECX, and EDX are free and 
available to the assembly language code. In regards to the pointer registers and the direction flag, 
the Microsoft documentation is inconsistent. Some versions of the Visual C++ Programmers Guide
state that ESI and EDI must be preserved, whereas other versions state the contrary. Regarding 
the direction flag, the original Microsoft C++ compilers required that the flag be cleared before 
returning, whereas the most recent manuals say that the state of the direction flag must be 
preserved. These newer documents also state that all other registers must be preserved.  

 



 

Taking into account these discrepancies, and in fear of future variations, the safest approach is to 
use the general-purpose registers freely (EAX, EBX, ECX, and EDX) but to preserve all other 
machine registers and the direction flag. This means that on entry to the routine the in-line 
assembly code must push on the stack the registers that must be preserved, as well as the flags, 
and restore them before exiting the _asm block. This is the approach that we use in the book's 
sample code. The processing in a routine that uses the ESI and EDI registers can be as follows:  

 
 _asm  
 {  
 PUSH ESI ; Save context  
 PUSH EDI  
 PUSHF  
 ; Processing operations go here  
 ; .  
 ; .  
 ; .  
 ; Exit code  
 POPF ; Restore context  
 POP EDI  
 POP ESI  
 }  
 
 Assembly language functions  
 

 

Often the low-level processing routines can be conveniently located in functions that can be called 
by the C++ code. When the assembly code is not created by means of the on-line feature of the 
compiler, that is, when it is written for a separate assembler, then the assembly language routine 
and the C++ must interface following the calling conventions adopted by the compiler. The usual 
procedure is that C++ places the parameters in the stack at the time the call is made, and the 
assembly language routine removes them from the stack making sure that the stack integrity is 
preserved. In this case the assembly and the C++ code usually reside in separate files that are 
referenced at link time.  

 

 

For applications that use in-line assembly, the interlanguage protocol can be considerably 
simplified by creating a C++ function shell to hold the assembly code. In this case the use of the 
stack for parameter passing becomes almost unnecessary because the assembly code can 
reference the C++ variables directly. One possible drawback is that the in-line assembler does not 
allow the use of the data definition directives DB, DW, DD, DQ, and DT or the DUP operator. 
Therefore, the data elements used by the assembly language code must be defined as C++ 
variables. The following example is an assembly language routine to add three integers and return 
the sum to the calling code. The processing is contained in a C++ function shell, as follows:  

 
 int SumOf3(int x, int y, int z)  
 {  
 int total; // C++ variable to hold sum  



   
 _asm   
 {  
 MOV EAX,x ; move first parameter to accumulator  
 ADD EAX,y ; add second parameter  
 ADD EAX,z ; and third parameter  
 MOV total,EAX ; store sum  
 }  
 return total;  
 }  
 The calling code could be as follows:  
 int aSum; // local variable for sum  
 . . .  
 aSum = SumOf3(10, 20, 30);  
 

 
This example shows that the assembly language code can access the parameters passed to the 
C++ function, as well as store data in a local variable that is also accessible to C++. This easy 
mechanism for sharing data is one of the major advantages of in-line assembly.  

 



Direct Access Primitives  
 

 

An application that uses direct access to the video buffer can usually benefit from a few primitive 
functions that perform the core processing operations. Depending on performance requirements 
these primitives can be coded in C++, or using in-line assembly. The primitive routines are mode-
specific, and the code assumes that a particular display mode is available and has been selected. 
It is impossible to predict the specific functions and the number of primitives that are necessary for 
a particular graphics program. Among other factors, this depends on what portion of the 
processing is performed using direct access to video memory, and on the size and scope of the 
application. The resulting complexity can range from a few simple routines to a full-size, stand-
alone graphics package. In this section we consider several direct access primitives that can be 
generally useful; they are:  

 
   •Function to lock a DirectDraw primary surface and store the video buffer's base address and pitch 
 
   •Function to release a DirectDraw primary surface  
 
   •Function to set an individual screen pixel at given coordinates and color attributes and to read the 

attributes of a screen pixel located at given coordinates  
 
   •Function to lock a DirectDraw primary surface, fill a pixel rectangle, at given coordinates, 

dimensions, and color attributes, and then release the surface  
 
   •Function to lock a DirectDraw primary surface, draw a single-line box, at given coordinates, 

dimensions, and color attributes, and then release the surface  
 

 

Many of the routines that access video memory directly must perform calculations to determine the 
offset of a particular pixel in the display surface. For example, a call to fill a screen rectangle 
passes the address of its top-left corner as parameters. The processing must convert this address, 
often in column/row format, into a video memory offset. It is possible to develop a primitive function 
that calculates this pixel offset, but this approach introduces a call-return overhead that adversely 
affects performance. More often the address calculations are part of the processing routine. 
Therefore, before attempting to develop the direct access primitives, we take a closer look at the 
low-level operations necessary for calculating a pixel addresses.  

 
 Calculating a pixel address  
 

 

A display mode's resolution, color depth, and pitch determine the location of each pixel on the 
surface. This makes pixel address calculations specific to a display mode. In the case of the hi-
color modes, the variables that enter into the calculation of a pixel offset are the number of bytes 
per pixel and the surface pitch. In addition, the horizontal and vertical resolution of the display 
mode can be used to check for invalid input values because it is the responsibility of direct access 
routines not to read or write outside of the locked surface area. Figure 9-4 shows the parameters 
that define the location of a screen pixel and the formula used for calculating its offset.  

 



 

  
 
 Figure 9-4: Pixel offset calculation 

   
 
 Using the Lock() function  
 

 

As discussed earlier, the DirectDraw Lock() function is used to lock the surface so that it can be 
accessed directly. The call also returns a pointer to the top-left corner of the rectangle that defines 
the surface, as well as its pitch. In the case of a primary surface, when the entire area is 
requested, Lock() returns the base address of the video buffer. The pitch, in this case, is the 
number of bytes in each screen buffer row.  

 

 

Another effect of the Lock() call is that Windows relaxes its normal protection over video display 
memory. If a successful Lock() call has not been previously made, any instruction that attempts 
to access video memory immediately generates a protection violation exception and the 
application is terminated. This is important to keep in mind while designing direct access functions 
because it is this feature that makes the Lock() call necessary if a previous Lock() has been 
released. This is true even when the video buffer address and pitch have been previously obtained 
and stored. On the other hand, the surface lock can be retained during more than one access to 
video memory. This means that a routine that sequentially sets several screen pixels needs to call 
the Lock() function only once. After the pixel sequence is set, then the lock can be released. Also 
recall that the Lock() call requires a pointer to an IDirectDrawSurface4 object, which is 
usually obtained by means of the CreateSurface() function. The following is a simple locking 
function for the entire primary surface:  

 
 // Global variables for surface pitch and base address  
 LONG vidPitch;  
 LPVOID vidStart;  
 . . .  
 //***************************************************************  
 // Name: LockSurface  
 // Desc: Function to lock the entire DirectDraw primary surface  
 // and store the direct access parameters  
 //  
 // PRE CONDITIONS:  
 // 1. First parameter is a pointer to DirectDraw surface  



 // 2. Video display globals have been declared as follows:  
 // LONG vidPitch; // Pitch  
 // LPVOID vidStart; // Buffer address  
 //  
 // POST CONDITIONS:  
 // Returns 1 if call succeeds and 0 if it fails  
 //***************************************************************  
 int LockSurface(LPDIRECTDRAWSURFACE4 lpSurface)   
 {  
 // Attempt to lock the surface for direct access  
 if (lpSurface->Lock(NULL, &ddsd, DDLOCK_WAIT, NULL)\  
 != DD_OK)  
 return 0; // Lock failed  
 // Store video system data  
 vidPitch = ddsd.lPitch; // Pitch  
 vidStart = ddsd.lpSurface; // Buffer address   
 return 1; // Surface locked   
 }  
 
 Using the Unlock() function  
 

 
A function call to release the locked surface is also necessary. In this case the processing is quite 
simple. In addition to the call to the Unlock() function, the code resets the access variables to 
zero. This makes it easier to determine if a lock is being held because a zero value is invalid for 
either variable. The routine itself tests one of these variables before attempting to release the lock. 

 
 //***************************************************************  
 // Name: ReleaseSurface  
 // Desc: Function to release locked surface   
 // PRE CONDITIONS:  
 // 1. Parameter is pointer to locked DirectDraw surface  
 // 2. Video display globals as follows:  
 // LONG vidPitch; // Pitch  
 // LPVOID vidStart; // Buffer address  
 //***************************************************************  
 void ReleaseSurface(LPDIRECTDRAWSURFACE4 lpSurface)   
 {  
 if(vidStart != 0) {  
 lpSurface->Unlock(NULL);  



 // Clear global variables   
 vidPitch = 0;  
 vidStart = 0;  
 }  
 return;  
 }  
 
 This version of the ReleaseSurface() function assumes that the object of the lock was the 
entire surface.  

 
 Pixel-level primitives  
 

 

Pixel-level operations are the lowest-level graphics routines available, to the point that they are 
often considered device driver components, rather than primitives. When you use pixel read and 
pixel write routines, it is possible to construct any graphics routine desired. The Windows GDI 
provides functions to set and read a single pixel. The disadvantage of using these functions is that 
they are extremely slow. A drawing operation that repeatedly calls GDI SetPixel() or 
ReadPixel() functions is likely to execute at an unacceptably slow speed. However, direct 
access pixel-level routines appear to execute several hundred times faster than the GDI 
counterparts. The code for the pixel-level read and write primitives is as follows:  

 
 // Global variables for surface pitch and base address  
 LONG vidPitch;  
 LPVOID vidStart;  
 . . .  
 //***************************************************************  
 // Name: DASetPixel  
 // Desc: Assembly language code to set a single screen pixel   
 // using direct access to the video buffer  
 //  
 // PRE CONDITIONS:  
 // 1. Successful Lock() of surface  
 // Video display globals are stored as follows:  
 // LONG vidPitch; // Pitch  
 // LPVOID vidStart; // Buffer address  
 // 2. First and second parameters are the pixel coordinates  
 // 3. Last three parameters are pixel RGB attributes  
 // 4. Assumes true color mode 640 x 480 x 28  
 //  
 // POST CONDITIONS:  
 // None  



 //***************************************************************  
 void DASetPixel( int xCoord, int yCoord,  
 BYTE redAtt, BYTE greenAtt, BYTE blueAtt)   
 {  
 _asm  
 {  
 PUSH ESI ; Save context  
 PUSHF   
 MOV EAX,yCoord ; Row number to EAX  
 MUL vidPitch;  
 MOV EBX,EAX ; Store in EBX  
 MOV EAX,xCoord ; x coordinate  
 MOV CX,3  
 MUL CX ; 3 bytes per pixel  
 ADD EAX,EBX ; move right to x coordinate  
 MOV ESI,vidStart  
 ADD ESI,EAX  
 ; Load color attributes into registers  
 MOV AL,blueAtt  
 MOV DH,greenAtt  
 MOV DL,redAtt  
 ; Set the pixel  
 MOV [ESI],AL ; Set blue attribute  
 INC ESI  
 MOV [ESI],DH ; Set green  
 INC ESI  
 MOV [ESI],DL ; Set red  
 POPF ; Restore context  
 POP ESI  
 }  
 return;  
 }  
   
 //*************************************************************  
 // Name: DAReadPixel  
 // Desc: Assembly language code to read a single screen pixel   
 // using direct access to the video buffer  
 //  



 // PRE CONDITIONS:  
 // 1. Successful Lock() of surface  
 // Video display globals are stored as follows:  
 // LONG vidPitch; // Pitch  
 // LPVOID vidStart; // Buffer address  
 // 2. First and second parameters are the pixel coordinates  
 // values are returned in public variables named  
 // pixelRed, pixelGreen, and pixelBlue  
 // 3. Assumes true color mode 640X480X28  
 //  
 // POST CONDITIONS:  
 // None  
 //*************************************************************  
 void DAReadPixel( int xCoord, int yCoord)  
 {  
 _asm  
 {  
 PUSH ESI ; Save context  
 PUSHF  
 MOV EAX,yCoord ; Row number to EAX  
 MUL vidPitch  
 MOV EBX,EAX ; Store in EBX  
 MOV EAX,xCoord ; x coordinate  
 MOV CX,3  
 MUL CX ; 3 bytes per pixel  
 ADD EAX,EBX ; move right to x coordinate  
 MOV ESI,vidStart  
 ADD ESI,EAX  
 ; Read and store pixel attributes  
 MOV AL,[ESI] ; Get blue attribute  
 INC ESI  
 MOV DH,[ESI] ; green  
 INC ESI  
 MOV DL,[ESI] ; and red  
 MOV pixelBlue,AL ; Store blue  
 MOV pixelGreen,DH ; green  
 MOV pixelRed,DL ; and red  
 POPF ; Restore context  



 POP ESI  
 }  
 return;  
 }  
 
 Rectangle filling  
 

 

Filling rectangular areas with a particular color attribute is such a useful manipulation that most 
applications that access memory directly can profit from such a primitive. To define a screen 
rectangle you can use the coordinates of its diagonally opposite corners, or the coordinates of one 
corner and the rectangle's dimensions. The following listed function adopts the second approach. 
In addition, the routine needs to know the values for the RGB color attributes to use in the fill. The 
code is as follows:  

 
 //*************************************************************  
 // Name: DARectangle  
 // Desc: Assembly language code to draw a rectangle on the screen  
 // using direct access to the video buffer  
 //  
 // PRE CONDITIONS:  
 // 1. First parameter is pointer to surface  
 // 2. Second and third parameters are rectangle's x and y  
 // coordinates  
 // 3. Fourth parameter is rectangle width, in pixels  
 // 4. Fifth parameter is rectangle height, in pixels  
 // 5. Last three parameters are RGB attributes  
 // 6. Assumes true color mode is 640 x 480 x 24  
   
 // POST CONDITIONS:  
 // Returns 1 if lock succeeded and 0 if it failed  
 //*************************************************************  
 int DARectangle(LPDIRECTDRAWSURFACE4 lpPrimary,  
 int yCoord, int xCoord,  
 int width, int height,  
 BYTE redAtt, BYTE greenAtt, BYTE blueAtt)   
 {  
 // Attempt to lock the surface for direct access  
 if (!LockSurface(lpPrimary))  
 return 0; // Lock failed  
   



 _asm  
 {  
 PUSH ESI ; Save context  
 PUSHF   
 MOV EAX,yCoord ; Row number to EAX  
 MUL vidPitch;  
 MOV EBX,EAX ; Store in EBX  
 MOV EAX,xCoord ; x coordinate  
 MOV CX,3  
 MUL CX ; 3 bytes per pixel  
 ADD EAX,EBX ; move right to x coordinate  
 MOV ESI,vidStart  
 ADD ESI,EAX  
 ; Load color attributes into registers  
 MOV AL,blueAtt  
 MOV DH,greenAtt  
 MOV DL,redAtt  
 MOV EBX,height ; number of lines in rectangle  
 NEXT_LINE:  
 PUSH ESI ; Save start of line  
 MOV ECX,width ; x dimension of rectangle   
 SET_PIX:  
 MOV [ESI],AL ; Set blue attribute  
 INC ESI ; Next pixel  
 MOV [ESI],DH ; Set green  
 INC ESI ; Next pixel  
 MOV [ESI],DL ; Set red  
 INC ESI ; Next pixel  
 LOOP SET_PIX  
 ; Pixel line is set  
 POP ESI  
 ADD ESI,vidPitch  
 DEC EBX  
 JNZ NEXT_LINE  
 POPF ; Restore context  
 POP ESI  
 }  
 ReleaseSurface(lpPrimary);  



 return 1; // Exit  
 }  
 

 
Observe that the DARectangle() calls LockSurface() and ReleaseSurface() functions 
previously developed. Alternatively, the function could be modified easily to call Lock() and 
Unlock() directly.  

 
 Box-drawing  
 

 

Drawing a box is a little more difficult than filling a rectangle. The actual processing can be based 
on two simple routines: one to draw a horizontal line and another one to draw a vertical line. The 
core routine sets up the machine registers with the necessary data and then calls the horizontal 
and vertical line routines to do the actual drawing. You would probably find other uses for the 
vertical and horizontal line drawing functions. The parameters to the box drawing routine are the 
same as those for the rectangle fill. They include the pointer to the surface, the box coordinates, its 
dimensions, and the color attributes. The code is as follows:  

 
 //*************************************************************  
 // Name: DABox  
 // Desc: Assembly language code to draw a screen box with  
 // single-pixel wide lines, using direct access to the  
 // video buffer  
 //  
 // PRE CONDITIONS:  
 // 1. First parameter is pointer to surface  
 // 2. Second and third parameters are the coordinates of the  
 // top-left corner of the box  
 // 3. Fourth parameter is box width, in pixels  
 // 4. Fifth parameter is box height, in pixels  
 // 5. Last three parameters are RGB attributes  
 // 6. True color mode is 640X480X24  
 //  
 // POST CONDITIONS:  
 // Returns 1 if lock succeeds and 0 if it fails  
 //*************************************************************  
 int DABox(LPDIRECTDRAWSURFACE4 lpPrimary,  
 int xCoord, int yCoord,  
 int width, int height,  
 BYTE redAtt, BYTE greenAtt, BYTE blueAtt)   
 {  
 // Attempt to lock the surface for direct access  



 if (!LockSurface(lpPrimary))  
 return 0; // Lock failed  
   
 _asm  
 {  
 PUSH ESI ; Save context  
 PUSHF  
 MOV EAX,yCoord ; Row number to EAX  
 MUL vidPitch;  
   
 MOV EBX,EAX ; Store in EBX  
 MOV EAX,xCoord ; x coordinate  
 MOV CX,3  
 MUL CX ; 3 bytes per pixel  
 ADD EAX,EBX ; move right to x coordinate  
 MOV ESI,vidStart  
 ADD ESI,EAX  
 ; Load color attributes into registers  
 MOV AL,blueAtt  
 MOV DH,greenAtt  
 MOV DL,redAtt  
 ; Draw top horizontal line  
 MOV ECX,width ; x dimension of rectangle  
 CALL DAHorLine  
 ; Draw bottom horizontal line  
 PUSH ESI ; Save top left corner address  
 PUSH EAX ; Save color  
 PUSH EDX  
 MOV EAX,height ; Number of lines to EAX  
 MUL vidPitch; ; Times the length of each line  
 ADD ESI,EAX ; Add to start  
 MOV ECX,width ; x dimension of rectangle  
 POP EDX ; Restore color  
 POP EAX  
 CALL DAHorLine ; Draw line  
 POP ESI ; Restore start of rectangle  
 ; Draw left vertical line  
 MOV EBX,vidPitch ; Pitch to EBX  



 MOV ECX,height ; Pixel height of vertical line  
 CALL DAVerLine  
 ; Draw right vertical line  
 ; ESI holds address of top-left corner  
 PUSH EAX ; Save color  
 PUSH EDX  
 MOV EAX,width ; Number of lines to EAX  
 MOV CX,3 ; Pixels per line  
 MUL CX   
 ADD ESI,EAX ; Add to start  
 MOV ECX,height ; Line y dimensions  
 INC ECX ; One more pixel  
 POP EDX ; Restore color  
 POP EAX  
 CALL DAVerLine ; Draw line  
 POPF ; Restore context  
 POP ESI  
 }  
   
 ReleaseSurface(lpPrimary);  
 return 1; // Exit  
 }  
   
 //*************************************************************  
 // Name: DAHorLine  
 // Desc: Assembly language support function for DABox()  
 // draws a horizontal pixel line   
 // PRE CONDITIONS:  
 // ESI holds buffer address of start of line  
 // ECX hold pixel length of line  
 // AL = blue attribute  
 // DH = green attribute  
 // DL = red attribute  
 // POST CONDITIONS:  
 // ECX is destroyed  
 // All others are preserved  
 //*************************************************************   
 void DAHorLine()  



 {  
 _asm  
 {  
 PUSH ESI ; Save start of line  
 DRAW_HLINE:  
 MOV [ESI],AL ; Set blue attribute  
 INC ESI  
 MOV [ESI],DH ; Set green  
 INC ESI  
 MOV [ESI],DL ; Set red  
 INC ESI  
 LOOP DRAW_HLINE  
 POP ESI  
 }  
 return;  
 }  
   
 //*************************************************************  
 // Name: DAVerLine  
 // Desc: Assembly language support function for DABox()  
 // draws a vertical pixel line   
 // PRE CONDITIONS:  
 // ESI holds buffer address of start of line  
 // ECX hold pixel height of line  
 // EBX holds surface pitch  
 // AL = blue attribute  
 // DH = green attribute  
 // DL = red attribute  
 // POST CONDITIONS:  
 // ECX is destroyed  
 // All others are preserved  
 //*************************************************************   
 void DAVerLine()  
 {  
 _asm  
 {  
 PUSH ESI ; Save start of line  
 DRAW_VLINE:  



 PUSH ESI ; Save start address  
 MOV [ESI],AL ; Set blue attribute  
 INC ESI  
 MOV [ESI],DH ; Set green  
 INC ESI  
 MOV [ESI],DL ; Set red  
 POP ESI ; Restore start  
 ADD ESI,EBX ; Index to next line  
 LOOP DRAW_VLINE  
 POP ESI  
 }  
 return;  
 }  
 



Raster Operations  
 

 

Direct access to video memory, combined with low-level coding, provides the programmer with a 
powerful, DOS-like, graphics toolkit. One of the many possibilities consists of using logical 
operations to combine object and screen data. These are sometimes called raster operations, 
raster ops, or mixes. A raster operation determines how two or more source images are combined 
to produce a destination image. Arithmetic and logical operators are used to produce the desired 
effect. The simplest one is to replace the destination with the source. This is what takes place 
when you write a pixel value to the video screen, as in the preceding examples. When you use a 
MOV instruction to write a color value to the screen we are actually replacing the destination with 
the source. The simplest way to replace the destination with the source pixel is as follows:  

 
 MOV [ESI],AL   
 
 In many cases a raster operation requires a read-modify-write sequence. For example, you could 
increase the brightness of a pixel value by adding a constant to its value as follows:  

 
 MOV AL,[ESI] ; Read pixel  
 ADD AL,20 ; Modify  
 MOV [ESI],AL ; Write  
 
 The problem with this type of processing is that the read-modify-write cycle takes considerable 
processing time. For this reason some graphics processors perform raster operations in hardware. 

 

 

Nevertheless, the Pentium CPU has several logical operators that enable you to combine 
foreground and background data by means of a single instruction. For example, you can use a 
logical AND operation to combine foreground bits (object data) and background data. The result is 
that the background bits are preserved whenever the foreground bit is zero, and vice versa. The 
object data is sometimes referred to as a mask. For example, a graphics application can overlay a 
white grid over an existing image by ANDing a mask consisting of 1-bit in the solid portion of the 
grid and of 0-bits in the transparent portion. The Pentium contains opcodes for AND, OR, XOR, 
and NOT operations. For example, the following operation ANDs the value in the AL register with 
the screen data contained in the address pointed at by ESI:  

 
 AND [ESI],AL  
 

 
In C++ programming the bitwise operators perform a similar action. In the following sections we 
examine the XOR mix, which is one of the most popular raster operations in graphics 
programming.  

 
 XOR animation  
 

 

Animating a screen object often requires that its image be erased from the current screen position 
before being redrawn at its new location. Graphics programmers sometimes call this sequence the 
save-draw-redraw cycle. If the object is not erased before it is redrawn, its apparent movement 
leaves an undesirable image track on the display surface. We can make an object appear to move 
laterally, left to right, by progressively redrawing and erasing its screen image at consecutively 



larger x coordinates. To do this in a conventional manner we have to perform a rather complex 
sequence of operations:  

 
   1.Preserve the screen image data in the area where the object is displayed.  
 
   2.Draw the object.  
 
   3.Erase the object by restoring the original screen image.  
 

 
Step 1 requires reading all data in the screen area that is occupied by the animated object, while 
Step 3 requires redisplaying the saved image. Both operations are time-consuming, and in 
computer animation, time is always in short supply.  

 

 

Several hardware and software techniques have been devised for performing the save-draw-
redraw cycle. In later chapters we explore DirectDraw animation techniques that are powerful and 
versatile. These higher-level methods are based on flipping surfaces containing images and on 
taking advantage of the hardware blitters that are available in most video cards. Here we are 
concerned with the simplest possible approach to figure animation. This technique, which is made 
feasible by the high performance obtained with direct access to video memory, is based on the 
properties of the logical exclusive or XOR operation. Although it is theoretically possible to perform 
XOR animation using high-level code, the most efficient and powerful technique requires assembly 
language.  

 

 
The action of the logical XOR can be described by saying that a bit in the result is set if both 
operands contain opposite values. It follows that XORing the same value twice restores the 
original contents, as in the following case:  

 
 10000001 <= original value ----|  
 XOR value => 10110011 |  
 --------- |  
 00110010 <= first result |  
 XOR value => 10110011 |  
 --------- |  
 10000001 <= final result ------|  
 
 XOR, like all bitwise operations, takes place on a bit-by-bit basis. In this example the final result 
(10000001) is the same as the original value.  

 

 

Animation techniques can be based on this property of the bitwise XOR because it provides a 
convenient and fast way for consecutively drawing and erasing a screen object. The object is 
drawn on the screen by XORing it with the background data. XORing a second time erases the 
object and restores the original background. Therefore, the save-draw-redraw cycle now becomes 
an XOR-XOR cycle, which is considerably faster and simpler to implement. The XOR method is 
particularly useful when more than one animated object can coincide on the same screen position 
because it ensures that the original screen image is preserved automatically.  



 

There are also disadvantages to using XOR in computer animation. The most important one is that 
the image changes according to the background. This is because each individual pixel in the 
object is determined both by the XORed value and by the destination pixel. For example, the 
following XOR operation produces a red object (in RGB format) on a bright white screen 
background:  

 
 R G B   
 background => 1 1 1 ( white)  
 XOR value => 0 1 1   
 -------  
 result => 1 0 0 ( red )  
 
 However, if the same XOR operation is applied over a black background the results are as follows: 
 
 R G B   
 background => 0 0 0 ( black )  
 XOR value => 0 1 1   
 -------  
 result => 0 1 1 ( cyan )  
 

 

This property of the XOR operation, which makes the object's color change as it moves over 
different backgrounds, can be at times an advantage, or a disadvantage. For example, an object 
displayed by conventional methods can disappear as it moves over a background of its same 
color, while if this object is XORed onto the screen it remains visible over most backgrounds. On 
the other hand, it may happen that the color of a graphics object is an important characteristic. In 
this case the changes brought about by XOR display operations may not be acceptable. Figure 9-5 
shows how the XOR operation changes the attributes of an object (circle) as it is displayed over 
different backgrounds.  

 

 

  
 
 Figure 9-5: Effect of XOR operation on figure color 

   
 
 XORing a bitmap  
 

 One of the many possible uses of the XOR raster operation is to project a bitmap over an existing 
background. The graphics programmer can take advantage of the automatic draw-erase action of 
the XOR function to animate cursors and small sprites with minimal processing. The main 
drawback is that the object's color is partially determined by the background color, as already 



drawback is that the object's color is partially determined by the background color, as already 
mentioned. The following function XORs a variable-size bitmap onto the video display, at any 
desired screen location. The function assumes a True-color display mode in 640 X 480 X 24 
format.  

 
 // Cross-shaped bitmap for demonstrating the DAXorBitmap()  
 // function  
 // 2 X 8 Bitmap 0 1 2 3 4 5 6 7  
 BYTE mapData[] ={ 0x00,0x00,0x00,0x7f,0x7f,0x00,0x00,0x00,// 0  
 0x00,0x00,0x00,0x7f,0x7f,0x00,0x00,0x00,// 1  
 0x00,0x00,0x00,0x7f,0x7f,0x00,0x00,0x00,// 2  
 0x7f,0x7f,0x7f,0x7f,0x7f,0x7f,0x7f,0x7f,// 3  
 0x7f,0x7f,0x7f,0x7f,0x7f,0x7f,0x7f,0x7f,// 4  
 0x00,0x00,0x00,0x7f,0x7f,0x00,0x00,0x00,// 5  
 0x00,0x00,0x00,0x7f,0x7f,0x00,0x00,0x00,// 6  
 0x00,0x00,0x00,0x7f,0x7f,0x00,0x00,0x00};// 7  
 . . .  
   
 //*************************************************************  
 // Name: DAXorBitmap  
 // Desc: Assembly language code to XOR a bitmap onto the screen  
 // using direct access to the video buffer  
 //  
 // PRE CONDITIONS:  
 // 1. First parameter is pointer to surface  
 // 2. Second and third parameters are x and y screen  
 // coordinates  
 // 3. Fourth parameter is bitmap width, in pixels  
 // 4. Fifth parameter is bitmap height, in pixels  
 // 5. Sixth parameter is pointer to bitmap  
 // 6. Assumes true-color mode 640X480X28  
 //  
 // POST CONDITIONS:  
 // Returns 1 if call succeeds and 0 if it fails  
 //************************************************************  
 int DAXorBitmap(LPDIRECTDRAWSURFACE4 lpPrimary,  
 int xCoord, int yCoord,  
 int bmWidth, int bmHeight,  
 LPBYTE bitMapPtr)  



 {  
 // Attempt to lock the surface for direct access  
 if (!LockSurface(lpPrimary))  
 return 0; // Lock failed  
   
 _asm  
 {  
 PUSH ESI ; Save context  
 PUSH EDI  
 PUSHF  
   
 MOV EAX,yCoord ; Row number to EAX  
 MUL vidPitch;  
 MOV EBX,EAX ; Store in EBX  
 MOV EAX,xCoord ; x coordinate  
 MOV CX,3  
 MUL CX ; 3 bytes per pixel  
 ADD EAX,EBX ; move right to x-coordinate  
 MOV EDI,vidStart  
 ADD EDI,EAX  
 MOV ESI,bitMapPtr ; Pointer to bitmap  
 MOV EBX,bmHeight ; number of lines in bitmap  
 NEXT_BM_LINE:  
 PUSH EDI ; Save start of line  
 MOV ECX,bmWidth ; x-dimension of bitmap   
 XOR_PIX_LINE:  
 MOV AL,[ESI] ; Bitmap data to AL  
 XOR [EDI],AL ; Set blue attribute  
 INC EDI  
 XOR [EDI],AL ; Set green  
 INC EDI  
 XOR [EDI],AL ; Set red  
 INC EDI  
 INC ESI ; Bitmap pointer to next byte  
 LOOP XOR_PIX_LINE  
 ; End of line   
 POP EDI ; Pointer to start of line  
 ADD EDI,vidPitch ; Index to next line  



 DEC EBX ; EBX is Lines counter  
 JNZ NEXT_BM_LINE  
 ; Done!   
 POPF ; Restore context  
 POP EDI  
 POP ESI  
 }  
 ReleaseSurface(lpPrimary);  
 return 1; // Exit  
 }  
 

 
In this function a single bitmap attribute is XORed with all three background colors. This keeps the 
bitmap small but limits the range of possible results. It would be quite easy to modify the routine so 
that the bitmap contains a byte value for each color attribute in a True-color mode.  

 



 DirectDraw Access Demo Project  
 

 

The program named DDAccess.cpp, located in the DD Access Demo project folder of the book's 
CD-ROM, is a demonstration of the direct access techniques discussed in this chapter. The 
program contains all the functions listed in this chapter, plus some other ones not mentioned in the 
text. It executes in exclusive, full-screen display mode. The text messages are displayed using GDI 
graphics and the geometrical figures using the direct access functions developed in this chapter. 
Color plate 5 is a screen snapshot of the demo program. The labels list the program functions that 
perform the corresponding operations.  

 



Summary  
 

 

In this chapter you learned how to gain direct access to the video buffer using the facilities 
provided by DirectX. Direct access methods give the Windows programmer a level of control and 
the advantages of high performance coding that are characteristic of DOS graphics. At the same 
time, direct access techniques in Windows have greater coding facilities and operating system 
support. In Windows programming, the main disadvantages are that direct access is more difficult 
and that it introduces device-dependency concerns. Whether to use direct access, and if so, how 
much to use, are questions that must be answered in the context of each particular application. 
Fortunately, conventional Windows graphics and direct access techniques can be combined in 
DirectDraw applications that execute in exclusive mode.  

 

 
In the following chapter we look at offscreen surfaces and bitBlt operations in DirectDraw. These 
are the fundamental mechanisms that support the fast manipulation of graphics images, one of the 
most important advantages of DirectDraw.  

 



Chapter 10: Blitting and Blit-time Transformations  
 
 Overview  
 

 

In this chapter we discuss the DirectDraw operations used in static rendering of bitmapped images. 
The fundamental mechanism for rendering bitmaps is called a blit, short for bit block transfer. The 
blit is one of the GDI functions but Direct-Draw provides its own versions, in the form of two 
functions named Blt() and BltFast(). A third variation, called BltBatch(), has been 
announced for future versions of the DirectX SDK. Another rendering operation is the overlay. As 
the name implies, overlays are like a drawing on transparent media, which can be placed over an 
image and then removed, restoring the original. The overlay technique simplifies many graphics 
rendering operations. At the present time overlays are supported by few video cards, and those that 
implement it do so inconsistently. For this reason we do not discuss overlays in this book.  

 



 Surfaces Revisited  
 

 
Before discussing DirectDraw blits, we must expand some of the notions related to DirectDraw 
surfaces, first presented in Chapter 7. The following are the fundamental concepts introduced in 
this section:  

 
   •Surface operations  
 
   •Primary and off-screen surfaces  
 
   •Enumerating surfaces  
 
   •Losing and restoring surfaces  
 
   •Experimenting with surfaces  
 
 Surface operations  
 

 

A DirectDraw surface is defined as a linear area of video memory, usually devoted to holding 
image data. Recall that a DirectDrawSurface is a COM object in itself, with its own interface, 
and that this interface is referenced in all surface-related operations. Applications create a 
DirectDraw surface by calling the CreateSurface() function. If the call is successful it returns a 
pointer to the surface. In DirectX 7 this pointer is of type LPDIRECTDRAWSURFACE4. It is this 
pointer that is used in calling the functions of the IDirectDrawSurface4 interface. Table 10-1 
lists these functions.  

 
 Table 10-1: Surface-related Functions in DirectDraw  
 
    
 
 Type or topic  

 
Function name  

 

 
    
 
 Allocating memory  

 
Initialize() 
 
IsLost() 
 
Restore()  

 

 
 Attaching surfaces  

 
AddAttachedSurface() 
 
DeleteAttachedSurface() 

 



EnumAttachedSurfaces() 
 
GetAttachedSurface()  

 
 Blitting  

 
Blt() 
 
BltBatch() (not implemented in DirectX 6) 
 
BltFast() 
 
GetBltStatus()  

 

 
 Color keys  

 
GetColorKey() 
 
SetColorKey()  

 

 
 Device contexts  

 
GetDC() 
 
ReleaseDC()  

 

 
 Flipping  

 
Flip() 
 
GetFlipStatus()  

 

 
 Locking surfaces  

 
Lock() 
 
PageLock() 
 
PageUnlock() 
 
Unlock()  

 

 
 Overlays  

 
AddOverlayDirtyRect() 
 
EnumOverlayZOrders() 
 
GetOverlayPosition() 
 
SetOverlayPosition() 
 
UpdateOverlay() 
 
UpdateOverlayDisplay() 
 
UpdateOverlayZOrder()  

 

 
 Private data  

 
FreePrivateData() 
 
GetPrivateData() 
 
SetPrivateData()  

 

 
 Capabilities 

 
GetCaps() 

 



 Capabilities  GetCaps()  
 
 Clipper  

 
GetClipper() 
 
SetClipper()  

 

 
 Characteristics  

 
ChangeUniquenessValue() 
 
GetPixelFormat() 
 
GetSurfaceDesc() 
 
GetUniquenessValue() 
 
SetSurfaceDesc()  

 

 
 Miscellaneous  

 
GetDDInterface()  

 

 
    
 
 Surface types  
 

 

DirectDraw first attempts to create a surface in local video memory. If there is not enough video 
memory available to hold the surface, then DirectDraw tries to use nonlocal video memory, and 
finally, if no other option is available, it creates the surface in system memory. Code can also 
explicitly request that a surface be created in a certain type of memory by including the appropriate 
flags in the CreateSurface() call.  

 

 

The primary surface is the one visible on the monitor, and it is identified by the 
DDSCAPS_PRIMARYSURFACE flag. There can be only one primary surface for each DirectDraw 
object. The size and pixel format of the primary surface matches the current display mode. For this 
reason, the surface dimensions, mode, and pixel depth are not specified in the 
CreateSurface() call for a primary surface. In fact, the call fails if these dimensions are 
entered, even if they match those of the display mode.  

 

 

Off-screen surfaces are used often to store bitmaps, cursors, sprites, and other forms of digital 
imagery. Off-screen surfaces can reside in video memory or in system memory. For an off-screen 
surface to exist in video memory the total memory on the card must exceed the memory mapped 
to the video display. For example, a video card with 2MB of video memory (2,097,152 bytes), 
executing in mode with a resolution of 640 X 480 pixels, at a rate of 3 bytes per pixel, requires 
921,600 bytes for storing the displayed image (assuming that there are no unused areas in the 
pixel mapping). This leaves 1,175,552 bytes of memory on the video card, which can be used as 
off-screen memory.  

A common type of off-screen surface, called a back buffer, can be created if the amount of free 



frequently used in animation, are discussed in Chapter 11.  
 

 

Off-screen surfaces are created with the CreateSurface() function. The call must specify the 
surface dimensions, which means that it must include the DDSD_WIDTH and DDSD_HEIGHT flags. 
The corresponding values must have been previously entered in the dwWidth and dwHeight 
members of the DDSURFACEDESC2 structure. The call must also include the 
DDSCAPS_OFFSCREENPLAIN flag in the DDSCAPS2 structure. If possible, DirectDraw creates a 
surface in display memory. If there is not enough video memory available, it creates the surface in 
system memory. Code can explicitly choose display or system memory by entering the 
DDSCAPS_SYSTEMMEMORY or DDSCAPS_VIDEOMEMORY flags in the dwCaps member of the 
DDSCAPS2 structure. The call fails and returns an error if DirectDraw cannot create the surface in 
the specified location. Figure 10-1 shows different types of DirectDraw surfaces.  

 

 

  
 
 Figure 10-1: Types of DirectDraw surfaces 

   
 

 

A surface is lost when the display mode is changed or when another application receives exclusive 
mode. The Restore() function can be used to recreate lost surfaces and reconnect them to their 
DirectDrawSurface object. Applications using the IDirectDraw4 interface can restore all lost 
surfaces by calling RestoreAllSurfaces(). Note that restoring a surface does not reload 
bitmaps that may have existed before the surface was lost. It is up to the application to reconstruct 
the graphics on each of the surfaces.  

 
 When a surface is no longer needed it should be released by calling the Release() function. 
Each surface must be explicitly released because there is no call to release all surfaces.  

 
 Enumerating surfaces  
 

 A typical DirectDraw application operates on several surfaces during its execution. In these 
manipulations an application often needs to know if a surface that matches certain characteristics 



EnumDisplayModes(), which is discussed in Chapter 8 in regards to display modes. The 
function's general form is as follows:  

 
 HRESULT EnumSurfaces(  
 DWORD dwFlags, // 1  
 LPDDSURFACEDESC2 lpDDSD, // 2  
 LPVOID lpContext, // 3  
 LPDDENUMSURFACESCALLBACK2 lpEnumCallback // 4  
 );  
 

 

The first parameter is a combination of a search-type flag and a matching flag. The search-type 
flag determines how the method searches for surfaces. Code can search for surfaces that can be 
created by using the description in the second parameter, or it can search for existing surfaces that 
already match that description. The matching flag determines whether the method enumerates all 
surfaces, those that match, or those that do not match the description specified in the second 
parameter. Table 10-2 lists the search and matching flags used in the EnumSurfaces() function. 

 
 Table 10-2: Flags Used in the EnumSurfaces() Function  
 
    
 
 Flag  

 
Function name  

 

 
    
 
 SEARCH-TYPE FLAGS  

 
  

 

 
 DDENUMSURFACES_CANBECREATED  

 
Enumerates the first surface that can be 
created and that meets the specifications in the 
second parameter. This flag can be used only 
with the DDENUMSURFACES_MATCH flag.  

 

 
 DDENUMSURFACES_DOESEXIST  

 
Enumerates the already existing surfaces that 
meet the specification in the second parameter. 

 

 
 MATCHING-TYPE FLAGS  

 
  

 

 
 DDENUMSURFACES_ALL  

 
Enumerates all of the surfaces that meet the 
specification in the second parameter. This flag 
can be used only with the 
DDENUMSURFACES_DOESEXIST search type 
flag.  

 

 
 DDENUMSURFACES_MATCH  Searches for any surface that matches the  



specification in the second parameter.  
 
 DDENUMSURFACES_NOMATCH  

 
Searches for any surface that does not match 
the specification in the second parameter.  

 

 
    
 

 

The second parameter to EnumSurfaces() is the address of a structure variable of type 
DDSURFACEDESC2 that defines the characteristics of the surface. If the first parameter includes the 
DDENUMSURFACES_ALL flag, then this second parameter must be NULL. The third parameter is 
the address of an application-defined structure that is passed to each enumeration member. The 
fourth parameter is the address of a callback function, of type lpEnumSurfacesCallback, that 
is called every time the enumeration procedure finds a surface that matches the predefined 
characteristics.  

 
 If the call succeeds the return value is DDOK. If it fails, the return value may be one of the following 
errors:  

 
 DDERR_INVALIDOBJECT  
 
 DDERR_INVALIDPARAMS  
 

 
Implementing the callback function for EnumSurfaces() is very similar to the processing 
described in Chapter 8 for the EnumDisplayModes() callback function. The project DD Info 
Demo included in the book's CD-ROM contains sample code of the EdnumDisplayModes() 
callback.  

 

 

An application often needs to know if a surface of certain characteristics is possible before it 
attempts to create it. In this case, code can combine the DDENUMSURFACES_CANBECREATED and 
DDENUMSURFACES_MATCH flags when it calls EnumSurfaces(). The DDSURFACEDESC2 
structure variable is initialized to contain the desired surface characteristics. If the characteristics 
include a particular pixel format, then the DDSDPIXELFORMAT flag also must be present in the 
dwFlags member of the DDSURFACEDESC2 structure. In addition, the DDPIXELFORMAT structure 
in the surface description must be initialized and the flags set to the desired pixel format flags. 
These can be DDPF_RGB, DDPF_YUV, or both. To specify surface dimensions, code must include 
the DDSD_HEIGHT and DDSD_WIDTH flags in DDSURFACEDESC2. The dimensions are then 
specified in the dwHeight and dwWidth structure members. If the dimension flags are not 
included, DirectDraw uses the dimensions of the primary surface.  

 
 The following code fragment shows a call to EnumSurfaces() to determine if a 640 X 480 X 24 
bits RGB surface is available in the card's video memory space:  

 
 // Public variables  
 DDSURFACEDESC2 ddsd;  
 int surfCount = 0;  
 . . .  



 // Determine if a surface of 640 X 480 pixels, in 24-bits  
 // RGB color can be created in video memory  
 ZeroMemory(&ddsd, sizeof(ddsd));  
 ddsd.dwSize = sizeof(ddsd);  
 ddsd.dwFlags = DDSD_CAPS |  
 DDSD_PIXELFORMAT |   
 DDSD_HEIGHT |  
 DDSD_WIDTH;  
 ddsd.ddpfPixelFormat.dwFlags = DDPF_RGB;  
 ddsd.ddpfPixelFormat.dwRGBBitCount = 24;  
 ddsd.ddsCaps.dwCaps = DDSCAPS_VIDEOMEMORY |  
 DDSCAPS_LOCALVIDMEM;  
 ddsd.dwHeight = 480;  
 ddsd.dwWidth = 640;  
 lpDD4->EnumSurfaces(  
 DDENUMSURFACES_CANBECREATED | DDENUMSURFACES_MATCH,  
 &ddsd, NULL,  
 (LPDDENUMSURFACESCALLBACK2) SurfacesProc);  
 if (surfCount == 0)  
 DDInitFailed(hWnd, hRet,  
 "Surface not available");  
 . . .  
 //*********************************************  
 // Callback function for EnumSurfaces()  
 //*********************************************  
 static BOOL WINAPI SurfacesProc(LPDIRECTDRAWSURFACE4 aSurfPtr,  
 LPDDSURFACEDESC2 aSurface, LPVOID Context)  
 {  
 surfCount++;  
 return DDENUMRET_OK; // Continue  
 }  
 

 

Because the DDENUMSURFACES_MATCH flag is present in the call, the callback function, in this 
case named SurfacesProc(), receives control only if a surface can be created. In the code, we 
made each iteration of the callback function increment the variable surfCount, which holds the 
number of similar surfaces that can be created, or zero if none can be created. The calling routine 
inspects this variable to determine the results of the EnumSurfaces() call. The previous code 
fragment uses the DDInitFailed() function, developed and listed in Chapter 9, to provide a 
terminal exit in case the surface cannot be created. In practice, an application may take another 
action, such as creating the surface in system memory instead of video memory. Note that the 
fourth parameter of EnumSurfaces() has to be typecast into a type 



LPDDENUMSURFACESCALLBACK2, otherwise a compiler error results.  
 

 

Note that the call to EnumSurfaces() attempts to create a temporary surface with the desired 
characteristics. Code should be careful not to assume that a surface is not supported simply 
because it is not enumerated. DirectDraw attempts to create a temporary surface with the memory 
constraints that exist at the time of the call. This can result in a surface not being enumerated even 
when the driver actually supports it.  

 
 Restoring surfaces  
 

 

It is possible to free surface memory associated with a DirectDrawSurface object, whereas the 
DirectDrawSurface objects representing these pieces of surface memory cannot be released. 
In this case several DirectDraw functions return DDERR_SURFACELOST. Surfaces can be lost if the 
display mode was changed, or if another application requested and obtained exclusive mode and 
freed all of the currently allocated surface memory. The DirectDraw Restore() function 
recreates these lost surfaces and reconnects them to their DirectDrawSurface object. If the 
application uses more than one surface, code can call the RestoreAllSurfaces() function to 
restore all surfaces at once. However, restoring a surface does not reload any imagery that may 
have previously existed in the surface.  

 
 Surface manipulations  
 

 
Most DirectDraw operations relate to surfaces; therefore, it is important for the programmer to gain 
familiarity with surface construction and characteristics. The DirectDraw application named ddtest 
that is furnished with DirectX allows you to experiment with DirectDraw options such as surfaces, 
blits, display modes, and capabilities, without actually writing code.  

 

 

To create and examine a surface you first run ddtest and then click the Connect button to establish 
a DirectDraw interface. When the interface is recognized, you can click the Create button. On the 
Create DirectDraw Surface dialog box you can select the desired capabilities, dimensions, and 
pixel format for the surface, and then click OK. If the surface creation fails, a message is posted on 
the DirectDraw Test Application main screen and the Surface and Surface Info fields are blank. If 
the surface is created, then the surface box of the main screen contains the surface pointer and 
the Surface Info boxes have the pertinent surface information. Figure 10-2 shows two dialog boxes 
of the ddtest program.  



 

  
 
 Figure 10-2: Surface operations using Microsoft's ddtest program 

   
 
 Transparency and color keys  
 

 

Often you will need to display a new bitmap over an existing one. For example, you might want the 
bitmap of an airplane to be shown over a background of mountains, sky, and clouds, contained in 
another bitmap. Because bitmaps are rectangular areas, the airplane bitmap is actually a rectangle 
of some uniform color that contains the image of the airplane. If you display the airplane by simply 
projecting its rectangular bitmap over the background, the result is quite unnatural. The solution is 
to select the color of the framing rectangle of the airplane bitmap so that it is different from the 
colors used in drawing the airplane. The software can then be programmed to ignore the framing 
color while displaying the airplane bitmap. The processing logic is as follows:  

 
 If bitmap pixel is equal to framing color, then leave the background pixel undisturbed. Else, replace 
background pixel with foreground image pixel.  

 

 

The result is that the image of the airplane behaves as if it had been drawn on a sheet of 
transparent plastic. The selection of a framing color, called the color key, plays an important role in 
the result. If a color key can be found that is not present in the fore-ground image, then the 
transparency is perfectly achieved. If not, some pixels of the foreground image will not be shown. 
The greater the color range, the easier it is to find a satisfactory color key. It is difficult to imagine a 
24-bit color bitmap (16.7 million colors) that will not have a single color value that is absent in the 
image.  

 

 
An alternative option to achieve transparency is based on a color key located in the background 
image, also called the destination. In this case the color key determines if the foreground image 
pixel is used or not. The logic is as follows:  

 
 If background pixel is color key, then use foreground pixel over background. Else, leave 
background undisturbed.  



 
The result of using a destination color key is a window on which the foreground image is displayed. 
Here again, the programmer must find an attribute for the color key that is not used in the 
background.  

 

 

DirectDraw supports both source and destination color keying for blits and overlay surfaces. Code 
supplies either a single color or a color range for source or destination color keying. Source and 
destination color keys can be combined on different surfaces. For example, a destination color key 
can be attached to a surface to create a window on which the mountains, sky, and clouds are 
visible. Then a source color key can be used in another surface to display the airplane bitmap 
transparently over this background. Figure 10-3 shows transparency based on the simultaneous 
use of source and destination color keys.  

 

 

  
 
 Figure 10-3: Transparency using a source color key 

   
 

 

In Figure 10-4 we are manipulating three surfaces in implementing source and destination color 
key transparency. Surface 1 contains a window in which a destination color key is defined. Surface 
2 is a bitmap image. Surface 3 is a sprite representing an airplane in which the background is a 
source color key. This sprite is transparently blitted onto the bitmap on surface 2, and then surface 
2 is transparently blitted onto surface 1. The resul-ting image is shown at the bottom of the 
illustration.  



 

  
 
 Figure 10-4: Transparency using source and destination color keys 

   
 
 Setting the color key  
 

 

In DirectDraw a color key is always associated with a surface. Code can set the color keys for a 
surface when it is created, or afterward. To set a color key or keys when creating a surface, you 
must first assign the desired color values to one or both of the ddckCKSrcBlt and 
ddckCKDestBlt members of the DDSURFACEDESC2 structure. When CreateSurface() is 
called, the color keys are assigned automatically. If the color key is used in blitting, one or both of 
DDSD_CKSRCBLT or DDSD_CKDESTBLT must be included in the dwFlags member.  

 
 The DirectDraw SetColorKey()function sets the color key for an existing DirectDrawSurface 
object. The function's general form is as follows:  

 
 HRESULT SetColorKey(  
 DWORD dwFlags, // 1  
 LPDDCOLORKEY lpDDColorKey // 2  
 );  
 
 The first parameter is a flag that determines the type of color key to be used. Table 10-3 lists the 
predefined constants used in this parameter.  

 
 Table 10-3: Constants Used in SetColorKey() Function  
 
    
 
 Constant  

 
Action  

 



    
 
 DDCKEY_COLORSPACE  

 
The structure contains a color range. Bit not set 
if the structure contains a single color key.   

 

 
 DDCKEY_DESTBLT  

 
The structure specifies a color key or color 
space to be used as a destination color key for 
blit operations.  

 

 
 DDCKEY_DESTOVERLAY  

 
The structure specifies a color key or color 
space to be used as a destination color key for 
overlay operations.  

 

 
 DDCKEY_SRCBLT  

 
The structure specifies a color key or color 
space to be used as a source color key for blit 
operations.  

 

 
 DDCKEY_SRCOVERLAY  

 
The structure specifies a color key or color 
space to be used as a source color key for 
overlay operations.  

 

 
    
 

 
The second parameter in the SetColorKey() function's general form is the address of a 
structure variable of type DDCOLORKEY structure that contains the new color key values for the 
DirectDrawSurface object. If this value is NULL, then the existing color key is removed from 
the surface.  

 
 If the call to SetColorKey() succeeds, the function returns DD_OK. If it fails, one of the following 
error codes is returned:  

 
 DDERR_GENERIC  
 
 DDERR_INVALIDOBJECT  
 
 DDERR_INVALIDPARAMS  
 
 DDERR_INVALIDSURFACETYPE  
 
 DDERR_NOOVERLAYHW  
 
 DDERR_NOTAOVERLAYSURFACE  
 
 DDERR_SURFACELOST  



 
 DDERR_UNSUPPORTED  
 
 DDERR_WASSTILLDRAWING  
 

 
The color key is described in a DDCOLORKEY structure. The structure is used for a source color 
key, a destination color key, or a color range. A single color key is specified when both structure 
members have the same value. The structure is defined in the Windows header files as follows:  

 
 typedef struct _DDCOLORKEY{   
 DWORD dwColorSpaceLowValue;   
 DWORD dwColorSpaceHighValue;   
 } DDCOLORKEY,FAR* LPDDCOLORKEY;   
 

 
The member dwColorSpaceLowValue contains the low value of the color range that is used as 
the color key. The member dwColorSpaceHighValue contains the high value (also inclusive). If 
both members have the same value, then the color key is a single color, not a range.  

 

 
Color keys are specified using the pixel format of the surface. If a surface is palettized, then the 
color key is an index or a range of indexes. If the surface is in a 16-bit color space mode (high 
color), then the color key is a word-size value. If the surface's pixel format is RGB or YUV, then the 
color key is specified in an RGBQUAD or YUVQUAD structure, as in the following code fragments:  

 
 // High color mode is the single color key.   
 dwColorSpaceLowValue = 0xf011;   
 dwColorSpaceHighValue = 0xf011;   
   
 // RGB color 255,128,128 is the single color key.   
 dwColorSpaceLowValue = RGBQUAD(255,128,128);   
 dwColorSpaceHighValue = RGBQUAD(255,128,128);   
   
 // YUV color range used as a color key  
 dwColorSpaceLowValue = YUVQUAD(120,50,50);   
 dwColorSpaceHighValue = YUVQUAD(140,50,50);   
 

 

Note that the YUV format was developed to more easily compress motion video data. It is based 
on the physics of human vision, which makes the eye more sen-sitive to brightness levels than to 
specific colors. The YUV acronym refers to a three-axis coordinate system. The Y-axis encodes 
the luminance component, while the U and V axes encode the chrominance, or color, element. 
Although several different implementations of the YUV format are available, no single format is 
directly supported by DirectDraw.  

 
The previous example uses a YUV color range that extends from 120-50-50 to 150-50-50. In this 
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case any pixel with a Y value between 120 and 150, and U and V values of 50, serves as a color 
key. Range values for color keys are used often when working with video data or photographic 
images; in this case there are often variations in the background color values. Artwork composed 
with draw or paint programs often use single-key colors.  

 
 Color key support  
 

 

Transparency and color keys are supported by the HEL, so that these functions are always 
available; however, support for a color key range is hardware-dependent. Code should check the 
dwCKeyCaps member of the DDCAPS structure. The DDCAPSCOLORKEY constant of the dwCaps 
member identifies some form of color key support for either overlay or blit operations. The 
dwCKeyCaps member defines the options listed in Table 10-4.  

 
 Table 10-4: Color Key Capabilities in DDCAPS Structure  
 
    
 
 Constant  

 
Meaning  

 

 
    
 
 DDCKEYCAPS_DESTBLT  

 
Supports transparent blitting. Color 
key identifies the replaceable bits of 
the destination surface for RGB 
colors.  

 

 
 DDCKEYCAPS_DESTBLTCLRSPACE  

 
Supports transparent blitting. Color 
space identifies the replaceable bits 
of the destination surface for RGB 
colors.  

 

 
 DDCKEYCAPS_DESTBLTCLRSPACEYUV  

 
Supports transparent blitting. Color 
space identifies the replaceable bits 
of the destination surface for YUV 
colors.  

 

 
 DDCKEYCAPS_DESTBLTYUV  

 
Supports transparent blitting. Color 
key identifies the replaceable bits of 
the destination surface for YUV 
colors.  

 

 
 DDCKEYCAPS_DESTOVERLAY  

 
Supports overlaying with color 
keying of the replaceable bits of the 
destination surface being overlaid 
for RGB colors.  

 

 
 DDCKEYCAPS_DESTOVERLAYCLRSPACE  

 

Supports a color space as the color 
key for the destination of RGB 

 



key for the destination of RGB 
colors.  

 
 DDCKEYCAPS_DESTOVERLAYCLRSPACEYUV  

 
Supports a color space as the color 
key for the destination of YUV 
colors.  

 

 
 DDCKEYCAPS_DESTOVERLAYONEACTIVE  

 
Supports only one active destination 
color key value for visible overlay 
surfaces.  

 

 
 DDCKEYCAPS_DESTOVERLAYYUV  

 
Supports overlaying using color 
keying of the replaceable bits of the 
destination surface being overlaid 
for YUV colors.  

 

 
 DDCKEYCAPS_NOCOSTOVERLAY  

 
No bandwidth trade-offs for using 
the color key with an overlay.  

 

 
 DDCKEYCAPS_SRCBLT  

 
Supports transparent blitting using 
the color key for the source with this 
surface for RGB colors.  

 

 
 DDCKEYCAPS_SRCBLTCLRSPACE  

 
Supports transparent blitting using a 
color space for the source with this 
surface for RGB colors.  

 

 
 DDCKEYCAPS_SRCBLTCLRSPACEYUV  

 
Supports transparent blitting using a 
color space for the source with this 
surface for YUV colors.  

 

 
 DDCKEYCAPS_SRCBLTYUV  

 
Supports transparent blitting using 
the color key for the source with this 
surface for YUV colors.  

 

 
 DDCKEYCAPS_SRCOVERLAY  

 
Supports overlaying using the color 
key for the source with this overlay 
surface for RGB colors.  

 

 
 DDCKEYCAPS_SRCOVERLAYCLRSPACE  

 
Supports overlaying using a color 
space as the source color key for 
the overlay surface for RGB colors.  

 

 
 DDCKEYCAPS_SRCOVERLAYCLRSPACEYUV  

 
Supports overlaying using a color 
space as the source color key for 
the overlay surface for YUV colors.  

 

 
 DDCKEYCAPS_SRCOVERLAYONEACTIVE  

 

Supports only one active source 
color key value for visible overlay 

 



color key value for visible overlay 
surfaces.  

 
 DDCKEYCAPS_SRCOVERLAYYUV  

 
Supports overlaying using the color 
key for the source with this overlay 
surface for YUV colors.  

 

 
    
 

 
Some hardware supports color ranges only for YUV pixel data, which is usually video. The 
transparent background in video footage (the blue screen against which the subject was 
photographed) might not be a pure color, so a range of colors in the color key is desirable in this 
case.  

 



DirectDraw Blits  
 

 

In the blit a rectangular block of memory bits, called the source, is transferred as a block into a 
rectangular memory area called the destination. If the destination of the transfer is screen memory, 
then the bitmapped image is immediately displayed. The source and destination bit blocks can be 
combined logically or arithmetically, or a unary operation can be performed on the source or the 
destination bit blocks.  

 

 

GDI blits can be used in DirectDraw programming, although they rarely are used because of their 
low performance. DirectDraw contains its own blit functions that are usually more suitable to the 
programming environment and execute faster than the GDI counterparts. The DirectDraw blit 
functions, called Blt() and BltFast(), are both associated with DirectDraw surface objects. 
Microsoft announced a third method, called BltBatch(), which will be implemented in future 
versions of DirectDraw. In the context of Draw programming, blit operations usually take place 
from an off-screen surface onto the back buffer, or onto a primary surface. In fact, much of the 
processing time of a typical DirectDraw application is spent blitting imagery. Also, the performance 
capability (called the bandwidth) of a particular blitter determines the quality of the application's 
video output. Figure 10-5 shows the most common forms of the DirectDraw blit operation.  

 

 

  
 
 Figure 10-5: DirectDraw blit operations 

   
 

 

Both Blt() and BltFast() operate on a destination surface, which is referenced in the call, and 
receive the source surface as a parameter. It is possible for both source and destination to be the 
same surface. In this case DirectDraw preserves all source pixels before overwriting them. Blt() 
is more flexible but BltFast() is faster, especially if there is no hardware blitter. Applications can 
determine the blitting capabilities of the hardware from the DDCAPS structure obtained by means of 
the GetCaps() function. If the dwCaps member contains DDCAPS_BLT, the hardware supports 
blitting.  

 
 BltFast()  
 
BltFast requires a valid rectangle in the source surface from which the pixels are copied. If the 
entire surface is copied, then the source rectangle is NULL. It also requires x- and y-coordinates in 



the destination surface. If the source rectangle is larger than the destination, the call fails and 
BltFast() returns DDERR_INVALIDRECT. BltFast() cannot be used on surfaces that have 
an attached clipper. Neither does it support stretching, mirroring, or other effects that can be 
performed with Blt().  

 
 The function's general form is as follows:  
 
 HRESULT BltFast(  
 DWORD dwX, // 1  
 DWORD dwY, // 2  
 LPDIRECTDRAWSURFACE4 lpDDSrcSurface, // 3  
 LPRECT lpSrcRect, // 4   
 DWORD dwTrans // 5   
 );  
 

 

The first and second parameters are the x- and y-coordinates to blit on the destination surface. 
The third parameter is the address of an IDirectDrawSurface4 interface for the DirectDrawSurface 
object that is the source of the blit. The fourth parameter is a RECT structure that defines the 
upper-left and lower-right points of the rectangle on the source surface. The fifth parameter defines 
the type of blit, as listed in Table 10-5.  

 
 Table 10-5: Type of Transfer Constants in BltFast()  
 
    
 
 Constant  

 
Action  

 

 
    
 
 DDBLTFAST_DESTCOLORKEY  

 
Transparent blit that uses the destination's 
color key.  

 

 
 DDBLTFAST_NOCOLORKEY  

 
Normal copy blit with no transparency.  

 

 
 DDBLTFAST_SRCCOLORKEY  

 
Transparent blit that uses the source's color 
key.  

 

 
 DDBLTFAST_WAIT  

 
Does not produce a message if the blitter is 
busy. Returns as soon as the blit can be set up 
or another error occurs.  

 

 
 DDERR_WASSTILLDRAWING  

 
  

 



    
 
 If the call succeeds, BltFast() returns DD_OK. If it fails it returns one of the following self-
explanatory values:  

 
 DDERR_EXCEPTION  
 
 DDERR_GENERIC  
 
 DDERR_INVALIDOBJECT  
 
 DDERR_INVALIDPARAMS  
 
 DDERR_INVALIDRECT  
 
 DDERR_NOBLTHW  
 
 DDERR_SURFACEBUSY  
 
 DDERR_SURFACELOST  
 
 DDERR_UNSUPPORTED   
 
 DDERR_WASSTILLDRAWING  
 

 

BltFast() always attempts an asynchronous blit if it is supported by the hardware. The function 
works only on display memory surfaces and cannot clip when blitting. According to Microsoft, 
BltFast() is 10 percent faster than the Blt() method if there is no hardware support, but there 
is no speed difference if the display hardware is used. Figure 10-6 shows a diagram of the 
parameters and operation of the BltFast() function.  



 

  
 
 Figure 10-6: DirectDraw BltFast() function 

   
 
 Blt()  
 

 

Blt() is the more flexible and powerful of the two DirectDraw blit functions. Like BltFast(), 
Blt() performs a bit block transfer from a source surface into a destination surface. Blt() allows 
a clipper to be attached to the destination surface, in which case clipping is performed if the 
surface falls outside of the destination rectangle. Blt() can also be used to automatically scale 
the source image to fit the destination rectangle. Scaling is disabled when both surfaces are the 
same size. The function's general form is as follows:  

 
 HRESULT Blt(  
 LPRECT lpDestRect, // 1  
 LPDIRECTDRAWSURFACE4 lpDDSrcSurface, // 2  
 LPRECT lpSrcRect, // 3   
 DWORD dwFlags, // 4  
 LPDDBLTFX lpDDBltFx // 5  
 );  
 

 

The first parameter is the address of a RECT structure that defines the upper-left and lower-right 
points of the source rectangle. If this parameter is NULL, the entire destination source surface is 
used. The second parameter is the address of the IDirectDrawSurface4 interface for the 
DirectDrawSurface object that is the source of the blit. The third parameter is the address of a 
RECT structure that defines the upper-left and lower-right points of the source rectangle from which 
the blit is to take place. If this parameter is NULL, then the entire source surface is used. The 
fourth parameter is one or more flags that determine the valid members of the associated 
DDBLTFX structure, which specifies color key information or requests a special behavior. Three 
types of flags are currently defined: validation flags, color key flags, and behavior flags. Table 10-6 
lists the predefined constants for this parameter.  

 
 Table 10-6: Flags for the Blt() Function 



 Table 10-6: Flags for the Blt() Function  
 
    
 
 Flags  

 
Meaning  

 

 
    
 
 Validation Flags:  

 
  

 

 
 DDBLT_COLORFILL  

 
The dwFillColor member of the DDBLTFX 
structure is the RGB color that fills the 
destination rectangle.  

 

 
 DDBLT_DDFX  

 
The dwDDFX member of the DDBLTFX structure 
specifies the effects to use for the blit.  

 

 
 DDBLT_DDROPS  

 
The dwDDROP member of the DDBLTFX 
structure specifies the raster operations 
(ROPS) that are not part of the Win32 API.  

 

 
 DDBLT_DEPTHFILL  

 
The dwFillDepth member of the DDBLTFX 
structure is the depth value with which to fill the 
destination rectangle.  

 

 
 DDBLT_KEYDESTOVERRIDE  

 
The ddckDestColorkey member of the 
DDBLTFX structure is the color key for the 
destination surface.  

 

 
 DDBLT_KEYSRCOVERRIDE  

 
The ddckSrcColorkey member of the 
DDBLTFX structure is the color key for the 
source surface.  

 

 
 DDBLT_ROP  

 
The dwROP member of the DDBLTFX structure 
is the ROP for this blit. The ROPs are the same 
as those defined in the Win32 API.  

 

 
 DDBLT_ROTATIONANGLE  

 
The dwRotationAngle member of the 
DDBLTFX structure is the rotation angle, in 
1/100th of a degree unit, for the surface.   

 

 
 Color Key Flags:  

 
  

 

 
 DDBLT_KEYDEST  

 
The color key is associated with the destination 
surface.  

 



 
 DDBLT_KEYSRC  

 
The color key is associated with the source 
surface.  

 

 
 Behavior Flags:  

 
  

 

 
 DDBLT_ASYNC  

 
Blit asynchronously in the FIFO order received. 
If no room is available in the FIFO hardware, 
the call fails.  

 

 
 DDBLT_WAIT  

 
Postpones the DDERR_WASSTILLDRAWING 
return value if the blitter is busy, and returns as 
soon as the blit can be set up or another error 
occurs.  

 

 
    
 

 
The fifth parameter is the address of a structure variable of type DDBLTFX that defines special 
effects during the blit, including raster operations codes (ROP) and override information. Because 
of their complexity, special effects during blit operations are discussed in a separate section. 
Figure 10-7 shows the parameters and operation of the Blt() function.  

 

 

  
 
 Figure 10-7: DirectDraw Blt() function 

   
 
 If the call succeeds, the return value is DDOK. If it fails, the return value is one of the following 
error codes:  

 
 DDERR_GENERIC  DDERR_INVALIDRECT  

 

  



 DDERR_INVALIDCLIPLIST  DDERR_NOALPHAHW  
 
 DDERR_INVALIDOBJECT  DDERR_NOBLTHW  

 

 
 DDERR_INVALIDPARAMS  DDERR_NOCLIPLIST  

 

 
 DDERR_NODDROPSHW  DDERR_NOZBUFFERHW  

 

 
 DDERR_NOMIRRORHW  DDERR_SURFACEBUSY  

 

 
 DDERR_NORASTEROPHW  DDERR_SURFACELOST  

 

 
 DDERR_NOROTATIONHW  DDERR_UNSUPPORTED  

 

 
 DDERR_NOSTRETCHHW  DDERR_WASSTILLDRAWING  

 

 

 

The Blt() function is capable of synchronous or asynchronous blits for display memory to display 
memory, display memory to system memory, system memory to display memory, or system 
memory to system memory. The default is asynchronous. The function supports both source and 
destination color keys. If the source and the destination rectangles are not the same size, Blt() 
performs the necessary stretching or shrinking. Blt() returns immediately with an error if the 
blitter is busy. If the code specifies the DDBLT_WAIT flag, then a synchronous blit takes place and 
the call waits until the blit can be set up or until another error occurs.  

 

 

To use the Blt() function, code must supply a valid rectangle in the source surface (or NULL to 
specify the entire surface), and a rectangle in the destination surface to which the source image is 
copied. Here again, NULL means the destination rectangle is the entire surface. If a clipper is 
attached to the destination surface, then the bounds of the source rectangle can fall outside the 
surface and clipping is performed automatically. If there is no clipper, the source rectangle must fall 
entirely within the surface or else the method fails and returns DDERR_INVALIDRECT.  

 



Blit Transformations  
 

 

DirectDraw supports several transformations that take place at blit time. The most important ones 
are color fills, scaling, mirroring, and raster operations. Other effects, such as rotation, are not 
available in the HEL; therefore, they cannot be used if the hardware does not support them. 
Applications that do not require any special blit-time transformations other than scaling can pass 
NULL as in the fourth parameter of the Blt() function. Code can determine the hardware support 
for blit-time transformations by calling GetCaps().  

 

 
Applications that require a particular blit-time transformation must pass the corresponding value in 
one of the members of the DDBLTFX structure. The appropriate flags must also be included in the 
fourth parameter of Blt(), which determines which members of the structure are valid. Some 
transformations require setting only a single flag, others require several of them.  

 

 
You can use the dwFlags member of DDBLTFX named DDBLTFX_NOTEARING when blitting 
images directly to the front buffer. The action of this flag is to time the blit so that it coincides with 
the screen's vertical retrace cycle, thus minimizing the possibility of tearing. Tearing and screen 
update timing are discussed in the context of DirectDraw animation, in Chapter 11.  

 

 

Applications that use surface color keys when calling BltFast() or Blt() must set one or both 
of the DDBLTFAST_SRCCOLORKEY or DDBLTFAST_DESTCOLORKEY flags in the corresponding 
function parameter. Alternatively, code can place the appropriate color values in the 
ddckDestColorkey and ddckSrcColorkey members of the DDBLTFX structure that is passed 
to the function in the lpDDBltFx parameter. In this case it is also necessary to set the 
DBLT_KEYSRCOVERRIDE or DDBLT_KEYDESTOVERRIDE flag, or both, in the dwFlags parameter. 
The resulting action is that the selected color keys are taken from the DDBLTFX structure rather 
than from the surface properties.  

 
 Color fills  
 

 

Applications can use the blitter to fill the entire surface, or a part of it, with a single color. This 
operation is useful for creating backgrounds when using a destination color key, and for clearing 
large screen areas. When Blt() is used to perform a color fill, the call must reference the 
DDBLT_COLORFILL flag. The following code fragment fills an entire surface with the color blue. 
Code assumes that lpDDS is a valid pointer to an IDirectDrawSurface4 interface.  

 
 HRESULT ddrval;  
 DDBLTFX ddbltfx;   
 . . .  
 ZeroMemory(&ddbltfx, sizeof(ddbltfx));  
 ddbltfx.dwSize = sizeof(ddbltfx);   
   
 ddbltfx.dwFillColor = ddpf.dwBBitMask; // Pure blue  
 ddrval = lpDDS->Blt(   
 NULL, _// Destination is entire _// surface  



 NULL, // No source surface  
 NULL, // No source rectangle  
 DDBLT_COLORFILL, &ddbltfx);   
   
 if(ddrval != DD_OK)  
 // Error handler goes here  
 
 Scaling  
 

 

The Blt() function automatically scales the source image to fit the destination rectangle. Scaling 
is implemented in the HEL, so it is always available. Some video cards have hardware support for 
scaling operations. Applications can inspect the dwCXCaps member of the DDCAPS structure to 
determine if hardware support is available and of which type. Table 10-7 lists the predefined 
constants used in the scaling capabilities flag.  

 
 Table 10-7: Scaling Flags for the Blt() Function  
 
    
 
 Flags  

 
Meaning  

 

 
    
 
 DDFXCAPS_BLTALPHA  

 
Supports alpha-blended blit operations.  

 

 
 DDFXCAPS_BLTARITHSTRETCHY  

 
Arithmetic operations, rather than pixel-
doubling techniques, are used to stretch and 
shrink surfaces along the y-axis.  

 

 
 DDFXCAPS_BLTARITHSTRETCHYN  

 
Arithmetic operations, rather than pixel-
doubling techniques, are used to stretch and 
shrink surfaces along the y-axis. Stretching 
must be integer-based.  

 

 
 DDFXCAPS_BLTSHRINKX  

 
Arbitrary shrinking of a surface along the x-axis 
(horizontally).  

 

 
 DDFXCAPS_BLTSHRINKXN  

 
Integer shrinking of a surface along the x-axis.  

 

 
 DDFXCAPS_BLTSHRINKY  

 
Arbitrary shrinking of a surface along the y-axis. 

 

 
 DDFXCAPS_BLTSHRINKYN  

 
Integer shrinking of a surface along the y-axis.  

 

   



 DDFXCAPS_BLTSTRETCHX  Arbitrary stretching of a surface along the x-
axis.  

 
 DDFXCAPS_BLTSTRETCHXN  

 
Integer stretching of a surface along the x-axis. 

 

 
 DDFXCAPS_BLTSTRETCHY  

 
Arbitrary stretching of a surface along the y-
axis (vertically).  

 

 
 DDFXCAPS_BLTSTRETCHYN  

 
Supports integer stretching of a surface along 
the y-axis.  

 

 
    
 

 
Scaling is disabled automatically when the source and destination rectangles are exactly the same 
size. An application can use the BltFast() function, instead of Blt(),to avoid accidental scaling 
because of differing sizes in the source and destination rectangles.  

 

 

Some video cards support arithmetic scaling. In this case the scaling operation is performed by 
interpolation rather than by multiplication or deletion of pixels. For example, if an axis is being 
increased by one-third, the pixels are recolored to provide a closer approximation to the original 
image than would be produced by doubling every third pixel on that axis. Code has little control 
over the type of scaling performed by the driver. The only possibility is to set the 
DDBLTFX_ARITHSTRETCHY flag in the dwDDFX member of the DDBLTFX structure passed to 
Blt(). This flag requests that arithmetic stretching be done on the y-axis. Arithmetic stretching on 
the x-axis and arithmetic shrinking are not currently supported in the DirectDraw API, but a driver 
may perform them on its own.  

 
 Mirroring  
 

 
Mirroring is another transformation supported by the HEL. Applications can assume that it is 
available even if it is not supported in the hardware. Mirroring is defined in the x- and y-axes of the 
blit rectangle. Figure 10-8 shows mirroring along either axis.  

 

 

  



 
 Figure 10-8: Mirroring transformations 

   
 
 Table 10-8 lists the predefined constants used in mirroring transformations during Blt().  
 
 Table 10-8: Mirroring Flags for the Blt() Function  
 
    
 
 Flags  

 
Meaning  

 

 
    
 
 DDBLTFX_MIRRORLEFTRIGHT  

 
Mirrors on the y-axis. The surface is mirrored 
from left to right.  

 

 
 DDBLTFX_MIRRORUPDOWN  

 
Mirrors on the x-axis. The surface is mirrored 
from top to bottom.  

 

 
    
 

 

Applications sometimes need several versions of a symmetrical sprite, in which the image faces in 
different directions. Rather than creating a bitmap for each image, it is possible to generate them 
by mirroring the original. Hardware support for mirroring can be determined by the presence of the 
DDFXCAPS_BLTMIRRORLEFTRIGHT and DDFCAPS_BLTMIRRORUPDOWN identifiers in the 
dwFXCaps member of the DDCAPS structure.  

 
 Raster operations  
 

 

Blit-time transformations can include some of the standard raster operations (ROPs) used by the 
GDI BitBlt() functions. At present only SRCCOPY (the default), BLACKNESS, and WHITENESS are 
supported by the HEL. Hardware support for other raster operations can be determined by 
examining the DDCAPS structure. Code that uses any of the standard ROPs with the Blt() method 
must set the corresponding flag in the dwROP member of the DDBLTFX structure. The dwDDROP 
member of the DDBLTFX structure is for specifying ROPs specific to DirectDraw. No such ROPs 
have been defined at this time.  

 



 Summary  
 

 

In this chapter we discussed the DirectDraw blit operation and the transformations that take place 
at blit time. We started by reviewing surfaces because DirectDraw bitmap rendering operations 
always take place at the surface level. We also looked at transparency and color keys as the 
fundamental tool for overlaying bitmaps. The basic rendering functions, Blt() and BltFast(), 
were analyzed in detail, as well as the blit-time transformations consisting of color fills, scaling, 
mirroring, and raster operations.  

 
 The next chapter is devoted to bitmap programming in DirectDraw.  
 



Chapter 11: Rendering Bitmaps in DirectDraw  
 
 Overview  
 

 

Bitmaps are one of the most powerful structures available to the graphics programmer. In today's 
technological world, with an abundance of real-color and True-color modes, bitmaps can be used 
to encode images with photo-realistic accuracy. The processing capabilities available in this 
generation of PCs make possible the effective manipulation of bitmapped images. DirectDraw 
implements a new dimension of functionality in bitmap processing and display operations. Many 
types of applications rely heavily on bitmaps; these include image processing, simulations, virtual 
reality, artificial life, and electronic games.  

 

 
This chapter is devoted to bitmap rendering in the context of a DirectDraw windowed application. 
The use of bitmaps in animated programs that execute DirectDraw exclusive mode is the topic of 
Chapter 12.  

 



Rendering a Bitmap  
 
 In DirectDraw programming bitmap manipulations consists of four basic steps:  
 
   •Loading the bitmap into application memory  
 
   •Obtaining bitmap data necessary for displaying it on the screen  
 
   •Moving the bitmap onto a DirectDraw surface  
 
   •Blitting the bitmap onto the video display  
 
 Loading the bitmap  
 

 

Loading a bitmap onto the application's memory space is an operation of GDI graphics, not 
actually part of DirectDraw. In the demonstration program named Bitmap Demo, contained in the 
book's CD-ROM, we load several bitmaps during WM_CREATE message processing. In this case 
we used Developer Studio to define the bitmaps as program resources, and then used 
LoadBitmap() to load them into the application's memory space. Alternatively, instead of 
defining the bitmap as a program resource, you can use LoadImage() to load the bitmap directly 
from the disk file in which it is stored. At this time you can also perform certain preliminary checks 
to make sure that the DirectDraw surface is compatible with the bitmap to be displayed. Note that 
the sample code requires that the surface be nonpalettized. The GetSurfaceDesc() DirectDraw 
function is used to fill a DDSURFACEDESC2 structure, discussed in Chapter 9. The 
DDPIXELFORMAT structure, which is part of DDSURFACEDESC2, contains two relevant values: the 
flag DDPF_RGB indicates that the RGB data is valid, and the dwRGBBitCount member contains 
the number of RGB bits per pixel. If the DDPF_RGB flag is set and dwRGBBitCount is greater than 
15, you can assume that the surface is nonpalettized, and therefore compatible.  

 

 
Note that the LoadImage() function does not return palette information. Microsoft Knowledge 
Base Article Q158898 lists the function LoadBitmapFromBMPFile(), which uses the 
DIBSection's color table to create a palette. If no color table is present, then a half-tone palette is 
created. You can find the source for this function in the MSDN Library that is part of Visual C++.  

 
 When code has determined that a compatible surface is available, it can proceed to load the 
bitmap. The general form of the LoadImage() function is as follows:  

 
 HANDLE LoadImage(  
 HINSTANCE hInst, // 1  
 LPCTSTR lpszName, // 2  
 UINT uType, // 3  
 int cxDesired, // 4  
 int cyDesired, // 5  
 UINT fuLoad // 6  



 );  
 

 

The first parameter is a handle to an instance of the module that contains the image to be loaded. 
In the case of an image contained in a file, this parameter is set to zero. The second parameter is 
a pointer to the image to load. If it is nonNULL and the sixth parameter (described later) does not 
include LR_LOADFROMFILE, then it is a pointer to a null-terminated string that contains the 
filename of the image resource. The third parameter is the image type. It can be one of the 
following constants:  

 
 IMAGE_BITMAP  
 
 IMAGE_CURSOR  
 
 IMAGE_ICON  
 

 

The fourth and fifth parameters specify the pixel width and height of the bitmap, cursor, or icon. If 
this parameter is zero and the sixth parameter is LR_DEFAULTSIZE, then the function uses the 
SM_CXICON or SM_CXCURSOR system metric value to set the width. If this parameter is zero, and if 
LR_DEFAULTSIZE is present in the sixth parameter, then the function uses the actual width and 
height of the bitmap.  

 
 The sixth, and last parameter, is one or more flags represented by the predefined constants listed 
in Table 11-1.  

 
 Table 11-1: Predefined Constants in LoadImage() Function  
 
    
 
 Constant  

 
Meaning  

 

 
    
 
 LR_DEFAULTCOLOR  

 
Default flag. Does nothing.  

 

 
 LR_CREATEDIBSECTION  

 
When the third parameter is IMAGE_BITMAP, this flag 
causes the function to return a DIB section bitmap rather 
than a compatible bitmap. It is useful for loading a bitmap 
without mapping it to the colors of the display device.  

 

 
 LR_DEFAULTSIZE  

 
For cursor and icons the width or height values are those 
specified by the system metric values, but only if the 
fourth and fifth parameters are set to zero. If this flag is 
not specified and the fourth and fifth parameters are set to 
zero, the function uses the actual resource size.  

 

   



 LR_LOADFROMFILE  Loads the image from the file specified by the second 
parameter. If this flag is not specified, lpszName is the 
name of the resource.  

 
 LR_LOADMAP3DCOLORS  

 
Searches the color table for the image and replaces the 
following shades of gray with the corresponding 3D color: 

 

 
   

 
Color RGB value Replaced with  

 

 
   

 
Dk Gray RGB(128,128,128) COLOR3DSHADOW  

 

 
   

 
Gray RGB(192,192,192) COLOR3DFACE  

 

 
   

 
Lt Gray RGB(223,223,223) COLOR3DLIGHT  

 

 
 LR_LOADTRANSPARENT  

 
Retrieves the color value of the top-left pixel in the image 
and replaces the corresponding entry in the color table 
with the default window color (COLOR_WINDOW). All pixels 
in the image that use that entry become the default 
window color. This value applies only to images that have 
corresponding color tables.  

 

 
 LR_MONOCHROME  

 
Converts the image to black and white pixels.  

 

 
 LR_SHARED  

 
Shares the image handle if the image is loaded multiple 
times. If LR_SHARED is not used, a second call to 
LoadImage() for the same resource loads the image 
again and returns a different handle. LR_SHARED should 
not be used for images that have nonstandard sizes, that 
may change after loading, or that are loaded from a file. In 
Windows 95 and Windows 98 LoadImage() finds the 
first image with the requested resource name in the 
cache, regardless of the size requested.  

 

 
 LR_VGACOLOR  

 
Use true VGA colors.  

 

 
    
 

 

LoadImage() returns the handle of the newly loaded image if the call succeeds. If the function 
fails, the return value is NULL. Although the system automatically deletes all resources when the 
process that created them terminates, applications can save memory by releasing resources that 
are no longer needed. DeleteObject() is used to release a bitmap, DestroyIcon() for icons, 
and DestroyCursor() for cursor resources.  

 
 The following function is used to load a bitmap into the application's memory space and obtain its 
handle. In this case the code checks for a compatible surface with a nonpalettized bitmap.  



 
 //***************************************************************  
 // Name: DDLoadBitmap  
 // Desc: Loads a bitmap file into memory and returns its handle  
 //  
 // PRE CONDITIONS:  
 // 1. Parameter 1 is pointer to a DirectDraw surface  
 // Parameter 2 is pointer to bitmap filename string   
 //  
 // POST CONDITIONS:  
 // Returns handle to bitmap  
 //   
 // ERROR CONDITIONS:  
 // All errors exit through DDInitFailed() function  
 //***************************************************************  
   
 HBITMAP DDLoadBitmap( LPDIRECTDRAWSURFACE4 lpDDS, LPSTR szImage)  
 {  
 HBITMAP hbm;  
 DDSURFACEDESC2 ddsd;  
   
 ZeroMemory( &ddsd, sizeof( ddsd ) );  
 ddsd.dwSize = sizeof( ddsd );  
   
 if ( lpDDS->GetSurfaceDesc( &ddsd ) != DD_OK )  
 DDInitFailed(hWnd, hRet,  
 "GetSurfaceDesc() call failed in DDLoadBitmap()");  
   
 // Test for compatible pixel format  
 if ( ( ddsd.ddpfPixelFormat.dwFlags != DDPF_RGB ) ||  
 ( ddsd.ddpfPixelFormat.dwRGBBitCount < 16 ) )  
 DDInitFailed(hWnd, hRet,  
 "Incompatible surface in DDLoadBitmap()");  
   
 // Load the bitmap image onto memory  
 hbm = ( HBITMAP )LoadImage( NULL, szImage,   
 IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE );  
   



 if ( hbm == NULL )   
 DDInitFailed(hWnd, hRet,  
 "Bitmap load failed in DDLoadBitmap()");  
   
 return hbm;  
 }  
 

 
Note that in DDLoadBitmap() all errors are considered terminal and directed through the 
DDInitFailed() function, which was developed and listed in Chapter 9. This mode of operation 
can be changed if the code is to provide alternate processing in these cases.  

 
 Obtaining bitmap information  
 

 
To display and manipulate a bitmap, the processing routines usually require information about its 
size and organization. The GDI GetObject() function is used for this purpose. This function fills 
a structure of type BITMAP, defined as follows:  

 
 typedef struct tagBITMAP {   
 LONG bmType; // Must be zero  
 LONG bmWidth; // bitmap width (in pixels)  
 LONG bmHeight; // bitmap height (in pixels)  
 LONG bmWidthBytes; // bytes per scan line  
 WORD bmPlanes; // number of color planes  
 WORD bmBitsPixel; // bits per pixel color  
 LPVOID bmBits; // points to bitmap values array  
 } BITMAP;   
 

 

The bmWidth member specifies the width, in pixels, of the bitmap, whereas bmHeight specifies 
the height, also in pixels. Both values must be greater than zero. The bmWidthBytes member 
specifies the number of bytes in each scan line. Windows assumes that the bitmap is word-
aligned; therefore, this value must be divisible by two. The member bmPlanes specifies the 
number of color planes. The member bmBitsPixel specifies the number of bits required to 
indicate the color of a pixel. The member bmBits points to the location of the bit values for the 
bitmap. It is a long pointer to an array of char-size (1 byte) values.  

 

 

How much of the information in the BITMAP structure is used depends on the type of bitmap 
processing performed by the application. The direct access operations described in Chapter 9 
enable code to manipulate bitmap data directly. In this case most of the BITMAP structure 
members are required in order to locate and access the bitmap data. On the other hand, 
applications can use high-level functions to display bitmap. Such is the case with the BitBlt() 
GDI function, and the DirectDraw Blt() and BltFast() functions. When high-level functions are 
used, only the bmWidth and bmHeight members are usually necessary.  

 



 Moving a bitmap onto a surface  
 

 
Blit operations in DirectDraw take place between surfaces. Therefore, a useful function is one that 
loads a bitmap onto a surface. The function, named DDBmapToSurf(), copies a memory-resident 
bitmap, specified by its handle, into a DirectDraw surface.  

 
 //***************************************************************  
 // Name: DDBmapToSurf  
 // Desc: Moves a bitmap to a DirectDraw Surface  
 // PRE CONDITIONS:  
 // 1. Parameter 1 is pointer to a DirectDraw surface  
 // Parameter 2 is handle to the bitmap  
 //  
 // POST CONDITIONS:  
 // Bitmap is moved to surface  
 // Returns 1 if successful  
 // /  
 // ERROR CONDITIONS:  
 // All errors exit through DDInitFailed() function  
 //***************************************************************  
 HRESULT DDBmapToSurf(LPDIRECTDRAWSURFACE4 pdds, HBITMAP hbm)  
 {  
 HDC hdcImage;  
 HDC hdc;  
 DDSURFACEDESC2 ddsd;  
 HRESULT hr = 1;  
 BOOL retValue;  
   
 if (hbm == NULL || pdds == NULL)  
 DDInitFailed(hWnd, hRet,  
 "Invalid surface or bitmap in DDBmapToSurf");  
   
 // Create compatible DC and select bitmap into it  
 hdcImage = CreateCompatibleDC(NULL);  
 if (!hdcImage)  
 DDInitFailed(hWnd, hRet,  
 "CreateCompatibleDC() failed in DDBmapToSurf");  
 SelectObject(hdcImage, hbm);  
   



 // Get size of surface  
 ddsd.dwSize = sizeof(ddsd);  
 ddsd.dwFlags = DDSD_HEIGHT | DDSD_WIDTH;  
 pdds->GetSurfaceDesc(&ddsd);  
   
 if ((hr = pdds->GetDC(&hdc)) != DD_OK)  
 DDInitFailed(hWnd, hRet,  
 "GetDC() failed in DDBmapToSurf");  
   
 retValue = BitBlt(hdc, 0, 0, ddsd.dwWidth, ddsd.dwHeight,  
 hdcImage, 0, 0, SRCCOPY);  
 // Release surface immediately  
 pdds->ReleaseDC(hdc);  
   
 if(retValue == FALSE)  
 DDInitFailed(hWnd, hRet,  
 "BitBlt() failed in DDBmapToSurf");  
   
 DeleteDC(hdcImage);  
 return hr;  
 }  
 
 Displaying the bitmap  
 

 

We mentioned that the BitBlt() GDI function provides a flexible, yet slow, mechan-ism for 
displaying bitmaps. In the case of a DirectDraw application, executing in exclusive mode, the 
device context must be obtained with the DirectDraw-specific version of the GetDC() function. 
IDirectDrawSurface4:GetDC not only returns a GDI-compatible device context, but also locks 
the surface for access. The following function displays a bitmap using a DirectDraw device context: 

 
 //***************************************************************  
 // Name: DDShowBitmap  
 // Desc: Displays a bitmap using a DirectDraw device context  
 //  
 // PRE CONDITIONS:  
 // 1. Parameter 1 is pointer to a DirectDraw surface  
 // Parameter 2 is handle to the bitmap  
 // Parameters 3 and 4 are the display location  
 // Parameters 5 and 6 are the bitmap dimensions   



 //  
 // POST CONDITIONS:  
 // Returns TRUE if successful  
 //   
 // ERROR CONDITIONS:  
 // All errors exit through DDInitFailed() function  
 //***************************************************************  
   
 BOOL DDShowBitmap( LPDIRECTDRAWSURFACE4 lpDDS, HBITMAP hBitmap,  
 int xLocation, int yLocation,  
 int bWidth, int bHeight)  
 {  
   
 HDC hdcImage = NULL;  
 HDC hdcSurf = NULL;  
 HDC thisDevice = NULL;  
   
 // Create a DC and select the image into it.  
 hdcImage = CreateCompatibleDC( NULL );  
 SelectObject( hdcImage, hBitmap);  
   
 // Get a DC for the surface.  
 if(lpDDS->GetDC(&hdcSurf) != DD_OK) {  
 DeleteDC( hdcImage );  
 DDInitFailed(hWnd, hRet,  
 "GetDC() call failed in DDShowBitmap()");  
 }  
   
 // BitBlt() is used to display bitmap  
 if ( BitBlt( hdcSurf, xLocation, yLocation, bWidth,  
 bHeight, hdcImage, 0, 0, SRCCOPY ) == FALSE ) {  
 lpDDS->ReleaseDC( hdcSurf );  
 DeleteDC( hdcImage );  
 // Take terminal error exit  
 DDInitFailed(hWnd, hRet,  
 "BitBlt() call failed in DDShowBitmap()");  
 }  
 // Release device contexts  



 lpDDS->ReleaseDC( hdcSurf );  
 DeleteDC( hdcImage );  
 return TRUE;  
 }  
 

 
The following code fragment shows the processing required for loading and displaying a bitmap 
onto the primary surface, as implemented in the project named DD Bmap Demo contained in the 
book's CD-ROM.  

 
 // Load bitmap named hubble.bmp  
 aBitmap = DDLoadBitmap(lpDDSPrimary, "hubble.bmp");  
   
 // Get bitmap data for displaying  
 GetObject(aBitmap, sizeof (BITMAP), &bMap1);  
   
 // Display bitmap  
 DDShowBitmap(lpDDSPrimary, aBitmap, 130, 50,  
 (int) bMap1.bmWidth,  
 (int) bMap1.bmHeight);  
 



DirectDraw Windowed Applications  
 

 

The maximum power and functionality of DirectDraw are available only to applications that execute 
in exclusive mode. For this reason programmers usually associate DirectDraw applications with 
exclusive mode execution. However, this does not preclude conventional Windows programs from 
using many DirectDraw functions, usually with considerable gain in performance and also allowing 
some image manipulations that are not possible in GDI code. You should also consider the fact 
that DirectDraw programming in windowed mode restores most of the device-independence that is 
lost in exclusive mode. This means that program coding must return to the conventional 
multitasking, message-based paradigm that is characteristic of Windows.  

 

 

Running in a window usually means that the program can be totally or partially obscured by 
another program, that it can lose focus, that surfaces may be unbound from their memory 
assignments, and that the application window can be minimized or resized by the user. Most of 
these circumstances, which are often ignored in exclusive mode, require careful attention in 
windowed DirectDraw. The following are the main differences between DirectDraw programs in 
exclusive and nonexclusive mode:  

 

   
•Exclusive mode applications usually require window style WS_POPUP, whereas windowed 
applications use WS_THICKFRAME if they are resizable. The combination WS_SYSMENU, 
WS_CAPTION, and WS_MINIMIZEBOX is used if the window cannot be resized by the user. 
WS_OVERLAPPEDWINDOW style includes WS_THICKFRAME.  

 
   •Exclusive mode programs use DDSCL_FULLSCREEN and DDSCL_EXCLUSIVE cooperative level; 

windowed programs use DDSCL_NORMAL.  
 

   
•Whereas exclusive mode programs can use page flipping in implementing animation (animation 
techniques are covered in Chapter 12), windowed programs have very limited flipping capabilities. 
This is one of the reasons why games and other animation-intensive applications are designed 
usually for DirectDraw exclusive mode.  

 

   
•Full-screen programs can set their own display mode, whereas windowed programs must operate 
in the current desktop display mode. By the same token, exclusive mode programs can assume a 
particular display mode, whereas windowed programs must be designed with sufficient flexibility to 
execute in several display modes.  

 

   
•Exclusive mode applications may use clipping to produce specific graphics effects. Nonexclusive 
mode programs often rely on clipping to facilitate interaction with other programs and with the 
Windows desktop.  

 

   
•Although exclusive mode can be switched to the background, usually they cannot be minimized 
or resized by the user. Nonexclusive mode programs can be moved on the desktop, resized, 
minimized, or obscured by other applications.  

 

   
•Exclusive mode programs have direct control over the palette and can be designed for a 
particular palette. Windowed programs must use the palette manager to make changes and must 
accommodate palette changes made by the user or by other programs.  

 
•Exclusive mode programs can display or hide the system cursor but cannot use system-level 
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mouse support, as is the case with the system menu or the buttons on the program's title bar. 
Furthermore, exclusive mode programs must furnish most of the cursor processing logic. On the 
other hand, DirectDraw windowed applications can make use of all the cursor and cursor-related 
support functions in the Windows API.  

 
   •Exclusive mode applications must implement their own menus. Windows applications can use the 

menu facilities in the API.  
 

 

In summary, although windowed programs must address some specific issues in using DirectDraw 
services, they do have almost unrestricted access to the functionality of a conventional application. 
Thus, a DirectDraw program that executes in nonexclusive mode can have a title bar, resizable 
borders, menus, status bar, sizing grip, scroll bars, as well as most of the other GUI components 
discussed earlier in the book. As a result, there is no standard design for a DirectDraw windowed 
application. However, there are issues that are usually confronted by a typical DirectDraw 
application when executing in nonexclusive mode. In the following sections we discuss the most 
important ones.  

 
 Nonexclusive mode initialization  
 

 

It is difficult to design a general-purpose template for a DirectDraw nonexclusive mode application. 
The same applies for the initialization operations required to set up such programs. At the same 
time, there are certain typical initialization steps that apply to many DirectDraw applications that 
execute in nonexclusive mode. The project named DD NonExc Mode, included in the book's CD-
ROM, contains a template file with minimal initializations for a DirectDraw application in 
nonexclusive mode.  

 
 The first step in WinMain() processing is defining and filling the WNDCLASSEX structure variable 
and registering the window class. In the template file this is accomplished as follows:  

 
 // Defining a structure of type WNDCLASSEX  
 WNDCLASSEX wndclass ;  
 wndclass.cbSize = sizeof (wndclass) ;  
 wndclass.style = CS_HREDRAW | CS_VREDRAW;  
 wndclass.lpfnWndProc = WndProc ;  
 wndclass.cbClsExtra = 0 ;  
 wndclass.cbWndExtra = 0 ;  
 wndclass.hInstance = hInstance ;  
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;  
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;  
 wndclass.hbrBackground = (HBRUSH) GetStockObject  
 (WHITE_BRUSH) ;  
 wndclass.lpszMenuName = szAppName;  
 wndclass.lpszClassName = szAppName;  
 wndclass.hIconSm = LoadIcon (NULL, IDI_APPLICATION) ;  
   



 // Register the class  
 RegisterClassEx(&wndclass);  
 

 
Next, the code must create the window and define its show state. In the case of a resizable 
window with the three conventional buttons and the system menu box in the title bar you can use 
the WS_OVERLAPPEDWINDOW style. Because it is impossible to predict the window size and initial 
location in the template, we used CW_USEDEFAULT for these parameters.  

 
 hWnd = CreateWindowEx(0, // Extended style  
 szAppName,  
 "DirectDraw Nonexclusive Mode Template",  
 WS_OVERLAPPEDWINDOW,  
 CW_USEDEFAULT,  
 CW_USEDEFAULT,  
 CW_USEDEFAULT,  
 CW_USEDEFAULT,  
 NULL, // Handle of parent  
 NULL, // Handle to menu  
 hInstance, // Application instance  
 NULL); // Additional data  
 if (!hWnd)  
 return FALSE;  
 ShowWindow(hWnd, nCmdShow);  
 

 

The processing for creating a DirectDraw object and a primary surface is similar to that used in 
exclusive-mode programming. In the template we use the same support procedures previously 
developed. DD4Interface() attempts to find a DirectDraw4 object and returns 1 if found and 0 if 
not. If the call is successful, a global pointer variable named lpDD4, of type LPDIRECTDRAW4, is 
initialized. DDInitFailed() provides a terminal exit for failed initialization operations. The 
primary surface is created by means of a call to CreateSurface(). The surface pointer is stored 
in the public variable lpDDSPrimary. Code is as follows:  

 
 //*************************************  
 // Create DirectDraw object and   
 // create primary surface  
 //*************************************  
 // Fetch DirectDraw4 interface  
 hRet = DD4Interface();  
 if (hRet == 0)  
 return DDInitFailed(hWnd, hRet,  
 "QueryInterface() call failed");  



   
 // Set cooperative level to exclusive and full screen  
 hRet = lpDD4->SetCooperativeLevel(hWnd, DDSCL_NORMAL);  
 if (hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "SetCooperativeLevel() call failed");  
   
 //**********************************  
 // Create the primary surface  
 //**********************************  
 // ddsd is a structure of type DDSRUFACEDESC2  
 ZeroMemory(&ddsd, sizeof(ddsd)); // Clear structure  
 // Fill in other members  
 ddsd.dwSize = sizeof(ddsd);  
 ddsd.dwFlags = DDSD_CAPS ;  
 ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;  
   
 hRet = lpDD4->CreateSurface(&ddsd, &lpDDSPrimary, NULL);  
 if (hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "CreateSurface() call failed");  
 
 Clipping the primary surface  
 

 

In Chapter 7 we discussed clipping as the DirectDraw operation by which output is limited to a 
rectangular area, usually defined in a surface. DirectDraw supports clipping in both exclusive and 
nonexclusive modes. Because exclusive mode applications have control over the entire client 
area, clipping is used mostly as a graphics output manipulation. Windowed applications, on the 
other hand, often share the display with the Windows desktop and with other applications. In this 
case clipping is often used to ensure that the application's output is limited to its own client area. 
Figure 11-1 shows the execution on the Windows desktop of three copies of a DirectDraw 
application that uses clipping. The program itself, whose source file DDInWin.cpp is contained in 
the DD InWin Demo project in the book's CD-ROM, is discussed later in this session.  

 



 

  
 
 Figure 11-1: Clipping in a DirectDraw windowed application 

   
 

 

In DirectDraw windowed applications a clipper is used to define the program's screen boundaries. 
The clipper ensures that a graphics object is not displayed outside the client area. Failure to define 
a clipper may cause the blit operation to fail because the destination drawing surface may be 
outside of the display limits. When the boundaries of the primary surface are defined in a clipper, 
then DirectDraw knows not to display outside of this area and the blit operation succeeds, as is the 
case in Figure 11-1. Recall that the Blt() function supports clipping but that BltFast() does 
not.  

 

 

In a clip list, pixel coordinates are stored in one or more structures of type RECT. DirectDraw uses 
the clipper object to manage clip lists. Clip lists can be attached to any surface by using a 
DirectDrawClipper object. The simplest clip list consists of a single rectangle which defines the 
area within the surface to which a Blt() function outputs. Figure 11-2 shows a DirectDraw 
surface to which a clipper consisting of a single rectangle has been attached.  

 

 

  
 
 Figure 11-2: Establishing a surface's valid blit area by clipping 

  



   
 

 

DirectDraw's Blt() function copies data only to the rectangles in the clip list. Clip lists consisting 
of several rectangles are often necessary to protect a specific surface area from output. For 
example, if an application requires a rectangular area in the top-center of the screen to be 
protected from output, it would need to define several clipping rectangles. Figure 11-3 shows such 
a case.  

 

 

  
 
 Figure 11-3: Three clipping rectangles protect an area from output 

   
 

 

To manage a clip list, the application creates a series of rectangles and stores them in a data 
structure of type RGNDATA. One of the members of RGNDATA is the RGNDATAHEADER structure, 
which is used to define the number of rectangles that make up the region. The function 
SetClipList() is then called with the RGNDATA structure variable as a parameter. To delete a 
clip list from a surface, the SetClipList() call is made using NULL for the RGNDATA parameter. 

 

 
DirectDraw can manage the clip list for a primary surface automatically. Attaching a clipper to the 
primary surface requires several steps. In the first place, a clipper is a DirectDraw object in itself, 
which must be created using the DirectDraw4 interface object. The CreateClipper() function is 
used in this step. The function's general form is as follows:  

 
 HRESULT CreateClipper(  
 DWORD dwFlags, // 1  
 LPDIRECTDRAWCLIPPER FAR *lplpDDClipper, // 2  
 IInknown FAR *pUnkOuter // 3  
 );  

 The first and third parameters are not used in current implementations: the first one should be set 



value is DD_OK. If the call fails it returns one of the following constants:  
 
 DDERR_INVALIDOBJECT  
 
 DDERR_INVALIDPARAMS  
 
 DDERR_NOCOOPERATIVELEVELSET  
 
 DDERR_OUTOFMEMORY  
 

 

After the clipper to the primary surface is created, it must be attached to the application's window. 
This requires a call to the SetHWnd() function. SetHWnd() takes two parameters: the first one 
must be set to zero in the current implementation and the second one is the handle to the window 
that uses the clipper object. This has the effect of setting the clipping region to the client area of 
the window and ensuring that the clip list is updated automatically as the window is resized, 
covered, or uncovered. After a clipper is set to a window, additional rectangles cannot be added.  

 

 
Finally, the clipper must be associated with the primary surface. This is done by means of a call to 
the SetClipper() function that takes the surface pointer as its only parameter. The code in the 
template program is as follows:  

 
 //*********************************************  
 // Create a clipper for the primary surface  
 //*********************************************  
 hRet = lpDD4->CreateClipper(0, &lpDDClipper, NULL);  
 if (hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "Create clipper failed");  
 // Associate clipper with application window  
 hRet = lpDDClipper->SetHWnd(0, hWnd);  
 if (hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "Clipper not linked to application window");  
 // Associate clipper with primary surface  
 hRet = lpDDSPrimary->SetClipper(lpDDClipper);  
 if (hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "Clipper not linked to primary surface");  
 
 The remainder of the WinMain() function listed in the template program contains the regular 
message loop.  

 



Rendering in Nonexclusive Mode  
 

 

A simple rendering sequence in DirectDraw nonexclusive mode programming consists of storing a 
bitmap image in an offscreen surface and then blitting it to the primary surface. It is in the blitting 
stage that the windowed nature of the application introduces some constraints. The DirectDraw 
interface enables the program to access video memory directly, while the windowed nature of the 
application requires that video output be limited to the application's client area. A terminal error 
occurs if a windowed program attempts to display outside its own space. In GDI programming 
Windows takes care of clipping video output. In DirectDraw programming these restrictions must 
be observed and enforced by the application itself.  

 

 

The most powerful rendering function for DirectDraw windowed applications is Blt(). DirectDraw 
windowed applications that use Blt() often create a destination surface clipper, and manipulate 
the size and position of the source and destination rectangles to achieve the desired effects. The 
BltFast() function can be used in cases that do not require clippers or the other output controls 
that are available in Blt().  

 

 
In this section we illustrate nonexclusive mode rendering with two sample programs, both 
contained in the DD InWin Demo project in the book's CD-ROM. Both programs display a bitmap 
of the Orion nebula images obtained by the Hubble Space Telescope.  

 
 Rendering by clipping  
 

 

The first variation of the DD InWin Demo project is in the source file named DDInWin.cpp. In this 
case the bitmap image is blitted to the entire primary surface and a clipper is used to restrict which 
portion of the image is displayed in the application's window. Figure 11-4 shows the original bitmap 
stretched to fill the primary surface. The clipper, which is the size of the application window, is 
attached to the primary surface. The lower part of the illustration shows three copies of the 
program on the Windows desktop. Each executing copy of the program shows the underlying 
portion of a virtual image according to the clipper, which is resized automatically by Windows to 
the application's client area. This ensures that video output is limited to the application's video 
space.  

 

 

  
 



 Figure 11-4: DirectDraw output control by clipping 

   
 

 
The DirectDraw windowed application is initialized as described earlier in this chapter. The 
wndclass.style member of the WNDCLASSEX structure is set to CS_HREDRAW and CS_VREDRAW so 
that the entire client area is redrawn if there is vertical or horizontal resizing.  

 

 
The program design calls for creating an initial application window of the same size as the bitmap. 
Using the size of the original bitmap is an arbitrary decision because the program window is 
resizable. To obtain the bitmap dimensions, the code must load the bitmap into memory before 
creating the application window. The processing is as follows:  

 
 // Global handles and structures for bitmaps  
 HBITMAP aBitmap;  
 BITMAP bMap1; // Structures for bitmap data  
 . . .  
 // Local data  
 RECT progWin; // Application window   
 // dimensions  
 //**************************************  
 // Load bitmap into memory  
 //**************************************  
 // Load the bitmap image into memory  
 aBitmap = ( HBITMAP )LoadImage( NULL, "nebula.bmp",   
 IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE );  
 if ( aBitmap == NULL )   
 DDInitFailed(hWnd, hRet,  
 "Bitmap load failed in DDLoadBitmap()");  
   
 // Get bitmap data  
 GetObject(aBitmap, sizeof (BITMAP), &bMap1);  
 // Store bitmap in RECT structure variable  
 progWin.left = 0;  
 progWin.top = 0;  
 progWin.right = bMap1.bmWidth;  
 progWin.bottom = bMap1.bmHeight;  
 

 

At this point the bitmap dimensions have been stored in a structure variable named progWin, of 
type RECT. However, the application window is larger than the client area because it includes the 
title bar and the border. It is necessary to adjust the size by calling AdjustWindowRectEx(). 
This function corrects the data stored in a RECT structure variable according to the application's 
window style. The code is as follows:  



 
 //*****************************************  
 // Create a window with client area  
 // the same size as the bitmap  
 //*****************************************  
 // First adjust the size of the client area to the size  
 // of the bounding rectangle (this includes the border,  
 // caption bar, menu, etc.)  
   
 AdjustWindowRectEx(&progWin,   
 WS_OVERLAPPEDWINDOW,  
 FALSE,  
 0);  
   
 hWnd = CreateWindowEx(0, // Extended style  
 szAppName,  
 "DirectDraw In Window Demo",  
 WS_OVERLAPPEDWINDOW,  
 CW_USEDEFAULT, // x of initial position   
 CW_USEDEFAULT, // y of initial position  
 (progWin.right -- progWin.left), // x size  
 (progWin.bottom -- progWin.top), // y size  
 NULL, // Handle of parent  
 NULL, // Handle to menu  
 hInstance, // Application instance  
 NULL); // Additional data  
   
 if (!hWnd)  
 return FALSE;  
   
 ShowWindow(hWnd, nCmdShow);  
 

 
In the call to CreateWindowEx() we used the default initial position and arbitrarily set the 
window's dimension to that of the bitmap, the size of which is stored in the progWin structure 
variables. The code now proceeds to create a DirectDraw object and a primary surface in the 
conventional manner. Note that the cooperative level in this case is DDSCL_NORMAL.  

 
 //*************************************  
 // Create DirectDraw object and   



 // create primary surface  
 //*************************************  
 // Fetch DirectDraw4 interface  
 hRet = DD4Interface();  
 if (hRet == 0)  
 return DDInitFailed(hWnd, hRet,  
 "QueryInterface() call failed");  
   
 // Set cooperative level to exclusive and full screen  
 hRet = lpDD4->SetCooperativeLevel(hWnd, DDSCL_NORMAL);  
 if (hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "SetCooperativeLevel() call failed");  
   
 // Create the primary surface  
 // ddsd is a structure of type DDSRUFACEDESC2  
 ZeroMemory(&ddsd, sizeof(ddsd)); // Fill structure with // zeros  
 // Fill in other members  
 ddsd.dwSize = sizeof(ddsd);  
 ddsd.dwFlags = DDSD_CAPS ;  
 ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;  
   
 hRet = lpDD4->CreateSurface(&ddsd, &lpDDSPrimary, NULL);  
 if (hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "CreateSurface() call failed");  
 

 
Now the code must create a clipper associated with the application window and attached to the 
primary surface, as described previously in this chapter. The surface component tells DirectDraw 
which surface to clip. The window element defines the clipping rectangle to the size of the 
application's client area. The processing is as follows:  

 
 //**********************************  
 // Create a clipper  
 //**********************************  
 hRet = lpDD4->CreateClipper(0, &lpDDClipper, NULL);  
 if (hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "Create clipper failed");  



 // Associate clipper with application window  
 hRet = lpDDClipper->SetHWnd(0, hWnd);  
 if (hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "Clipper not linked to application // window");  
 // Associate clipper with primary surface  
 hRet = lpDDSPrimary->SetClipper(lpDDClipper);  
 if (hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "Clipper not linked to primary surface");  
 

 

Although the bitmap has been loaded, it has not yet been stored in an offscreen surface. Blt() 
requires that the bitmap is located on a surface; for this reason you have no other option in this 
case. Because speed is not a factor in this program, you can create the surface in system 
memory, which enables you to run several copies of the executable simultaneously. The code is 
as follows:  

 
 //**************************************  
 // Store bitmap in offscreen surface  
 //**************************************  
 // First create an offscreen surface  
 // in system memory  
 ZeroMemory(&ddsd, sizeof(ddsd)); // Fill structure with // zeros  
 // Fill in other members  
 ddsd.dwSize = sizeof(ddsd);  
 ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH;  
 ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN |  
 DDSCAPS_SYSTEMMEMORY;  
 ddsd.dwHeight = bMap1.bmHeight;  
 ddsd.dwWidth = bMap1.bmWidth;  
 hRet = lpDD4->CreateSurface(&ddsd, &lpDDSOffscreen, NULL);  
 if (hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "Offscreen surface creation failed");  
 // Move bitmap to surface using DDBmapToSurf()function   
 hRet = DDBmapToSurf(lpDDSOffscreen, aBitmap);  
 if(hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "DDBMapToSurf() call failed");  
 // ASSERT:  



 // Bitmap is in offscreen surface -> lpDDSOffscreen  
 
 Finally, the bitmap stored in the offscreen surface can be blitted to the primary surface using the 
clipper attached to the primary surface. The Blt() call is as follows:  

 
 //***********************************  
 // Blit the bitmap  
 //***********************************  
 // Update the window with the new sprite frame. Note that the  
 // destination rectangle is our client rectangle, not the  
 // entire primary surface.  
 hRet = lpDDSPrimary->Blt( NULL, lpDDSOffscreen, NULL,  
 DDBLT_WAIT, NULL );  
 if(hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "Blt() failed");  
 

 

Because the window is resizable, we must also provide processing in the WM_PAINT message 
intercept. However, WM_PAINT is first called when the window is created; at this time the 
application has not yet performed the necessary initialization operations. To avoid a possible 
conflict, create a public switch variable, named DDOn, which is not set until the application is 
completely initialized. Another consideration is that the call to BeginPaint(), often included in 
WM_PAINT processing, automatically sets the clipping region to the application's update region. 
Because you are providing your own clipping, the call to BeginPaint() is undesirable. In the 
sample program, WM_PAINT message processing is as follows:  

 
 case WM_PAINT:  
 if(DDOn)  
 hRet = lpDDSPrimary->Blt( NULL, lpDDSOffscreen, NULL,  
 DDBLT_WAIT, NULL );  
 return 0;  
 
 Blit-time cropping  
 

 

In the preceding section you saw the first variation of the DD InWin Demo sample program (source 
file is named DDInWin.cpp) in which the bitmap image is stretch-blitted to the entire primary 
surface. A clipper that was previously attached to the primary surface automatically restricts which 
portion of the image is displayed in the application's window. An alternative rendering option, which 
produces entirely different results, is blitting to a destination rectangle in the primary surface that 
corresponds to the size of the application's client area. Because the destination of the blit is 
restricted to the client area there is no need for a clipper in this case; instead, the output is cropped 
by the Blt() function. Figure 11-5 graphically shows the basic operation of the two versions of 
the DD InWin Demo program.  



 

 

  
 
 Figure 11-5: Comparing the two versions of the DD InWin Demo sample program 

   
 

 

In the DDInWinB.cpp version the WNDCLASSEX structure is defined similarly as in the first version 
of the sample program, except that the CS_HREDRAW and CS_VREDRAW window style constants 
are not necessary because the program window is not resizable. The fixed size of the program 
window also determines that the code uses WS_SYSMENU, WS_CAPTION, and WS_MINIMIZEBOX 
as the window style constants in both AdjustWindowRectEx() and CreateWindowEx() 
functions. Note that a resizable window requires the WS_THICKFRAME or WS_SIZEBOX styles. 
Also note that the WS_OVERLAPPEDWINDOW style, used in the first version of the sample program, 
includes WS_THICKFRAME and therefore also produces a resizable window. In the second version 
the program window is made the same size as the original bitmap, as is the case in the first 
version. In the first version the size of the display area is arbitrary because the program window is 
resizable anyway. In the second version we propose to display the bitmap identically, as it is 
stored; therefore, it is consequential that the display area correspond to the bitmap's size.  

 

 

Much of the initialization and setup of the second version of the program is similar to the first 
version. The bitmap is loaded into memory and its size is stored in the corresponding members of 
a RECT structure variable. The DirectDraw4 object and the primary surface are created. In this 
case the clipper is not attached to the primary surface because it is not used. Then the offscreen 
surface is created and the bitmap is stored in it. It is now time to blit the bitmap from the offscreen 
surface to the primary surface, but before the blit can take place the code must determine the 
screen location and the size of the application's client area.  

 

 

At blit time you need to define the destination rectangle as the first parameter of the Blt() 
function. One way to visualize the problem is to realize that at this point the program window is 
already displayed, with a blank rectangle on its client area, which is the same size as the bitmap. 
Also, the primary surface is the entire screen. Figure 11-6 shows the application at this stage and 
the dimensions necessary for locating the client area on the primary surface.  

 



 

  
 
 Figure 11-6: Locating the Blt() destination rectangle 

   
 

 

The GetClientRect() API function returns the coordinates of the client area of a window. The 
function parameters are the handle of the target window and the address of a variable of type 
RECT, which holds the client area dimensions. The values returned by GetClientRect() 
correspond to the x and y dimensions shown in Figure 11-6. Because the coordinates are relative 
to the application's window, the value returned by the call for the upper-left corner of the rectangle 
is always (0,0). This makes the left and top members of the RECT structure variable passed to the 
call always zero. Because we need the location of application's window in the primary surface, the 
code must determine the values labeled dx and dy in Figure 11-6 and add them to the coordinates 
stored in the RECT structure.  

 

 

The ClientToScreen() function performs this operation for you. Its parameters are the handle 
to the application's window and the address of a structure of type POINT containing two coordinate 
values that are updated to screen coordinates. ClientToScreen() actually performs an addition 
operation on the coordinate pair: it calculates the distances labeled dx and dy in Figure 11-6 and 
adds these values to those stored in the structure variable. If the POINT structure contains two 
members of type long, and the RECT structure contains four members, we can consider that the 
RECT structure member holds two structures of type POINT. The code in the sample program is as 
follows:  

 
 RECT clientArea; // For Blt() destination  
 . . .  
 // Obtain client rectangle and convert to screen coordinates  
 GetClientRect(hWnd, &clientArea);  
 ClientToScreen(hWnd, (LPPOINT) &clientArea.left);  
 ClientToScreen(hWnd, (LPPOINT) &clientArea.right);  
   
 // Blit to the destination rectangle  
 hRet = lpDDSPrimary->Blt( &clientArea, lpDDSOffscreen, NULL,  



 DDBLT_WAIT, NULL );  
 if(hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "Blt() failed");  
 

 

The ClientToScreen() function is called twice: First, for the coordinate pair that holds the top-
left corner of the client area rectangle; these are the zero values returned by GetClientRect(). 
Then the ClientToScreen() function is called for the coordinate pair of the bottom-right corner 
of the client area rectangle, which correspond to the x and y dimensions in Figure 11-6. Similar 
processing must be performed in the WM_PAINT message intercept. Figure 11-7 shows the results 
of the DDInWinB.cpp version of the demonstration program.  

 

 

  
 
 Figure 11-7: Screen snapshot of the DDInWinB.cpp program version 

   
 
 The project folder DD InWin Demo in the book's CD-ROM contains both versions of the source 
program as well as the corresponding executable files.  

 



Summary  
 

 

In this chapter we discussed bitmap rendering operations in DirectDraw programming. The 
operations were illustrated in the context of two DirectDraw windowed applications. The emphasis 
has been on static rendering. In the next chapter we discuss dynamic rendering operations in the 
context of DirectDraw animation. Having learned bitmap operations in DirectDraw, we apply these 
techniques in producing animated applications in the next chapter.  

 



Summary  
 

 

Here we examined the fundamental techniques of computer animation using DirectDraw. Animation 
is one of the most exacting, as well as the most rewarding, tasks that can be undertaken in a 
graphics application. DirectDraw makes possible animation in Windows by furnishing direct access 
to the video hardware as well as specialized programming facilities, such as back buffers and 
flipping operations. In the following chapter we put this knowledge to work in animated applications. 

 



Chapter 12: Animation Techniques  
 
 Overview  
 

 

Animation is the most exacting and exciting task of graphics programming. This chapter is about 
computer animation using the facilities provided by DirectDraw. For many years animation in 
Windows was considered somewhat of an oxymoron. DirectDraw furnishes mechanisms and 
programming facilities that make possible graphics rendering at a high speed. It also provides the 
storage of image data in so-called back buffers, which can be flipped rapidly with the displayed 
surface to simulate screen movement. The results are often a smooth and natural simulation of 
movement that can be used in computer games, simulations, and in high-performance multimedia 
applications.  

 

 

Palette animation techniques have been used effectively in DOS programming but we feel that 
today's video cards, even those in low-end systems, support such high resolutions and color depths 
that palette modes are no longer needed. On the other hand, overlays—although powerful and 
useful—are not supported by most video cards, and those that do support them do so 
inconsistently. Furthermore, overlay operations are not emulated in the HEL; therefore, if it is not 
available in the hardware, overlay operations cannot be used by code. We feel that overlays belong 
in the future of graphics programming, and palette manipulations in its past. Instead, we focus on 
animation techniques that are popular and practical.  

 



Animation in Real-Time  
 

 

Computer animation is the simulation of movement or lifelike actions by the manipulation of digital 
objects. It is a complex specialty field of graphics programming, on which many books have been 
written. The fundamentals of computer animation were discussed in Chapter 5. In this chapter we 
are concerned with real-time animation, rather than with computer-assisted techniques. Real-time 
animation is found in arcade machines, simulators, trainers, electronic games, multimedia 
applications, and in interactive programs of many kinds. In real-time animation the computing 
machine is often both the image generator and the display media, although most animations rely 
heavily on prestored images and on image sets.  

 

 

Real-time animation is based on physiology of the human eye. In our vision system the image of 
an object persists in the brain for a brief period of time after it no longer exists. This phenomenon 
is called visual retention. Smooth animation is achieved by consecutively displaying images at a 
faster rate than the period of visual retention. It is the sequence of rapidly displayed images that 
creates in our minds the illusion a smoothly moving object.  

 

 

Television and moving picture technologies use a critical image update rate for smooth animation 
between 22 and 30 images per second. In animation programming this is called the frame rate. 
Moving picture films are recorded and displayed at a rate of 24 images per second, while 
commercial television takes place slightly faster. The threshold rate, which is subject to variations 
in different individuals, is estimated at about 17 images per second. If the consecutive images are 
projected at a rate slower than this threshold, the average individual perceives jerkiness in the 
animation and feels uncomfortable watching it.  

 
 Surface tearing  
 

 

Although the animator's principal concerns are usually speed and performance, too much speed 
can lead to image quality deterioration. A raster scan display system is based on scanning each 
horizontal row of screen pixels with an electron beam. The pixel rows are refreshed starting at the 
top-left screen corner of the screen and ending at the bottom-right corner. Each pixel row is called 
a scan line. The electron beam is turned off at the end of each scan line while the gun is re-aimed 
to the start of the next one. This period is called the horizontal retrace. When this process reaches 
the last scan line on the screen, the beam is turned off again while the gun is re-aimed to the top-
left screen corner. The period of time required to re-aim the electron gun from the right-bottom of 
the screen to the top-left corner is known as the vertical retrace or screen blanking cycle. Figure 
12-1 shows the scan and retrace cycles.  

 

 

  
 



 Figure 12-1: CRT scan and retrace cycles 

   
 

 

The problem arises when video data are changed by the CPU at the same time it is being 
displayed by the video controller. In the PC screen refresh rates are normally between 60 and 100 
Hz. The fact that a CPU is capable of executing hundreds of thousands of instructions per second 
makes it possible that the image in video memory be modified before the video system has 
finished displaying it. The result is a breaking of the image, known as tearing. One way to avoid 
tearing is to limit video memory updates to the time that the electron guns are turned off. In 
practice, the vertical retrace cycle is used because it takes longer than the horizontal retrace.  

 

 
DirectDraw programs that execute in exclusive mode can prevent or minimize tearing by using 
double-buffering and flipping techniques, discussed later in this chapter. Programs in windowed 
mode cannot use flipping and are limited to timing video updates with the vertical refresh cycle.  

 
 The animator's predicament  
 

 

Several constraints make computer animation a battle against time. The animation programmer 
must resort to every possible trick in order to squeeze the maximum performance. Because 
execution speed is limited by the hardware, most of the work of the programmer-animator consists 
of making compromises and finding acceptable levels of undesirable effects. The animator often 
has to decide how small an image satisfactorily depicts the object, how much tearing is acceptable, 
how much bumpiness can be allowed in depicting movement, how little definition is sufficient for 
certain scenery, or with how few colors can an object be realistically represented.  

 



Obtaining a Timed Pulse  
 

 
Representing movement requires a display sequence, executed frame-by-frame, which creates the 
illusion of motion. Figure 12-2 shows several frames in the animation of a stick figure of a walking 
person.  

 

 

  
 
 Figure 12-2: Frame-by-frame animation of a stick figure 

   
 

 

The display of the frame-by-frame sequence in real-time requires a mechanism for measuring the 
time lapse between each frame; in other words, an update pulse. In DOS programming this can be 
accomplished by intercepting the system timer, which usually requires installing a dedicated 
interrupt vector. The result is that a routine in the application's code receives control every time 
that a preset timer counter expires. Because there is no multitasking in DOS, the resulting timing 
pulse is reasonably accurate. Windows, on the other hand, does not allow direct manipulation of 
the timer hardware.  

 

 

A Windows application has several ways of generating a timed pulse. One is based on a program 
loop that reads the value in a ticker register and proceeds to update the frame whenever it 
matches or exceeds a predefined constant. A second approach is to enable a system timer pulse, 
which can be intercepted in a callback function or by a window message. In the following sections 
we discuss both methods. Other alternatives, sometimes called high-resolution timers, are 
discussed in the context of performance tuning, later in this chapter.  

 
 Tick counting method  
 

 

Windows maintains a counter with the number of milliseconds elapsed since the system was 
started. This time period, sometimes called the Windows time, is stored in a DWORD variable that 
can be read by code. Two identical functions enable code to read this counter: 
GetCurrentTime() and GetTickCount(). However, Windows documentation states that 
GetCurrentTime() is now obsolete and should not be used.  

 

 
GetTickCount(), which takes no parameters, returns the number of milliseconds elapsed since 
Windows was started. Application code can determine the number of milliseconds elapsed since 
the last call by storing the previous value in a static or public variable, as in the following function:  

 
 // Public variables for counter operation  
 DWORD thisTickCount; // New ticker value  



 DWORD lastTickCount; // Storage for old value  
 static DWORD TIMER_VALUE = 25; // Constant for time lapse  
 . . .  
 static void UpdateFrame()  
 {  
 thisTickCount = GetTickCount(); // Read counter  
 if(( thisTickCount - lastTickCount) < TIMER_VALUE)  
 return;  
 else  
 {  
 // Frame update operations go here  
 lastTickCount = thisTickCount; // Reset tick counts  
 }  
 return;  
 }  
 

 
In order for the ticker counter reading method to produce a smooth animation, the value in the 
ticker counter must be polled frequently. One possible approach is to include the frame update 
function call as part of the application's message loop. The processing logic can be expressed in 
the following pseudocode:  

 
 If the application is active, and no other messages are waiting to be processed, then call the frame 
update routine.  

 
 The PeekMessage() function is used to check the thread's message queue without pausing for a 
message to be received. The function's general form is as follows:  

 
 BOOL PeekMessage(  
 LPMSG lpMsg, // 1  
 HWND hWnd, // 2  
 UINT wMsgFilterMin, // 3  
 UINT wMsgFilterMax, // 4  
 UINT wRemoveMsg // 5  
 );  
 

 

The first parameter points to an MSG structure variable that contains message information. The 
second parameter is the handle to the window whose messages are being checked. This 
parameter can be set to NULL to check messages for the current application. The third and the 
fourth parameters are used to specify the lowest and highest value of the messages to be 
checked. If both parameters are set to 0, then all messages are retrieved. The fifth parameter is 
one of two predefined constants: PM_REMOVE is used if the message is to be removed from the 
queue, and PM_NOPREMOVE otherwise. The call returns TRUE if a message is available, and 
FALSE if not available.  



 

 

Another API function often used in message polling routines is WaitMessage(). This function, 
which takes no parameters, suspends thread execution and does not return until a new message 
is placed in the queue. The result is to yield control to other threads when the current one has 
nothing to do with its CPU cycles. PeekMessage() and WaitMessage() can be combined with 
GetMessage() in the following message polling routine:  

 
 MSG msg; // Message structure variable  
 int appActive = 0; // Application active switch  
 // initialized to inactive  
 . . .  
 while(1) {  
 if(PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE)) {  
 if(!GetMessage(&msg, NULL, 0, 0)  
 return msg.wParam;  
 TranslateMessage(&msg);  
 DispatchMessage(&msg);  
 }  
 else if (appActive)  
 {  
 // call to read ticker counter and/or update frame  
 // go here  
 }  
 else  
 WaitMessage();  
 }  
 

 
In using this sample code the application must define when to set and reset the appActive 
switch. This switch determines if the frame update function is called, or if the thread just waits for 
another message.  

 

 

The method just described, that is, reading the Windows tick count inside a program loop, is 
usually capable of generating a faster pulse than the system timer intercept, which is described in 
the next section. On the other hand, the system timer intercept is easier to implement and more 
consistent with the Windows multitasking environment. Therefore, it is preferred if the resulting 
pulse rate is satisfactory.  

 
 System timer intercept  
 

 

An alternative way of obtaining a timed pulse is by means of the Windows system timer. The 
SetTimer() function is used to define a time-out value, in milliseconds. When this time-out value 
elapses, the application gets control either at the WM_TIMER message intercept or in an 
application-defined callback function that has the generic name TimerProc(). Either processing 



is satisfactory and which one is selected is a matter of coding convenience. SetTimer() has the 
following general form:  

 
 UINT SetTimer(  
 HWND hWnd, // 1  
 UINT nIDEvent, // 2  
 UINT uElapse, // 3  
 TIMERPROC lpTimerFunc // 4  
 );  
 

 

The first parameter is the handle to the window associated with the timer. The second parameter is 
the timer number. This allows more than one timer per application. The timer identifier is passed to 
the WM_TIMER intercept and to the TimerProc(). The third parameter is the number of 
milliseconds between timer intercepts. The fourth parameter is the address of the application's 
TimerProc(), if one is implemented, or NULL if processing is to be done in the WM_TIMER 
message intercept.  

 

 

If the call succeeds, the return value is an integer identifying the new timer. Sixteen timers are 
available to applications, so it is a good idea for you to check if a timer is actually assigned to the 
thread. Applications must pass this timer identifier to the KillTimer() function to destroy a 
particular timer. If the function fails to create a timer, the return value is zero. After a system timer 
is initialized, processing usually consists of calling the application's frame update function directly 
because the timer tick need not be checked in this case.  

 

 
Note that code cannot assume that system timer events are generated at the requested rate, only 
that the events are produced approximately at this rate and not more frequently. Windows 
documentation states that the minimum time between events is approximately 55 milliseconds.  

 



Sprites  
 

 

In graphics programming, particularly in game programming, a sprite is a rather small screen 
object, usually animated at display time. Sprite animation can be simple or complex. In simple 
animation an object represented in a single bitmap is animated by translating it to other screen 
positions, or the object itself performs an intrinsic action, for example, a rotating wheel. In complex 
animation both actions are performed simultaneously: a rocket moves on the screen until it 
reaches a point where it explodes. Sprites are typically encoded in one or more images that 
represent the object or its action sequence. The images can be stored in separate bitmaps, or in a 
single one. Figure 12-3 shows the image set of a dagger sprite that revolves around its own axis.  

 

 

  
 
 Figure 12-3: Image set for a dagger sprite 

   
 

 
When the twenty images in the set of Figure 12-3 are rapidly displayed, the dagger appears to 
rotate 180 degrees. If the images are also translated from one screen position to another, the 
sprite simulates the movement of a thrown dagger. This last action would be a case of complex 
sprite animation.  

 

 

Sprites often use a source color key to achieve transparency. To automate sprite color keying, 
some applications assume that the pixel at the top-left corner of the bitmap is the color key. Later 
in this chapter we discuss the use of dynamic color keys. It is possible to encode each image of 
the sprite image set in separate bitmaps, but this usually leads to many disk files and complicated 
file access operations. A better approach is to store the entire sprite image set in a single bitmap, 
and then use source rectangle selection capability of either the Blt() or BltFast() functions to 
pick the corresponding image.  

 

 

Many factors determine how a sprite is actually rendered. One of the most important ones is if the 
application executes in exclusive mode or windowed. Exclusive-mode programs can use back 
buffers and flipping manipulations that considerably increase performance, whereas windowed 
programs are much more limited in the available rendering options. Other factors are the sprite's 
size, the number of images in the set, and the required rendering speed. Programmers often have 
to juggle these and other program elements to come up with a satisfactory animation.  

 



 Sprite art  
 

 

Animated programs spend considerable resources in manipulating sprites and backgrounds. The 
better the image quality of these objects, the better graphics result you see. Because backgrounds 
are usually animated by simple panning and zooming transformations, the programmer's effort is 
often limited to scanning or drawing relatively few and relatively large images. But sprites can be a 
more complicated matter, especially if you want to create a sprite that has intrinsic movements or 
action. In this case the individual images in the sprite set must be tied to a common point. For 
example, if the various daggers in Figure 12-3 do not have a common center of rotation, the 
resulting animation is bumpy and unpleasant. The progression between each image in the set 
must also be proportional. In other words, the dagger must rotate by approximately the same angle 
to generate uniform screen movement.  

 

 

Perhaps the most important factor in creating good sprites is the sprite itself. Until recently the 
creation of attractive sprites was considered some sort of black art. With the popularization of 3D 
graphics on the PC it is possible to easily create solid sprites that add a new dimension to the 
animation. Programs are now available which generate 3D graphics objects that can be animated. 
Some popular commercial drawing applications, such as CorelDRAW, now include 3D drawing 
capabilities. Figure 12-4 shows the rotation of a clipart 3D image using CorelDRAW. You can use 
the resulting image set to produce an intrinsic sprite animation.  

 

 

  
 
 Figure 12-4: Rotation of a 3D image using commercial software 

   
 
 The sprite image set  
 

 
A computer animator often spends a large part of his or her time in designing, drawing, encoding, 
and testing sprites. This is particularly true in 3D graphics. The process of sprite design implies 
several apparently contradictory decisions, for instance:  

 
   •The larger the sprite is, the better its image quality, but it is more difficult to animate a larger 

sprite.  
 
   •The more images there are in the sprite image set, the smoother the animation, but it takes longer 

to display a large sprite image set.  



 
   •The higher the definition and color depth of the sprite bitmaps are, the better the quality of the 

image, but higher quality bitmaps take up more video memory and a longer time to blit.  
 

 

Two hardware-dependent issues often must be taken into consideration as well: the processor 
speed of the host system and the capabilities of the video system. The second one of these issues 
comprises two other ones: the amount of video memory and the hardware support for DirectDraw 
operations. After the designers define the minimum system capabilities, and the acceptable 
performance levels, the next step usually is to experiment with several sprite image sets to 
determine the best possible image quality for the required levels of performance.  

 

 

The details of how the sprite image sets are produced is more in the realm of graphics design than 
in programming. The higher the quality of the drawing or paint program used, and the more 
experienced and talented the sprite artist is, the better the resulting image set. The DD Animation 
Demo project, included in the book's CD-ROM, shows two rotating, meshed gears. The image set 
consists of 18 images. In each image the gears are rotated by an angle of 2.5 degrees. After 18 
iterations the gears have rotated through an angle of 45 degrees. Because the gears have eight 
teeth each, the images are symmetrical after a rotation of 45 degrees. For this reason, this 
animation requires one-eighth the number of images that would be necessary to rotate a 
nonsymmetrical object by the same angle. Figure 12-5 shows the sequence of steps that we 
followed in creating the image set for the DD Animation Demo program.  

 

 

  
 
 Figure 12-5: Image set for DD Animation Demo program 

   
 

 

In creating the image set of the DD Animation Demo program we started with a CorelDRAW clipart 
image of a gear, which was then edited and colored, as shown in Step 1 in Figure 12-5. In Step 2 
we made a copy of the original gear. The copy was colored and rotated so that the two gears 
would mesh, as shown in Step 3. The meshed gear pair was then reproduced 18 times. In each 
reproduction the left-hand gear was rotated clockwise and the right-hand counterclockwise, by 2.5 
degrees. The resulting image set is shown in Step 4 in Figure 12-5. This image set was then saved 
as a Windows bitmap for use by the code.  

 
 Sprite rendering  
 
The actual display of the sprite consists of obtaining a timing pulse and blitting the image onto the 



screen. In each particular case you must decide whether the rendering is done using Blt() or 
BltFast(), with or without transparency, using source or destination color keys, or applying any 
blit-time transformations. The sprite image sequence is usually stored in a single bitmap, but it is 
also possible to store various bitmaps in different disk files and then read all of these files into a 
single surface. The final result, in either case, is a surface with multiple images. At blit time the 
program logic must select the corresponding image in the animation set.  

 

 

The display of several images stored in a contiguous memory area or surface is made possible by 
the source area definition capabilities of both Blt() and BltFast(). In Chapter 10 we saw that a 
structure of type RECT is used to store the offset of the source rectangle in the surface. If an 
animation image set is stored in a rectangular bitmap, and the bitmap is then loaded onto a 
surface, then code can select which of the images in the set is displayed during each time-pulse 
iteration. You can do this by assigning values to the corresponding members of the RECT structure 
variable that defines the source surface. For example, the final bitmap image set in Figure 12-5 
contains a sequence of 18 individual rotations of the gears. Each of these individual bitmaps is 
often called an animation frame, or simply, a frame. Figure 12-6 shows the image set partitioned 
into six columns and three rows. The dimensions labeled x and y refer to the size of each frame in 
the set.  

 

 

  
 
 Figure 12-6: Rendering the sprite image set 

   
 

 

Given the number of rows and columns in the image set, and the pixel size of each image, code 
can determine the coordinates of the RECT structure variable for each frame in the set. The dotted 
rectangle in Figure 12-6 binds each frame in the sequence. The members of a structure variable 
named rect, of type RECT, are calculated using the consecutive frame number and the number of 
columns in the bitmap. The case illustrated shows frame number 8, of a bitmap with six columns 
and three rows.  

 

 
In the DD Animation Demo program the processing is generalized so that you can use the code to 
display any rectangular bitmap image set. This makes it useful for experimenting with various 
image sets before deciding which one is better suited for the purpose at hand. Code starts by 
creating global variables that define the characteristics of the image set. Code is as follows:  

 
 // Constants identifying the bitmap image set 



 // Constants identifying the bitmap image set  
 static char bmapName[] = {"gearsy.bmp"};   
 static int imageCols = 6; // Number of image columns  
 static int imageRows = 3; // Number of rows  
   
 // Variables, constants, handles, and structure for bitmaps  
 int frameCount = (imageCols * imageRows) - 1;  
 int bmapXSize; // Calculated x size of bitmap  
 int bmapYSize; // Calculated y size of bitmap  
 HBITMAP aBitmap;  
 BITMAP bMap1; // Structures for bitmap data  
 

 

In this case the programmer defines the name of the bitmap and states the number of image 
columns and rows. Code uses these values to calculate the number of frames; this number is 
stored in the variable frameCount. The dimensions of the bitmap are obtained after it is loaded 
into memory. The x dimension is stored in the variable bmapXSize and the y dimension in 
bmapYSize. The bitmap dimensions are also used in the sample program to define the size of the 
application window, all of which is shown in the following code fragment:  

 
 //**************************************  
 // Load bitmap into memory  
 //**************************************  
 // Load the bitmap image into memory  
 aBitmap = ( HBITMAP )LoadImage( NULL, bmapName,  
 IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE );  
 if ( aBitmap == NULL )   
 DDInitFailed(hWnd, hRet,  
 "Bitmap load failed in DDLoadBitmap()");  
 // Get bitmap data  
 GetObject(aBitmap, sizeof (BITMAP), &bMap1);  
   
 // Calculate and store bitmap and image data  
 bmapXSize = bMap1.bmWidth / imageCols;  
 bmapYSize = bMap1.bmHeight / imageRows;  
   
 // Store bitmap in RECT structure variable  
 progWin.left = 0;  
 progWin.top = 0;  
 progWin.right = bmapXSize;  
 progWin.bottom = bmapYSize;  



   
 //*****************************************  
 // Create window with client area  
 // the same size as the bitmap  
 //*****************************************  
 // First adjust the size of the client area to the size  
 // of the bounding rectangle (this includes the border,  
 // caption bar, menu, etc.)  
   
 AdjustWindowRectEx(&progWin,  
 WS_SYSMENU | WS_CAPTION,  
 FALSE,  
 0);  
   
 hWnd = CreateWindowEx(0, // Extended style  
 szAppName,  
 "DirectDraw Animation Demo",  
 WS_SYSMENU | WS_CAPTION,  
 CW_USEDEFAULT,  
 CW_USEDEFAULT,  
 (progWin.right - progWin.left),  
 (progWin.bottom - progWin.top),  
 NULL, // Handle of parent  
 NULL, // Handle to menu  
 hInstance, // Application instance  
 NULL); // Additional data  
 if (!hWnd)  
 return FALSE;  
 

 

The actual display of the bitmap is performed by a local function called Blit_Sprite(). The 
function begins by checking the tick counter. If the difference between the old and the new tick 
counts is smaller than the predefined delay, execution returns immediately. If it is equal to or larger 
than the delay, then the offset of the next frame in the source surface is calculated and the bitmap 
is blitted by means of the Blt() function. In this case the frame number counter is bumped; if this 
is the last frame in the set, the counter is restarted. Execution concludes by updating the tick 
counter variable. Coding is as follows:  

 
 //**************************************  
 // update animation frame  
 //**************************************  



 static void BlitSprite()  
 {  
 thisTickCount = GetTickCount();  
   
 if((thisTickCount - lastTickCount) < TIMER_VALUE)  
 return;  
 else  
 {  
 // Update the sprite image with the current frame.  
 bmapArea.top = ( ( frameNum / imageCols) * bmapYSize );  
 bmapArea.left = ( ( frameNum % imageCols) * bmapXSize );  
 bmapArea.bottom = bmapArea.top + bmapYSize;  
 bmapArea.right = bmapArea.left + bmapXSize;  
   
 hRet = lpDDSPrimary->Blt( &clientArea, lpDDSOffscreen,  
 &bmapArea, DDBLT_WAIT, NULL );  
 if(hRet != DD_OK)  
 DDInitFailed(hWnd, hRet, "Blt() failed");  
 // Update the frame counter  
 frameNum++;  
 if(frameNum > imageCount)  
 frameNum = 0;  
 lastTickCount = thisTickCount;  
 return;  
 }  
 }  
 
 Figure 12-7 is a screen snapshot of the DD Animation Demo program.  
 

 

  
 
 Figure 12-7: Screen snapshot of the DD Animation Demo program 

   
 



Flipping  
 

 

One of the most powerful animation tools provided by DirectDraw is page flipping. This technique 
finds common use in high-performance multimedia applications, in simulations, and in game 
software. The process is reminiscent of the schoolhouse method of drawing a series of images, 
each consecutive one containing a slight change. The figures are drawn on a paper pad. When 
you thumb through the package you perceive an illusion of movement. In the simplest version of 
computerized page flipping the programmer sets up two DirectDraw surfaces. The first one is the 
conventional primary surface and the other one is called a back buffer. Application code updates 
the image in the back buffer and then flips the back buffer and the primary surface. The result is 
usually a clean and efficient animation effect. Figure 12-8 shows the fade-out animation of a 
sphere.  

 

 

  
 
 Figure 12-8: Fade-out animation by flipping 

   
 

 
In Figure 12-8, you see that consecutively smaller images are drawn on the back buffer, which is 
then flipped with the primary surface. In this illustration the arrows represent the flip operations. 
The back buffers are shown in dark gray rectangles. The sequence of operations is draw to back 
buffer, flip, draw to back buffer, flip, and so on.  

 

 

One limitation of multiple buffering and page flipping is that it can be used only in DirectDraw 
exclusive mode. This is because flipping requires manipulating video memory directly, which is not 
possible in a windowed environment. In the DirectDraw flip operation it is the pointers to surface 
memory for the primary surface and the back buffers that are swapped. In other words, flipping is 
actually a switching of pointers manipulation, not a data copying operation. Exceptions are when 
the back buffer cannot fit into display memory, or when the hardware does not support flipping, in 
which case DirectDraw performs the flip by copying the surfaces.  

 

 

When programming a flip-based animation it is important to remember that code need only access 
the back buffer surface to perform the image updates. Every time the DirectDraw Flip() function 
is called the primary surface becomes the back buffer and vice versa. The surface pointer to the 
back buffer always points to the area of video memory not displayed, and the surface pointer to the 
primary surface or front buffer points to the video memory being displayed. If more than one back 
buffer is included in the flipping chain, then the surfaces are rotated in circular fashion. The case of 



a flipping chain with a primary surface and two back buffers is shown in Figure 12-9. In this case 
the flip operation rotates the surfaces as shown.  

 

 

  
 
 Figure 12-9: Flipping chain with two back buffers 

   
 
 Initializing and performing flip animation consists of several well-defined steps. In most cases the 
following operations are necessary:  

 
   •Creating a flipping chain  
 
   •Obtaining a back buffer pointer  
 
   •Drawing to the back buffer  
 
   •Flipping the primary surface and the back buffer  
 

 
The first two steps of this sequence relate to initializing the flipping surfaces, and the second two 
steps refer to flip animation rendering operations. Table 12-1 lists the flipping-related functions in 
DirectDraw.  

 
 Table 12-1: Flipping-related DirectDraw Functions  
 
    
 
 Function   

 
Object  

  
Action  

 

 
    
 
 CreateSurface()  

 
DIRECTDRAW4 

  



 CreateSurface()   DIRECTDRAW4  Creates surface and attached 
back buffers  

 
 GetAttachedSurface()   

 
DIRECTDRAWSURFACE4  

  
Obtains back buffer pointer  

 

 
 Flip()   

 
DIRECTDRAW4  

  
Performs flipping  

 

 
 GetFlipStatus()   

 
DIRECDRAWSURFACE4   

 
Indicates whether a surface 
has concluded flipping  

 

 
    
 
 The function FlipToGDISurface() has very low performance since rendering takes place 
outside of DirectDraw. For this reason it is not discussed in this book.  

 
 Initializing the flipping surfaces  
 

 

Any DirectDraw surface can be constructed as a flipping surface, although most commonly the 
flipping surfaces consist of a primary surface and at least one back buffer. The surfaces involved in 
the flipping are sometimes called the flipping chain. Creating the flipping chain requires two 
DirectDraw functions: CreateSurface() is used to create both the primary surface and the back 
buffer, and GetAttached_Surface() to obtain the back buffer pointer. In the case of a flipping 
chain, the call to CreateSurface() must include the flag DDSD_BACKBUFFERCOUNT, which 
defines the member dwBackBufferCount, which in turn is used to set the number of back 
buffers in the chain. Other flags usually listed in the call are DDSCAPS_PRIMARYSURFACE, 
DDSCAPS_FLIP, DDSCAPS_COMPLEX, and DDSCAPS_VIDEOMEMORY. The following code shows a 
call to CreateSurface() for a flipping chain consisting of a primary surface and a single back 
buffer:  

 
 DDSURFACEDESC2 ddsd;  
 . . .  
 // Create the primary surface with a back buffer  
 ZeroMemory(&ddsd, sizeof(ddsd)); // Fill structure with // zeros  
 // Fill in other members  
 ddsd.dwSize = sizeof(ddsd);  
 ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;  
 ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |  
 DDSCAPS_FLIP |  
 DDSCAPS_COMPLEX |  
 DDSCAPS_VIDEOMEMORY;  
 ddsd.dwBackBufferCount = 1;  
 hRet = lpDD4->CreateSurface(&ddsd, &lpDDSPrimary, NULL);  



 
If the call to CreateSurface() returns DD_OK, then the flipping chain surfaces have been 
created. To use the flipping chain, code must first obtain the pointer to the back buffer because the 
call to CreateSurface() returns only the pointer to the primary surface (in its second 
parameter). The GetAttachedSurface() function has the following general form:  

 
 HRESULT GetAttachedSurface(  
 LPDDSCAPS lpDDSCaps, // 1  
 LPDIRECTDRAWSURFACE3 FAR *lplpDDAttachedSurface // 2  
 );  
 

 

The first parameter is a pointer to a DDSCAPS2 structure that contains the hardware capabilities of 
the surface. The second parameter is the address of a variable that is to hold the pointer, of type 
IDIRECTDRAWSURFACE4, retrieved by the call. The retrieved surface matches the description in 
the first parameter. If the function succeeds, it returns DD_OK. If it fails it returns one of the 
following errors:  

 
 DDERR_INVALIDOBJECT  
 
 DDERR_INVALIDPARAMS  
 
 DDERR_NOTFOUND  
 
 DDERR_SURFACELOST  
 
 The following code fragment obtains the back buffer surface pointer for the primary surface 
previously described.  

 
 // Get back buffer pointer  
 ddscaps.dwCaps = DDSCAPS_BACKBUFFER;  
 hRet = lpDDSPrimary->GetAttachedSurface(&ddscaps,  
 &lpDDSBackBuf);  
 

 

If the calls to CreateSurface() and GetAttachedSurface() are successful, DirectDraw 
creates two attached surfaces in display memory, and the application retrieves the pointers to 
each of these surfaces. The pointer to the back buffer surface is used at draw time, and the pointer 
to the primary surface at flip time. DirectDraw automatically switches the surface pointers, 
transparently to application code.  

 
 Flipping operations  
 

 After the application concludes drawing, and the frame timer count expires, the actual rendering is 
performed by calling DirectDraw Flip(). The Flip() function exchanges the surface memory of 
the primary surface and the back buffer. If more than one back buffer is specified when the flip 



Figure 12-9. When DirectDraw flipping is supported by the hardware, as is the case in most current 
video cards, flipping consists of changing pointers and no image data is physically moved. The 
function's general form is as follows:  

 
 HRESULT Flip(  
 LPDIRECTDRAWSURFACE3 lpDDSurfaceTargetOverride, // 1  
 DWORD dwFlags // 2  
 );  
 

 

The first parameter, sometimes called the target override, is the address of the 
IDirectDrawSurface4 interface for any surface in the flipping chain. The default value for this 
parameter is NULL, in which case DirectDraw cycles through the flip chain surfaces in the order 
they are attached to each other. If this parameter is not NULL, then DirectDraw flips to the 
specified surface instead of the next surface in the flipping chain, thus overriding the default order. 
The call fails if the specified surface is not a member of the flipping chain.  

 
 The second parameter specifies one of the predefined constants that control flip options. The 
constants are listed in Table 12-2.  

 
 Table 12-2: DirectDraw Flip() Function Flags  
 
    
 
 Flag  

 
Action  

 

 
    
 
 DDFLIP_EVEN  

 
Used only when displaying video in an overlay surface. 
The new surface contains data from the even field of a 
video signal. Cannot be used with the DDFLIP_ODD flag.  

 

 
 DDFLIP_INTERVAL2  

 
  

 

 
 DDFLIP_INTERVAL3  

 
  

 

 
 DDFLIP_INTERVAL4  

 
Indicate how many vertical retraces to wait between each 
flip. The default is 1. DirectDraw returns 
DERR_WASSTILLDRAWING until the specified number of 
vertical retraces has occurred. If DDFLIP_INTERVAL2 is 
set, DirectDraw flips on every second vertical retrace 
cycle. If DDFLIP_INTERVAL3 is set, DirectDraw flips on 
every third vertical retrace cycle, and so on. These flags 
are effective only if DDCAPS2_FLIPINTERVAL is set in 
the DDCAPS structure for the device.  

 

 
 DDFLIP_NOVSYNC 

 



 DDFLIP_NOVSYNC  DirectDraw performs the physical flip as close as possible 
to the next scan line. Subsequent operations involving the 
two flipped surfaces do not check to see if the physical flip 
has finished, that is, they do not return 
DDERR_WASSTILLDRAWING. This flag enables an 
application to perform flips at a higher frequency than the 
monitor refresh rate. The usual consequence is the 
introduction of visible artifacts. If 
DDCAPS2_FLIPNOVSYNC is not set in the DDCAPS 
structure for the device, DDFLIP_NOVSYNC has no effect. 

 
 DDFLIP_ODD  

 
Used only when displaying video in an overlay surface. 
The new surface contains data from the odd field of a 
video signal. This flag cannot be used with the 
DDFLIP_EVEN flag.  

 

 
 DDFLIP_WAIT  

 
If the flip cannot be set up because the state of the display 
hardware is not appropriate, then the 
DDERR_WASSTILLDRAWING is immediately returned and 
no flip occurs. Setting this flag causes Flip() to continue 
trying if it receives the DDERR_WASSTILLDRAWING. In this 
case the call does not return until the flipping operation is 
successfully set up, or another error, such as 
DDERR_SURFACEBUSY, is returned.  

 

 
    
 
 If the Flip() call succeeds, the return value is DD_OK. If it fails, one of the following errors is 
returned:  

 
 DDERR_GENERIC  DDERR_SURFACEBUSY  

 

 
 DDERR_INVALIDOBJECT  DDERR_SURFACELOST  

 

 
 DDERR_INVALIDPARAMS  DDERR_UNSUPPORTED  

 

 
 DDERR_NOFLIPHW  DDERR_WASSTILLDRAWING  

 

 
 DDERR_NOTFLIPPABLE    

 

 

 

The Flip() function can be called only for surfaces that have the DDSCAPS_FLIP and 
DDSCAPS_FRONTBUFFER capabilities. The first parameter is used in rare cases when the back 
buffer is not the buffer that should become the front buffer. In most cases this parameter is NULL. 
In its default state, the Flip() function is always synchronized with the vertical retrace cycle of 
the video controller. When working with visible surfaces, such as a primary surface flipping chain, 
Flip() function is asynchronous, except if the DDFLIP_WAIT flag is included.  



 

Many applications check if the Flip() returns with a DDERR_SURFACELOST. If so, code can make 
an attempt to restore the surface by means of the DirectDraw Restore() function, discussed in 
Chapter 10. If the restore is successful, the application loops back to the Flip() call and tries 
again. If the restore is unsuccessful, the application breaks from the while loop, and returns a 
terminal error.  

 
 Multiple buffering  
 

 

The call to Flip() can return before the actual flip operation takes place, because the hardware 
waits until the next vertical retrace to actually flip the surfaces. While the Flip() operation is 
pending, the back buffer directly behind the currently visible surface cannot be locked or blitted to. 
If code attempts to call Lock(), Blt(), BltFast(), or GetDC() while a flip is pending, the call 
fails and the functions returns DDERR_WASSTILLDRAWING. The effect of the surface update time 
on the frame rate is shown in Figure 12-10.  

 

 

  
 
 Figure 12-10: Surface update time and frame rate 

   
 

 

Case A in Figure 12-10 shows an application with a relatively short surface update time. In this 
case the rendering is finished well before the next vertical retrace cycle starts. The result is that the 
image is updated at the monitor's refresh rate. In Case B the rendering time is longer than the 
refresh cycle. In this case, the application's frame rate is reduced to one-half the monitor's refresh 
rate. In such situations, any attempt to access the back buffer during the period represented by the 
dark gray rectangles results in DDERR_WASSTRILLDRAWING error message.  

 

 
A possible way to improve the frame rate in Case B, shown in Figure 12-10, is to use two back 
buffers instead of a single one. With two back buffers the application can draw to the back buffer 
that is not immediately behind the primary surface, thereby reducing the wasted time because the 
blits to this rear-most surface are not subject to the DDERR_WASSTILLDRAWING error condition.  

 

 

In coding practice, creating a flipping chain with two or more back buffers requires no different 
processing than with a single one. DirectDraw takes care of flipping the surfaces, and the 
application code actually draws using the same back buffer pointer. In this case the middle buffer, 
or buffers, can be ignored by the code, which only sees the primary surface and a back buffer. The 
one drawback of multiple buffering is that each back buffer requires as much display memory as 
the primary surface. Also, the law of diminishing returns applies to back buffers: the more back 
buffers, the less increase in performance for each back buffer. At some point adding more back 
buffers degrades performance.  



 

 

Exclusive-mode applications can select a lower resolution or color depth in the display mode to 
make possible multiple back buffers. For example, in a card with 2MB of video memory, executing 
in 640 by 480 pixels resolution in 24-bit color, you can create only one back buffer because the 
primary surface requires 921,600 bytes. By reducing the color depth to 16 bits, the sample 
application needs only 614,400 bytes for the primary surface, and you can now create two back 
buffers in display memory. The following code fragment shows the creation of a primary surface 
with two back buffers:  

 
 //Global variables  
 LPDIRECTDRAWSURFACE4 lpDDSPrimary = NULL;  
 LPDIRECTDRAWSURFACE4 lpDDSBackBuf = NULL;  
 DDSURFACEDESC2 ddsd; // Surface description  
 HRESULT hRet;  
 . . .  
 // Create a primary surface with two back buffers  
 // ddsd is a structure of type DDSRUFACEDESC2  
 ZeroMemory(&ddsd, sizeof(ddsd)); _// Fill structure with _// zeros  
 // Fill in other members  
 ddsd.dwSize = sizeof(ddsd);  
 ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;  
 ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |  
 DDSCAPS_FLIP |  
 DDSCAPS_COMPLEX |  
 DDSCAPS_VIDEOMEMORY;  
 ddsd.dwBackBufferCount = 2; // Two back buffers requested  
 hRet = lpDD4->CreateSurface(&ddsd, &lpDDSPrimary, NULL);  
 // At this point code can examine hRet for DD_OK and  
 // provide alternate processing if the surface creation  
 // call failed  
 // Get backbuffer pointer  
 ddscaps.dwCaps = DDSCAPS_BACKBUFFER;  
 hRet = lpDDSPrimary->GetAttachedSurface(&ddscaps,  
 &lpDDSBackBuf);  
 // At this point code can examine hRet for DD_OK and  
 // provide alternate processing if the back buffer pointer  
 // was not returned  
 



Summary  
 

 

Here we examined the fundamental techniques of computer animation using DirectDraw. Animation 
is one of the most exacting, as well as the most rewarding, tasks that can be undertaken in a 
graphics application. DirectDraw makes possible animation in Windows by furnishing direct access 
to the video hardware as well as specialized programming facilities, such as back buffers and 
flipping operations. In the following chapter we put this knowledge to work in animated applications. 

 



 
 Chapter 13: Animation Programming  
 
 Overview  
 

 

Here we tackle some of the practical problems related to animation in DirectDraw programming. 
Animation programming is both exacting and rewarding. DirectDraw makes possible animation in 
Windows by furnishing direct access to the video hardware as well as specialized programming 
facilities, such as back buffers and flip operations, described in Chapter 12. We now put these 
techniques to work to create effects that simulate movement. The objective is to make these 
movements appear smooth and natural. Animation programming finds use in the development of 
computer games, simulations, in multimedia, and in many high-end graphics programs.  

 



Flipping Techniques  
 

 

Exclusive mode applications that use flipping animation start by initializing DirectDraw, setting a 
display mode, creating the flip chain, obtaining the corresponding pointers to the front and back 
buffers, and setting up a timer mechanism that produces the desired beat. After these 
housekeeping chores are finished, the real work can begin, which consists of rendering the 
imagery to the back buffer, usually by means of blits from other surfaces in video memory or 
offscreen. The design and coding challenge in creating an animated application using DirectDraw 
can be broken down into two parts: the first one requires the minimum resources that enable the 
program to perform satisfactorily. The second one makes the best use of these resources to 
produce the finest and smoothest animation possible.  

 
 Background animation  
 

 

A typical computer game or real-time simulation often contains two different types of graphics 
objects: backgrounds and sprites. The backgrounds consist of larger bitmaps over which the action 
takes place. For example, in a flight simulator program there can be several background images 
representing views from the cockpit. These may include landscapes, seascapes, and views of 
airports and runways used during takeoff and landing. In a computer game that takes place in a 
medieval castle the backgrounds are the various castle rooms and corridors on which the action 
takes place. Sprites, on the other hand, are rather small, animated objects represented in two or 
three dimensions. In the flight simulator program the sprites are other aircraft visible from the 
cockpit as well as the cabin instruments and controls that are animated during the simulation. In 
the computer game the sprites are medieval knights that do battle in the castle, as well as the 
objects animated during the battle.  

 
 Panning animation  
 

 
The design and display of background images is relatively straightforward and not complicated. In 
this sense the most difficult processing consists of creating backgrounds that are larger than the 
viewport and using clipping and blit-time rectangles to generate panning and zoom effects. Figure 
13-1 shows a bitmapped galaxy, a portion of which is selected by a source rectangle.  

 

 

  
 
 Figure 13-1: Source rectangle selection in panning animation 

   
 
The project named DD Panning Demo in the book's CD-ROM demonstrates panning animation of 
a background bitmap. In the program the source rectangle has the same vertical dimension as the 
background bitmap, which is 480 pixels. The image bitmap is 1280 pixels wide and the source 



rectangle is one-half that size (640 pixels). This creates a source window that can be moved 639 
pixels to the right from its original position. The white, dotted rectangle in Figure 13-1 represents 
the source rectangle within the background bitmap.  

 

 

The program DDPan.cpp, which is located in the project DD Panning Demo, uses a simple 
processing logic to demonstrate panning animation. The program action is to pan to the right until 
the right border of the image is reached, and then reverse the panning direction until the left border 
is reached. The primary surface and a single back buffer are created and a clipper is installed in 
both surfaces. The background bitmap—in this case two colliding galaxies imaged by the Hubble 
Space Telescope—are stored in the panback.bmp file. This bitmap is twice as wide as the 
viewport; therefore, the source rectangle can be moved horizontally within the bitmap. The panning 
variables and the display routine are coded as follows:  

 
 // Global panning animation controls   
 RECT thisPan; // Storage for source  
 // rectangle  
 LONG panIteration = 0; // panning iteration counter  
 LONG panDirection = 0; // 1 = left, 0 = right  
 // Constants  
 LONG PAN_LIMIT_LEFT = 1;  
 LONG PAN_LIMIT_RIGHT = 639;  
 . . .  
 //*************************************************  
 // Name: PanImage  
 // Desc: Update back with a source rectangle that  
 // is a portion of the background bitmap  
 // and flip to create a panning animation  
 //*************************************************  
 static void PanImage()  
 {  
   
 thisTickCount = GetTickCount();  
 if((thisTickCount - lastTickCount) < TIMER_VALUE)  
 return;  
   
 else  
 {  
 lastTickCount = thisTickCount;  
   
 // Bump pan iteration according to direction  
 if(panDirection == 1)  



 panIteration--;  
 else  
 panIteration++;  
   
 // Reset panning iteration counter at limits  
 if(panIteration == PAN_LIMIT_RIGHT)  
 panDirection = 1; // Pan left  
 if(panIteration == PAN_LIMIT_LEFT)  
 panDirection = 0;  
   
 // Set panning rectangle in source image  
 thisPan.left = panIteration;  
 thisPan.top = 0;  
 thisPan .right = 640 + panIteration;  
 thisPan.bottom = 480;  
   
 // Blit background bitmap to back buffer  
 hRet = lpDDSBackBuf->Blt(NULL,  
 lpDDSBackGrnd,  
 &thisPan,  
 DDBLT_WAIT,  
 NULL);  
 if(hRet != DD_OK){  
 DDInitFailed(hWnd, hRet,  
 "Blt() on background failed");  
 return;  
 }  
   
 // Flip surfaces  
 hRet = lpDDSPrimary->Flip(NULL, DDFLIP_WAIT);  
 if(hRet != DD_OK){  
 DDInitFailed(hWnd, hRet,  
 "Flip() call failed");  
 return;  
 }  
 return;  
 }  
 }  



 

 

The local function named PanImage() performs the panning animation. First it bumps and checks 
the ticker counter. If the counter did not expire yet, execution returns immediately. Code then 
checks the panDirection variable. If the direction is 1, then panning is in the left-to-right cycle 
and the panIteration variable is decremented. If not, then panning is right-to-left and the 
panIteration variable is incremented. When either variable reaches the limit, as defined in the 
constants PAN_LIMIT_LEFT and PAN_LIMIT_RIGHT, the panning direction is reversed. A 
structure variable named thisPan, of type RECT, is used to define the source rectangle for the 
blit. The panIteration variable is used to define the offset of the source rectangle within the 
image bitmap. Because panning takes place on the horizontal axis only, and the display mode is 
defined in the code, then the image size can be hard-coded into the thisPan structure members. 
After the image is blitted onto the back buffer, surfaces are flipped in the conventional manner.  

 
 Zoom animation  
 

 

Zooming is another background animation that can be implemented by manipulating the source or 
destination rectangles, or both. This is possible because both Blt() and BltFast() perform 
automatic scaling when the source and destination areas are of a different size. The simplest 
approach to zooming animation consists of reducing the area covered by the source rectangle and 
letting Blt() or BltFast() perform the necessary adjustments. Figure 13-2 shows the initial and 
final source rectangles in zoom animation.  

 

 

  
 
 Figure 13-2: Source rectangle selection in zoom animation 

   
 

 

The program DDZoom.cpp, which is located in the project DD Zoom Demo, demonstrates zoom 
animation using an image of the Mariner spacecraft. The program action is to zoom into a bitmap 
by changing the position and progressively reducing the dimensions and the source rectangle. 
When an arbitrary maximum zoom value is reached, the process reverses and the source 
rectangle is made progressively larger until it is restored to the original size. As in the panning 
animation demo program, the primary surface and a single back buffer are created, and a clipper 
is installed in both surfaces. The background image, which in this case is stored in the 
zoomback.bmp bitmap, is then moved to an offscreen surface. This bitmap is the size of the 
viewport. In the following code fragment we show the zoom controls and display operations that 



are different from the panning animation, previously listed:  
 
 // Zoom animation controls   
 RECT thisZoom; // Storage for source rectangle  
 LONG zoomIteration = 0; // panning iteration counter  
 LONG zoomDirection = 0; // 1 = left, 0 = right  
 // Constants  
 LONG ZOOM_LIMIT_OUT = 1;  
 LONG ZOOM_LIMIT_IN = 200;  
 . . .  
 // Bump zoom iteration according to direction  
 if(zoomDirection == 1)  
 zoomIteration--;  
 else  
 zoomIteration++;  
   
 // Reset zoom iteration counter at limits  
 if(zoomIteration == ZOOM_LIMIT_IN)  
 zoomDirection = 1; // Pan left  
 if(zoomIteration == ZOOM_LIMIT_OUT)  
 zoomDirection = 0;  
   
 // Set zoom rectangle in source image  
 thisZoom.left = zoomIteration;  
 thisZoom.top = zoomIteration;  
 thisZoom.right = 640 - zoomIteration;  
 thisZoom.bottom = 480 - ((zoomIteration * 3)/4);  
 

 

Notice that in dimensioning the source rectangle for zoom animation we take into account the 
screen's aspect ratio, which is approximately 3:4. Therefore the y coordinate of the end point of the 
source rectangle is changed at a slower rate than the x coordinate. If both coordinates were 
reduced by the same amount, the resulting images would be stretched along this axis during the 
zoom.  

 
 Sprite operations  
 

 
In the context of graphics programming a sprite is a rather small screen object, usually animated 
during program execution. It can be a fuel gauge on the dashboard of a race car simulation, a 
spaceship in a futuristic game, or a medieval warrior in another one. Designing, encoding, and 
manipulating sprites require all the talents and skills of the animator.  



 
The project named DD Sprite Demo, in the book's CD-ROM, demonstrates sprite animation by 
simultaneously moving three screen objects at different speeds. Figure 13-3 is a screen snapshot 
of the demonstration program.  

 

 

  
 
 Figure 13-3: Screen snapshot of the sprite animation demo 

   
 

 

The hot-air balloons and the blimp in Figure 13-3 are the sprites. During program execution the 
balloons and the blimp rise at different speeds. The blimp, which appears closer to the viewer, 
moves up one pixel during every iteration of the frame counter. The balloon on the left moves 
every second iteration and the one on the right every third iteration. The background is fixed in this 
sample.  

 

 

Controlling several sprites, simultaneously displayed, can be a challenge in pro-gram design and 
data organization, but does not present any major programming problems in DirectDraw. The 
program named DDSprt.cpp, which performs the processing in the DD Sprite Demo project, starts 
by creating a primary surface and two back buffers. The use of a second back buffer improved 
program execution in most machines. A clipper is then installed on both surfaces. The clipper 
makes the animated objects appear to come into the display area, and disappear from it, softly and 
pleasantly. The background image, which is located in the bitmap named backgrnd.bmp, is stored 
in an offscreen surface. This bitmap is the size of the viewport. The code creates three additional 
surfaces, one for each of the sprites, and moves the sprite bitmaps into these surfaces. The sprite 
surfaces are assigned a source color key to make the bitmap backgrounds transparent at display 
time. To ensure a smooth animation, all the surfaces in the sample program are located in video 
memory.  

 
 Sprite control in the demo program is based on a structure of type SpriteCtrl defined globally, 
as follows:  

 
 // Sprite control structure  
 struct SpriteCtrl  
 {  
 LONG startY; // Start x coordinate  



 LONG startX; // Start y coordinate  
 LONG bmapX; // Width of bitmap  
 LONG bmapY; // Height of bitmap  
 LONG iterMax; // Maximum iteration count  
 LONG skipFactor; // Display delay  
 LONG iteration; // Sprite iteration counter  
 } Sprite1, Sprite2, Sprite3;  
 

 

Three structure variables, named Sprite1, Sprite2, and Sprite3, are allocated, one for each 
animated object. The sprites are numbered left-to-right as they are displayed, as shown in Figure 
13-3. Each structure variable contains the members startX and startY that define the start 
coordinates for each sprite. The members bmapX and bmapY store the bitmap dimensions, which 
are obtained as the bitmaps are loaded from their files.  

 

 

The sprite animation control is performed by the last three members of the SpriteCtrl structure. 
The iterMax member stores the value of the iteration counter at which the sprite is repositioned 
to the bottom of the screen. The skipFactor member determines how many iterations are 
skipped at display time. This value is used to slow down the smaller balloons. Sprite1 is 
assigned a skipFactor of 2. Sprite2, the largest one, has a skipFactor equal to 1. 
Sprite3, the smallest one, has a skipFactor of 3. The iteration member keeps track of the 
number of frame beats corresponding to each sprite. The counters are reset when the iterMax 
value is reached for each sprite. The iteration counters range from 0 to iterMax. The code 
initializes the structure members for each sprite, as follows:  

 
 //******************************************************  
 // Fill SpriteCtrl structure members for each sprite  
 //******************************************************  
 // Sprite1 is balloon bitmap in bMap1  
 // Resolution is 640 by 480 pixels  
 Sprite1.startY = 479; // Starts at screen bottom  
 Sprite1.startX = 70; // x for start position  
 Sprite1.bmapX = bMap1.bmWidth;  
 Sprite1.bmapY = bMap1.bmHeight;  
 Sprite1.skipFactor = 2;  
 Sprite1.iterMax = (480+(bMap1.bmHeight)) * Sprite1.skipFactor;  
 Sprite1.iteration = 50; // Init iteration counter  
 // Sprite2 is balloon bitmap in bMap2  
 Sprite2.startY = 479; // Starts at screen bottom  
 Sprite2.startX = 240; // x for start position  
 Sprite2.bmapX = bMap2.bmWidth;  
 Sprite2.bmapY = bMap2.bmHeight;  
 Sprite2.skipFactor = 1;  



 Sprite2.iterMax = 480+(bMap2.bmHeight);  
 Sprite2.iteration = 50; // Init iteration counter  
 // Sprite3 is balloon bitmap in bMap3  
 Sprite3.startY = 479; // Starts at screen bottom  
 Sprite3.startX = 500; // x for start position  
 Sprite3.bmapX = bMap3.bmWidth;  
 Sprite3.bmapY = bMap3.bmHeight;  
 Sprite3.skipFactor = 3;  
 Sprite3.iterMax = (480+(bMap3.bmHeight)) * Sprite3.skipFactor;  
 Sprite3.iteration = 20; // Init iteration counter   
 

 

During initialization, the dimensions of each sprite are read from the corresponding bmWidth and 
bmHeight members of the BITMAP structure for each sprite. This ensures that the code continues 
to work even if the size of a sprite bitmap is changed. The maximum number of iterations for each 
sprite is calculated by adding the number of screen pixels in the selected mode (480), to the 
bitmap pixel height, and multiplying this sum by the sprite's skip factor. At display time the surface 
with the background bitmap is first blitted to the back buffer. Then the code calls a local function, 
named SpriteAction(), for each sprite. The FlipImages() function is coded as follows:  

 
 //*************************************************  
 // Name: FlipImages  
 // Desc: Update back buffer and flip  
 //*************************************************  
   
 static void FlipImages()   
 {  
 thisTickCount = GetTickCount();  
 if((thisTickCount - lastTickCount) < TIMER_VALUE)  
 return;  
 else  
 {  
 lastTickCount = thisTickCount;  
   
 // Blit background bitmap to back buffer  
 hRet = lpDDSBackBuf->Blt(NULL,  
 lpDDSBackGrnd,  
 NULL,  
 DDBLT_WAIT,  
 NULL);  
 if(hRet != DD_OK){  



 DDInitFailed(hWnd, hRet,  
 "Blt() on background failed");  
 return;  
 }  
   
 // Animate sprites. Farthest ones first   
 SpriteAction(Sprite3, lpDDSBmap3);  
 SpriteAction(Sprite2, lpDDSBmap2);  
 SpriteAction(Sprite1, lpDDSBmap1);  
   
 // Flip surfaces  
 hRet = lpDDSPrimary->Flip(NULL, DDFLIP_WAIT);  
 if(hRet != DD_OK){  
 DDInitFailed(hWnd, hRet,  
 "Flip() call failed");  
 return;  
 }  
 return;  
 }  
 }  
 

 

The actual display of the sprites is performed by the local function named SpriteAction(). This 
function receives the SpriteCtrl structure variable for the sprite being animated, and the pointer 
to the surface that contains the sprite image. The code checks the iteration number for the sprite 
against the maximum count to determine if the iteration counter needs resetting. Then the position 
of the sprite is calculated by dividing the current iteration number by the skip factor. This 
information is stored in a RECT structure corresponding to the destination surface rectangle, and 
the Blt() function is called. SpriteAction() code is as follows:  

 
 //************************************************  
 // Name: SpriteAction  
 // Desc: Animate a sprite according  
 // to its own parameters  
 // PRE CONDITIONS:  
 // 1. Pointer to structure containing  
 // sprite data  
 // 2. Pointer to DirectDraw surface  
 // containing sprite bitmap  
 //***********************************************  
 void SpriteAction(SpriteCtrl &thisSprite,  



 LPDIRECTDRAWSURFACE4 lpDDSBmap)  
 {  
 RECT destSurf;  
 LONG vertUpdate;  
   
 thisSprite.iteration++;  
   
 if(thisSprite.iteration == thisSprite.iterMax)  
 thisSprite.iteration = 0;  
   
 vertUpdate = thisSprite.iteration / thisSprite.skipFactor;  
   
 // Set coordinates for balloon1 display  
 destSurf.left = thisSprite.startX;  
 destSurf.top = thisSprite.startY - vertUpdate;  
 destSurf.right = destSurf.left + thisSprite.bmapX;  
 destSurf.bottom = destSurf.top + thisSprite.bmapY;  
   
 // Use Blt() to blit bitmap from the off-screen surface  
 // (->lpDDSBitamp), onto the back buffer (->lpDDSBackBuf)  
 hRet = lpDDSBackBuf->Blt(&destSurf,  
 lpDDSBmap,  
 NULL,  
 DDBLT_WAIT | DDBLT_KEYSRC,  
 NULL);  
   
 if(hRet != DD_OK){  
 DDInitFailed(hWnd, hRet,  
 "Blt() on sprite failed");  
 return;  
 }  
 return;  
 }  
 
 After the background bitmap and all three sprites are blitted onto the back buffer, the code calls the 
Flip() function to render the results onto the primary surface.  

 



Performance-Tuning the Animation  
 

 

Computer animation is a performance-critical task. In the past, the programmer's greatest concern 
was to produce a smooth and uniform effect, with as little bumpiness, screen tearing, and 
interference as possible. Today's machines, with 400Mhz and faster CPUs, video cards with 
graphics coprocessors and 4 or 8MB of video memory, high-speed buses, and DirectX 6 software, 
can often produce impressive animations with straightforward code. For example, the executable 
in the DD Sprite Demo project, in the book's CD-ROM, smoothly animates three sprites, even 
when running in a 200Mhz Pentium machine equipped with a low-end display card with 2MB of 
video memory.  

 

 

The basic paradigm of animation programming implies pushing graphics performance to its limits. 
If the animator finds that the code can manipulate three sprites successfully, then perhaps it can 
manipulate four, or even five. The rule seems to be: the more action, and the faster the action, the 
better the animation. In this section we discuss several loosely linked topics that relate to 
improving program performance or to facilitating implementation.  

 
 Best-option processing  
 

 

DirectDraw made it possible for Windows applications to achieve the graphics functionality and 
performance that, for a long time, was only possible in DOS. The price for the greater control and 
speed is a higher degree of device dependency. To accommodate this device dependency the 
applications developer can take several approaches. One of them is to require a minimum 
functionality in the host system. In this case the code can test the hardware for these requirements 
and abort execution if they are not available. This kind of program seems to say: "This is what I 
need to run. If you don't have it, I am out of here." Specialty and high-end programs, as well as 
dedicated applications, often do this. On the other hand, general-purpose programs, intended for a 
wide audience, must make the best possible use of whatever resources are available in the host 
machine. In this case the application seems to say: "This is what I would like to have. If it is not 
available, I'll make the best of what you have." The selection of the most suitable alternative 
among those available can be called "best-option" processing.  

 

 

Programs that execute windowed applications have to accommodate the current desktop settings. 
If these are not adequate, there is little else that can be done except to notify the user and suggest 
changes. On the other hand, DirectDraw programs executing in exclusive mode can change 
display modes and hardware settings, thus controlling the execution environment to some degree. 
Most DirectDraw applications start by checking for a DirectDraw object and for the interface level. 
If DirectDraw is not installed, two actions are possible: one is to notify the user and to abort 
installation; the second one is to proceed to install the DirectX software, with varying levels of user 
participation. The DirectX setup facilities can be used to copy the required files to the host machine 
and to perform the necessary initialization. Because Microsoft furnishes these files at no cost, 
there is little justification for any major DirectDraw application not to provide this option.  

 

 

Another possibility is that the version of DirectX installed in the host machine is not the current 
one. On encountering this problem you may be tempted to accommodate processing to whatever 
version of the SDK is already there. Although possible, the required processing presents some 
major complications. In the first place, the interface pointers are not generally interchangeable. 
That is, to use a function in the DirectDraw4 version of the SDK you need a pointer of type 
LPDIRECTDRAW4. The same applies to clippers, surfaces, palettes, and other objects of the 
interface. For this reason providing alternate processing for several interfaces amounts to 
furnishing separate code for each one. Here again, an easy way out is to notify the user of the 



problem and abort execution. A more reasonable one is to offer installing the updated drivers for 
the required SDK version.  

 

 

Note that in very simple applications, as is the case in the DD Info Demo project in the book's CD-
ROM, it is possible to typecast a pointer to an older interface to access methods in a newer one. 
However, this approach is dangerous and should be avoided because the functions in newer 
interfaces often have different parameter lists, processing options, and return types. If the call does 
not fail at compile time, it may fail at run time.  

 

 

It is difficult to provide general guidelines on how to handle DirectDraw device dependencies. The 
project named DD Info Demo, in the book's CD-ROM, contains code showing how to read these 
capabilities in the host machine. In DirectDraw programming, the most critical device-dependency 
complication results from the fact that not all hardware functionalities are emulated in the HEL. For 
example, clipping and color fills can be implemented in hardware, but are also emulated. An 
application that uses these functions has better performance in a system with hardware support, 
but still executes in a system in which these operations are furnished by the HEL. On the other 
hand, overlays, alpha channels, and other DirectDraw operations are not emulated in the HEL. If 
an application attempts to use these functions in a machine that does not provide hardware 
support, execution fails with unpredictable results. In this book we avoid discussing DirectDraw 
operations that are not emulated by the software. Applications that require these nonemulated 
functions should make the necessary checks and adjustments.  

 

 

DirectDraw programs that execute in exclusive mode virtually can tailor the system environment to 
suit their own requirements. Their first and most important decision is about the display mode. The 
project DD Info Demo contains code to list all available modes. The project DD Access Demo 
contains the function HasDDMode(), which can be used to test if a particular mode is available in 
the hardware. Applications can use this function in cascade fashion to determine the best available 
mode. Alternatively code can attempt to set the ideal mode; if an ideal mode is not available, it can 
then proceed to the next preferred one, and so forth.  

 

 

Mode selection is complicated by the fact that different modes use various amounts of video 
memory. For example, an application that requires two back buffers needs to investigate not only if 
a particular mode is available, but if there is sufficient free memory in the mode so as to allocate 
the two back buffers. You can use the GetCaps() function and read the dwVidMemTotal or 
dwVidMemFree members to determine the video memory in a system. This is how it is done in the 
DD Info Demo project program. Alternatively, code can call the GetAvailableVidMem() 
function to obtain the total amount of memory available and the amount currently free. The results 
are identical with either function.  

 

 

An application's video memory requirements are determined by the display mode and the number 
of surfaces necessary. For example, the demonstration program DD Sprites Demo, in the book's 
CD-ROM, executes in 640 X 480 pixels resolution, with a 16-bits- per-pixel color depth. In addition 
to the primary surface, it ideally requires two back buffers, and space for storing four bitmaps: one 
for the background and one for the three hot-air balloon sprites. The program's maximum memory 
requirements are as follows:  

 
 primary surface ............... 614,400 bytes  
 two back buffers .............. 1,228,800 bytes  
 background bitmap ............. 614,400 bytes  
 Sprite 1 bitmap ............... 13,400 bytes  



 Sprite 2 bitmap ............... 30,600 bytes  
 Sprite 3 bitmap ............... 8,880 bytes  
 ==============  
 Total .............. 2,510,480 bytes  
 

 
After the memory requirements are known, code can make sure that it is available by either calling 
GetCaps() or GetAvailableVidMem(). The following code fragment shows processing in the 
DD Sprite Demo project program:  

 
 // Variables for checking available memory  
 DDSCAPS2 ddCapsMem;  
 DWORD memTotal;  
 DWORD memFree;  
 static DWORD MEM_REQUIRED = 2510480;  
 . . .  
 // Check for necessary free video memory  
 ZeroMemory(&ddCapsMem, sizeof(ddCapsMem));   
 lpDD4->GetAvailableVidMem(&ddCapsMem, &memTotal, &memFree);  
 if (memTotal < MEM_REQUIRED)  
 return DDInitFailed(hWnd, hRet,  
 "Insufficient video memory");  
 

 

The code for performing display operations using one or more back buffers is identical in most 
cases. Applications can take advantage of this fact and start by requesting two or more back 
buffers. Then it reduces the number of back buffers if the call to CreateSurface() fails, and 
tries again. If you start by making sure that there is sufficient memory for at least one back buffer, 
the processing is ensured to succeed at some point. The following code shows this handling:  

 
 //******************************************************  
 // Create primary surface and one or more back buffers  
 //******************************************************  
 // ddsd is a structure of type DDSRUFACEDESC2  
 ZeroMemory(&ddsd, sizeof(ddsd)); // Fill structure with zeros  
 // Fill in other members  
 ddsd.dwSize = sizeof(ddsd);  
 ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;  
 ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |  
 DDSCAPS_FLIP |  
 DDSCAPS_COMPLEX |  
 DDSCAPS_VIDEOMEMORY;  



 // First request two back buffers  
 ddsd.dwBackBufferCount = 2;   
 hRet = lpDD4->CreateSurface(&ddsd, &lpDDSPrimary, NULL);  
 // If call failed, retry with one back buffer  
 if (hRet == DDERR_OUTOFVIDEOMEMORY) {  
 ddsd.dwBackBufferCount = 1;   
 hRet = lpDD4->CreateSurface(&ddsd, &lpDDSPrimary, NULL);  
 }  
 if (hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "CreateSurface() call failed");  
 
 High-resolution timers  
 

 

In Chapter 12 we examined two methods of obtaining the timed beat that is necessary for the 
frame updates in an animation routine. One method is based on a milliseconds counter maintained 
by the system, which can be read by means of the GetTickCount() function. The other one sets 
an interval timer that operates as an alarm clock. When the timer lapse expires, the application 
receives control either in a message handler intercept or a dedicated callback function. Although 
both methods are used often, processing based on reading the windows tick counter has 
considerably better resolution than the alarm clock approach. Windows documentation states that 
the resolution of the timer intercepts is approximately 55 milliseconds. This produces a beat of 
18.2 times per second, which is precisely the default speed of the PC internal clock. In many cases 
this beat is barely sufficient to produce smooth and lifelike animations.  

 

 

There are several ways to improve the frequency and reliability of the timed pulse. The multimedia 
extensions to Windows include a high-resolution timer with a reported resolution of 1 millisecond. 
Furthermore, the multimedia timer produces more accurate results because it does not rely on 
WM_TIMER messages posted on the queue. Each multimedia timer has its own thread, and the 
callback function is invoked directly regardless of any pending messages. To use the multimedia 
library, code must include mmsystem.h and make sure that winmm.lib is available and referenced 
at link time. Several timer functions are found in the multimedia library. The most useful one in 
animation programming is timeSetEvent(). This function starts an event timer, which runs in its 
own thread. A callback function, defined in the call to timeSetEvent(), receives control every 
time the counter timer expires. The function's general form is as follows:  

 
 MMRESULT timeSetEvent(  
 UINT uDelay, // 1   
 UINT uResolution, // 2   
 LPTIMECALLBACK lpTimeProc, // 3   
 DWORD dwUser, // 4   
 UINT fuEvent // 5   
 );  
 



 

The first parameter defines the event delay, in milliseconds. If this value is not in the timer's valid 
range, then the function returns an error. The second parameter is the resolution, in milliseconds, 
of the timer event. As the values get smaller, the resolution increases. A resolution of 0 indicates 
that timer events should occur with the greatest possible accuracy. Code can use the maximum 
appropriate value for the timer resolution to reduce system overhead. The third parameter is the 
address of the callback function that is called every time that the event delay counter expires. The 
fourth parameter is a double word value passed by Windows to the callback procedure. The fifth 
parameter encodes the timer event type. This parameter consists of one or more predefined 
constants listed in Table 13-1.  

 
 Table 13-1: Event-Type Constants in timeSetEvent() Function  
 
    
 
 Value  

 
Meaning  

 

 
    
 
 TIME_ONESHOT  

 
Event occurs once, after uDelay milliseconds. 

 

 
 TIME_PERIODIC  

 
Event occurs every uDelay milliseconds.  

 

 
 TIME_CALLBACK_FUNCTION  

 
Windows calls the function pointed to by the 
third parameter. This is the default.  

 

 
 TIME_CALLBACK_EVENT_SET  

 
Windows calls the SetEvent() function to set 
the vent pointed to by the third parameter. The 
fourth parameter is ignored.  

 

 
 TIME_CALLBACK_EVENT_PULSE  

 
Windows calls the PulseEvent() function to 
pulse the event pointed to by the third 
parameter. The fourth parameter is ignored.  

 

 
    
 

 

Notice that the multimedia timers support two different modes of operation. In one mode 
(TIME_ONESHOT) the timer event occurs only once. In the other mode (TIME_PERIODIC) the 
timer event takes place every time that the timer counter expires. This mode is the one used in 
animation routines. If successful, the call returns an identifier for the timer event. This identifier is 
also passed to the callback function. When the timer is no longer needed, applications should call 
the timeKillEvent() function to terminate it.  

 

 
Despite its high resolution, it has been documented that the multimedia timer can suffer 
considerable delays in Windows 95. One author states having recorded delays of up to 100 
milliseconds. Applications requiring very high timer accuracy are recommended to implement the 
multimedia timer in a 16-bit DLL.  



 

 

The WIN32 API first made available a high-resolution tick counter. These counters are sometimes 
called performance monitors because they were originally intended for precisely measuring the 
performance of coded routines. Using the high-performance monitors is similar to using the 
GetTickCount() function already described, but with a few special accommodations. Two 
Windows functions are associated with performance monitor counters: 
QueryPerformanceFrequency() returns the resolution of the counter, which varies according 
to hardware. QueryPerformanceCounter() returns the number of timer ticks since the system 
was started. QueryPerformanceFrequency() can also be used to determine if high-
performance counters are available in the hardware, although the presence of the performance 
monitoring function can be assumed in any Windows 95, 98, or NT machine.  

 

 
The function prototypes are identical for QueryPerformanceFrequency() and 
QueryPerformanceCount(): the return type is of type BOOL and the only parameter is a 64-bit 
integer of type LARGE_INTEGER. The general forms are as follows:  

 
 BOOL QueryPerformanceCounter(LARGE_INTEGER*);  
 BOOL QueryPerformanceFrequency(LARGE_INTEGER*);  
 

 
Although it has been stated that the performance frequency on Intel-based PCs is 0.8 
microseconds, it is safer for applications to call QueryPerformance_Frequency() to obtain the 
correct scaling factor. The following code fragment shows this processing:  

 
 _int64 TIMER_DELAY = 15; // Milliseconds  
 _int64 frequency; // Timer frequency  
 . . .  
 QueryPerformanceFrequency((LARGE_INTEGER*) &frequency);  
 TIMER_DELAY = (TIMER_DELAY * frequency) / 1000;  
 

 
After executing, the TIMER_DELAY value has been scaled to the frequency of the high-resolution 
timer. The QueryPerformanceCounter() can now be called in the same manner as 
GetTickCount(), for example:  

 
 _int64 lastTickCount;  
 _int64 thisTickCount;  
 . . .  
 QueryPerformanceCounter((LARGE_INTEGER*) &thisTickCount);  
 if((thisTickCount - lastTickCount) < TIMER_DELAY)  
 return;  
 else {  
 lastTickCount = thisTickCount;  
 . . .  
 



 The DD Sprite Demo project program, in the book's CD-ROM, uses a high-performance timer to 
produce the animation beat.  

 
 Dirty rectangles  
 

 

Looking at Figure 13-3 you notice that the background image is overlayed by three sprites. During 
every iteration of the animation pulse, code redraws the background to refresh those parts of the 
surface that have been overwritten by the sprites. The process is wasteful because most of the 
background remains unchanged. In fact, only the portion of the background that was covered by 
the sprite image actually needs to be redrawn. Figure 13-4 shows the rectangular areas that 
actually need refreshing in producing the next animation iteration of the image in Figure 13-3. 
These are called the "dirty rectangles."  

 

 

  
 
 Figure 13-4: Dirty rectangles in the animation of Figure 13-3 

   
 

 
DirectDraw clipping operations can be used to identify the dirty rectangles. In this case a clip list 
defines the areas that require refreshing, and these are the only ones updated during the blit. The 
processing is simplified by the fact that the last position of the sprite, and its stored dimensions, 
can be used to define the dirty rectangles.  

 

 

It is difficult to predict when a dirty rectangle scheme actually improves performance. The result 
depends on many factors: the total image area covered by the dirty rectangles, the number of 
rectangles, the processing overhead in calculating the rectangles and creating the clip list, and, 
above all, the efficiency of the DirectDraw clipping operations of the particular hardware. 
Unfortunately, in many cases, the screen update takes longer with dirty rectangle schemes than 
without them. The most rational approach is to develop the animation without dirty rectangles. If 
the results are not satisfactory, then try the dirty rectangles technique. The comparative results can 
be assessed by measuring the execution time in both cases. Methods for measuring performance 
of routines are discussed later in this section.  

 
 Dynamic color keys  



 

Color keys are an integral part of sprite animation. It is difficult to image a sprite that can be 
transparently overlayed on a bitmapped background without the use of a source color key. When 
you create your own sprites using draw or paint programs, and these sprites are stored in 24- or 
32-bit color depth bitmaps, the color key is usually known at coding time, or can be determined 
easily. If there is any doubt, the sprite can be loaded into a bitmap editor utility to inspect the RGB 
value of the background pixels. However, matters are not always that simple. One of the 
complicating factors with color keys occurs when the color depth of the application's video mode 
does not coincide with that of the sprite bitmap. This can be problematic in the palettized display 
modes, particularly when the palette changes during execution, or in applications that use best-
option processing in regards to the video mode.  

 

 

One possible solution is to determine the bitmap's color key dynamically, that is, at run time rather 
than at compile time. The method is usually based on the assumption that there is a fixed location 
in the bitmap, which is transparent at blit time. For example, the pixel at the bitmap's upper-left 
corner of the sprite image rectangle is typically part of the background. Figure 13-5 shows the fixed 
location of the color key for one of the balloon bitmaps used in the project DD Sprite Demo 
contained in the book's CD-ROM.  

 

 

  
 
 Figure 13-5: Color key in a fixed bitmap location 

   
 

 

After the relative location of a color key pixel has been determined, code can load the bitmap onto 
a surface, and then read the surface data at the predefined location to obtain the color key. The 
manipulation is made possible by the direct access to memory areas that are available in 
DirectDraw, discussed in Chapter 10. Because the application knows the color depth of the target 
surface, it can read the color key directly from the surface. In this case you do not need to be 
concerned about how Windows converts a pixel value in one color depth into another one because 
the code is reading the resulting color key directly. The following code is used in the DD Sprite 
Demo program for dynamically loading the color key for Sprite1.   

 
 // Video display globals  
 LONG vidPitch = 0; // Pitch  
 LPVOID vidStart = 0; // Buffer address  
 // Color key data  



 DDCOLORKEY bColorKey;  
 WORD dynamicKey;  
 . . .  
 //*************************************************  
 // move first balloon bitmap to offscreen surface  
 //*************************************************  
 // Load the bitmap into memory  
 bal1Bitmap = ( HBITMAP )LoadImage( NULL, "balloon1.bmp",   
 IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE );  
 if ( bal1Bitmap == NULL )   
 DDInitFailed(hWnd, hRet,  
 "Balloon1 bitmap load failed");  
 // Get bitmap dimensions to determine surface size  
 GetObject(bal1Bitmap, sizeof (BITMAP), &bMap1);  
   
 // Create the offscreen surface for bitmap in system memory  
 ZeroMemory(&ddsd, sizeof(ddsd)); // Fill structure with   
 // zeros  
 // Fill in other members  
 ddsd.dwSize = sizeof(ddsd);  
 ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH;  
 ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN |  
 DDSCAPS_VIDEOMEMORY;  
 ddsd.dwHeight = bMap1.bmHeight;  
 ddsd.dwWidth = bMap1.bmWidth;  
 hRet = lpDD4->CreateSurface(&ddsd, &lpDDSBmap1, NULL);  
 if (hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "Offscreen surface1 creation failed ");  
   
 // Move bitmap to surface using DDBmapToSurf()function  
 hRet = DDBmapToSurf(lpDDSBmap1, bal1Bitmap);  
 if(hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "DDMapToSurf() call failed");  
   
 //*****************************************  
 // read color key from loaded sprite  



 //*****************************************  
 // Attempt to lock the surface for direct access  
 if (!LockSurface(lpDDSBmap1))  
 return DDInitFailed(hWnd, hRet,  
 "Surface Lock failed ");  
 // Surface data is stored as follows:  
 // LONG vidPitch; // Pitch (not used here)  
 // LPVOID vidStart; // Buffer address  
 _asm  
 {  
 PUSH ESI ; Save context  
 PUSHF  
 MOV ESI,vidStart ; Left-top pixel address  
 ; Read and store pixel attributes  
 MOV AX,[ESI] ; Get attribute  
 MOV dynamicKey,AX ; Store value in variable  
 POPF ; Restore context  
 POP ESI  
 }  
 ReleaseSurface(lpDDSBmap1);  
   
 // Set color key for balloon1 surface using values stored  
 // in variable dynamicKey  
 bColorKey.dwColorSpaceLowValue = dynamicKey;  
 bColorKey.dwColorSpaceHighValue = dynamicKey;  
 hRet = lpDDSBmap1->SetColorKey(DDCKEY_SRCBLT, &bColorKey);  
 if(hRet != DD_OK)  
 return DDInitFailed(hWnd, hRet,  
 "SetColorKey() for Balloon1 failed");  
 
 Measuring performance  
 

 

The execution time of a coded routine or function is often the factor that determines its suitability 
for an animation application. Several software engineering techniques enable you to estimate the 
performance and efficiency of algorithms. These methods, which are based on mathematical 
analysis, are usually difficult and time-consuming. Instead of performing a complicated analysis of 
the algorithms that underlie a particular processing routine, a programmer can often obtain the 
necessary performance metrics by physically measuring its execution time.  

 
In some cases time of execution ranges from several seconds to several minutes. In these 
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situations it can sometimes be measured by observing the screen with a stopwatch in hand. More 
often the time of execution is in the milliseconds order, in which cases it may be possible to use 
the computer's timing mechanisms to determine the time lapsed between the start and the end of a 
processing routine or code segment. The QueryPerformanceCounter() function, described 
previously, has a resolution in the order of one-millionth of a second. To measure the execution 
time of a program segment, function, or routine you need to read the tick counter at the start and 
the end of the processing routine, and then subtract these values. The difference is the 
approximate execution time.  

 

 

Unfortunately, there are many complicating factors that can affect the accuracy of this simple 
scheme. In the first place, the scheduler in a multitasking environment can interrupt a thread of 
execution at any time, thereby delaying it. Sometimes the unit-boundary at which a data item is 
located in memory affects the time required for a memory fetch operation. Another consideration 
relates to the occasional state of a memory cache, which can also change the fetch-time for data. 
This means that the measurements should be repeated as many times as practicable in order to 
obtain a more reliable value. Even with many repetitions the resulting numbers may not be 
accurate. However, for many practical programming situations the data obtained in this manner is 
sufficient for a decision regarding which of two or more routines is more suitable for the case at 
hand. The following code fragment shows measuring the execution time of two routines:  

 
 // Timer data  
 _int64 startCount;  
 _int64 endCount;  
 _int64 timeLapse1; // First routine  
 _int64 timeLapse2; // Second routine  
 . . .  
 // First routine starts here  
 QueryPerformanceCounter((LARGE_INTEGER*) &startCount);  
 //  
 // First routine code  
 //  
 QueryPerformanceCounter((LARGE_INTEGER*) &endCount);  
 timeLapse1 = endCount - startCount;  
 . . .  
 // Second routine starts here  
 QueryPerformanceCounter((LARGE_INTEGER*) &startCount);  
 //  
 // Second routine code  
 //  
 QueryPerformanceCounter((LARGE_INTEGER*) &endCount);  
 timeLapse2 = endCount - startCount;  

The variables timeLapse1 and timeLapse2 now hold the number of timer ticks that elapsed 



inspect the variables.  
 



Summary  
 

 

In this chapter we tackled animation programming, one of the most difficult topics of 2D graphics. 
DirectDraw makes possible animation in Windows by furnishing direct access to the video 
hardware as well as specialized programming facilities, such as back buffers and flipping 
operations. We used these powers to create small demo programs that simulate movement. These 
techniques find use in many high-end or high-performance graphics programs.  

 

 
With this we conclude Part II of the book. Having learned some general graphics theory as well as 
Windows API programming and DirectDraw, we are now ready to start with 3D. Our first approach 
is in the context of Microsoft's Direct3D package.  

 



Chapter 14: Introducing Direct3D  
 
 Overview  
 

 
In this chapter we begin our discussion of Direct3D programming with the higher-level functions, 
called the retained mode. This chapter presents a smorgasbord of topics. The glue that holds them 
together is the fact that they are all necessary in order to understand and use Direct3D retained 
mode.  

 
 Before reading this chapter, make sure that you have grasped the material in Chapters 2, 3, and 4 
that provide the necessary background in 3D graphics.  

 



3D Graphics  
 

 

There is some confusion regarding the scope and application of 3D graphics. One reason for this 
confusion is that 3D displays are not yet commercially available for the PC. Devices that render 
solid images, on a three-dimensional screen, are still experimental. Therefore, in a strict sense, 3D 
graphics do not yet exist commercially. However, systems capable of storing and manipulating 
images of solid objects and display-ing these objects on two-dimensional media do exist. What we 
call 3D graphics in today's technology is actually a 2D rendering of a 3D object.  

 

 

Direct3D is the component of Microsoft's DirectX software development kit that provides support 
for real-time, three-dimensional graphics, as available in today's machines. 3D programming is a 
topic at the cutting edge of PC technology. But cutting-edge infrastructures are rarely stable. Many 
of its features are undergoing revisions and redesigns, and there are still some basic weaknesses 
and defects. Furthermore, the performance of 3D applications depends on a combination of many 
factors, some of which are hidden in the software layers of the development environment. In 
today's world 3D applications developers spend much of their time working around the system's 
inherent weaknesses. Scores of video cards are on the market, each one supporting its own set of 
features and functionalities. Developing a 3D application that executes satisfactorily in most 
systems is no trivial task. The bright side of it is that the rewards can be enormous.  

 
 Historical origins of Direct3D  
 

 

Direct3D can be described as a graphics operating system, although it would be less pretentious, 
and perhaps more accurate, to refer to it as a 3D graphics back end. Its core function is to provide 
an interface with the graphics hardware, thus insulating the programmer from the complications 
and perils of device-dependency. It also provides a set of services that enable you to implement 
3D graphics on the PC. In this sense it is similar to other back ends, such as OpenGL and PHIGS. 
But Direct3D is also a provider of low-level 3D services for Windows. In Microsoft's plan the low-
level components of Direct3D (immediate mode) serve and support its higher-level components 
(retained mode) and those of other 3D engines (OpenGL).  

 

 

In the beginning 3D was exclusively in the realm of the graphics workstation and the mainframe 
computer. The standards were PHIGS (Programmer's Hierarchical Interactive Graphics Systems), 
and GKS (Graphical Kernel System). During the 1980s it was generally accepted that the 
processing power required to manipulate 3D images, with its associated textures, lighting, and 
shadows, was not available on the PC. However, some British game developers thought differently 
and created some very convincing 3D games that ran on a British Broadcasting Corporation (BBC) 
micro equipped with a 2MHz 6502 processor. This work eventually led Servan Keondjian, Doug 
Rabson, and Kate Seekings to the founding of a company named RenderMorphics and the 
development of the Reality Lab rendering engine for 3D graphics. Their first 3D products were 
presented at the SIGGRAPH '94 trade show.  

 

 

In February 1995, Microsoft bought RenderMorphics and proceeded to integrate the Reality Lab 
engine into their DirectX product. The result was called Direct3D. Direct3D has been one of the 
components of DirectX since its first version, called DirectX 2. Other versions of the SDK, namely 
DirectX 3, DirectX 5, DirectX 6, and currently, DirectX 7, also include Direct3D. The functionality of 
Direct3D is available to applications running in Windows 95/98 and Windows NT 3.1 and later. The 
full functionality of DirectX SDK is part of Windows 98 and will also be found in Windows NT 5.0 
and Windows 2000. This means that applications running under Windows 98 and later will be able 
to execute programs that use Direct3D without the loading of additional drivers or other support 
software.  



 
 Direct3D implementation  
 

 
Direct3D is an application-programming interface for 3D graphics on the PC. The other major 3D 
API for the PC is OpenGL, which is discussed in Part IV. Figure 14-1 shows the structure of the 
graphics development systems under Windows.  

 

 

  
 
 Figure 14-1: Windows graphics application development structure 

   
 

 

Direct3D provides the API services and device independence required by developers, delivers a 
common driver model for hardware vendors, enables turnkey 3D solutions to be offered by 
personal-computer manufacturers, and makes it easy for end-users to add high-end 3D functions 
to their systems. Because the system requires little memory, it runs well on most of the installed 
base of computer systems.  

 

 

The 3D graphics services in Direct3D execute in real time. The functions include rendering, 
transformations, lighting, shading, rasterization, z-buffering, textures, and transparent access to 
acceleration features available in the hardware. The Direct3D architecture consists of two well-
defined modes: a low-level one called immediate mode and a high-level one called retained mode. 
The term retained mode originally referred to the images being preserved after rendering, but this 
notion is no longer literally true.  

 
 Retained mode overview  
 

 

Retained mode was designed as a set of API for the high-level manipulation of 3D objects and 
managing 3D scenes. It is Microsoft's competition for OpenGL and other high-level 3D 
development environments. It is implemented as a set of interrelated COM objects that enable you 
to build and manipulate a 3D scene. Its intention was to make it easy to create 3D Windows 
applications or to add 3D capabilities to existing ones. The programmer working in retained mode 
can take advantage of its geometry engine, which contains advanced 3D capabilities, without 
having to create object databases or be concerned with internal data structures. The application 
uses a single call to load a predefined 3D object, usually stored in a file in .x format. The loaded 
object can then be manipulated within the scene and rendered in real-time. All of this is done 
without having to deal with the object's internals.  



 

 
Retained mode is tightly coupled with DirectDraw, which serves as its rendering engine, and is 
built on top of the immediate mode. OpenGL and other high-level systems exist at the same level 
as retained mode. Figure 14-2 shows the elements of this interface.  

 

 

  
 
 Figure 14-2: Architecture of the DirectX interface 

   
 
 Immediate mode overview  
 

 

Direct3D immediate mode is a layer of low-level 3D API. Its original intention was to facilitate the 
porting of games and other high-precision and high-performance graphics applications to the 
Windows operating system. It allows access to hard-ware features in the 3D chip and offers 
software rendering when the function is not available in the hardware. The intention of immediate 
mode is to enable applica-tions to communicate with the 3D hardware in a device-independent 
manner and to provide maximum performance.  

 

 
In contrast with retained mode, immediate mode does not contain a graphics engine. Code that 
uses immediate mode must provide its own routines to implement object and scene management. 
This means that the effective use of immediate mode requires considerable knowledge and skills 
in 3D graphics.  

 
 Hardware abstraction layer  
 

 

In Figure 14-2 you see that both the Immediate and the Retained Modes of Direct3D are built on 
top of the Hardware Abstraction Layer (HAL). It is this software layer that insulates the 
programmer from the device-specific dependencies. The Hardware Emulation Layer (HEL) 
provides support for those features that are not present in the hardware. The combination of HEL 
and HAL ensure that the complete Direct3D functionality is always available.  

 
 DirectDraw  
 



 

DirectDraw, the subject of Part II of this book, is the Windows rendering engine for 2D and 3D 
graphics. DirectDraw functions enable you to quickly compose images into front and back buffers, 
and to apply transformations, blitting, and flipping. The result is a capability of implementing 
smooth animation as required in computer games and other multimedia and high-performance 
graphics applications. DirectDraw functions can be used with images that originate in the Windows 
GDI, in Direct3D, or in OpenGL.  

 

 
DirectDraw is implemented as an API layer that lies above the display hardware, as shown in 
Figure 14-2. It enables the graphics programmer to take advantage of the capabilities of graphics 
accelerators and coprocessors in a device-independent manner. DirectDraw is a COM-based 
interface.  

 
 The following are the most important connections between DirectDraw and Direct3D:  
 
   •IDirect3D, the interface to Direct3D, is obtained from a DirectDraw object by calling the 
QueryInterface() method.  

 

   
•Direct3DDevice, the low-level interface to the 3D renderer, is similar to 
IDirectDrawSurface and is created by querying IDirectDrawSurface for a 3D device 
GUID. The 3D renderer will also render to a 2D surface and recognizes all DirectDraw 2D 
functions.  

 

   
•IDirect3DTexture, the texture manager in Direct3D, is an extension of 
IDirectDrawSurface and is created by querying IDirectDrawSurface for an 
IID_IDirect3DTexture interface. Code can access all DirectDraw surface functions on a 2D 
surface.  

 
   •A Direct3D z-buffer is a DirectDraw surface created with the DDSCAPS_ZBUFFER flag. Code can 

use DirectDraw 2D functions in relation to z-buffers. Z-buffers are discussed later in this chapter.  
 
 OpenGL  
 

 

OpenGL, the topic of Part IV, is an alternative 3D development environment that originated in 
graphics workstations. Its main area of application is in programs that require precise 3D image 
rendering, such as CAD/CAM, technical modeling and animation, simulations, scientific 
visualization, and others. OpenGL is part of Windows NT and is available for Windows 95 and 98. 
When installed, the system can execute programs that use the OpenGL APIs. Because of its high 
level, OpenGL appears to the programmer as an alternative to Direct3D retained mode.  

 
 Direct3D and COM  
 

 

Like DirectDraw, Direct3D is based on Microsoft's Component Object Model (COM). COM is an 
object-oriented system that exists at the operating system level. In COM an interface is a group of 
related methods. COM's main purpose is to support and promote the reuse of interfaces. Direct3D 
is presented to the programmer using the Component Object Model. The COM object is a data 
structure that contains a pointer to the associated methods. Because it is not specific to C++, a 
program written in C, or even in a non-C development system, can use APIs based on the COM 
protocol.  



 

 

There are several ways of accessing the COM interface. In C++ the COM object appears like an 
abstract class. In this case access is by means of the pointer to the DirectDraw COM object, which 
then allows code to obtain the Direct3D COM object. When programming in C the function must 
pass the pointer to the COM object as an additional parameter. In addition, the call must include a 
pointer to a property of the COM object called the vtable. In this book we use the simpler, C++ 
interface to the COM.  

 



Direct3D Rendering Engine  
 
 Direct3D uses a 3D rendering engine composed of three separate modules:  
 

   
•Transformation Module. This module consists of four modifiable state registers: viewport, 
viewing matrix, world matrix, and projection matrix. It supports arbitrary projection matrices, and 
allows perspective and orthographic views. As the name implies, the transformation module 
handles the geometrical transformations. It is also called the Geometry Module.  

 

   
•Lighting Module. This module calculates lighting and color information. It uses a stack-like 
structure to maintain a record of the current lights. It supports ambient, directional, point, and 
spotlight light sources and two lighting models: monochromatic and RGB.  

 

   
•Rasterization Module. This module uses the output of the transformation and lighting modules to 
render the scene. The rasterization module is the 3D renderer in Direct3D. The scene description 
is based on an extensible display-list that supports both 2D and 3D primitives. Raster options such 
as wireframe, solid fill, and texture map are defined in this module.  

 
 Figure 14-3 shows the modules of the Direct3D rendering engine and their interaction with the 
other modules and with the rest of the system.  

 

 

  
 
 Figure 14-3: Action and interaction of the Direct3D rendering engine modules 

   
 

 
Together, these three modules form the Direct3D rendering pipeline. Direct3D is furnished with 
one transformation module and a choice of two lighting and two rasterization modules. This 
ensures greater flexibility in lighting and rendering. For example, a scene can be rendered more 
realistically by switching the lighting module.  

 
 Transformation module  
 



 
The transformation module has four state registers: the viewport, the viewing matrix, the world 
matrix, and the projection matrix. All four are modifiable by code. Whenever one or more of the 
state registers are modified, they are recombined to form a new transformation matrix. The 
transformation matrix defines the rotation and projection of a set of 3D vertices.  

 

 

In Direct3D a display list is the name given to a set of 3D commands. The transfor-mation module 
supports a number of different vertex types in the display list. The D3DTLVERTEX structure is a 
transformed and lit vertex that contains screen coordi-nates and colors. This structure contains the 
data and color information that is used by the lighting module. The D3DLVERTEX structure is used 
when the model contains data and color information only. Alternatively, the D3DHVERTEX structure 
is used when the application uses model-coordinate data with clipping. When this structure is used 
the transformations are performed in hardware. The D3DVERTEX structure is used if the hardware 
supports lighting. This type of vertex can be transformed and lit during rendering.  

 

 

The transformation module contains two different types of methods: those that set the state and 
those that use the transformation module directly to act on a set of vertices. The second type of 
method is useful for testing bounding volumes or for acting on a set of vectors. These operations 
are based on the current transforma-tion matrices. The structure used for all the direct 
transformation functions is D3DTRANSFORMDATA. Geometrical transformations were discussed in 
Chapter 3 and are revisited later in this chapter.  

 
 Lighting module  
 

 
The lighting module maintains a stack-like structure representing the current lights, as well as the 
ambient light level, and a material. When the module is used directly, the input data includes a 
direction vector. If the light source is positional, as is the case with point- and spotlights, then the 
input also contains light source position information.  

 

 
The monochromatic lighting model calculates the value for each light in a shade of gray. It is also 
called the ramp model. The RGB model uses the color component of light sources in order to 
produce more realistic and pleasant results. Internal color representations are always based on a 
palette-based color ramp.  

 

 

In the ramp mode each color is represented by an index into a look-up table that can be located 
either in hardware or in software. Ramp modes use either 8- or 16-bit indices. In the ramp mode 
the lighting module has no knowledge of the particular color; it just works with a number of shades. 
Because color lights are treated as white lights, the ramp mode is sometimes called the 
monochromatic mode. The pre-calculated color ramps are divided into two sections. The first 
three-quarters of the ramp are the material's diffuse color. The values of this portion of the ramp 
range from the ambient color to the maximum diffuse color. The last quarter of the precalculated 
ramp encode the maximum diffuse color to the maximum specular color of the material. At 
rendering time the shade value is scaled by the size of the ramp and used as an index into the 
look-up table.  

 

 
If the material does not have a specular component, the shade is calculated using the diffuse 
component of the light intensity. In this case the value ranges from 0 (ambient light) to 1 (full-
intensity light). If the material has a specular component, then the shade calculation combines both 
the specular and diffuse components of the light according to the following equation  



 
  

 

 
where s is the shade value, d is the diffusion, and sp is the specular value of the light. Notice that 
the first term of the equation takes into account the first three quarters of the ramp, which is 
equivalent to the material's diffuse color. The second term takes into account the last quarter of the 
ramp, which corresponds with the material's diffuse or specular color value.  

 

 
Whether you use the RGB or the ramp color model depends mostly on the capabilities of the 
hardware. Ramp color is faster in software, but the RGB model supports color lights and is as fast, 
or even faster, than the ramp model if there is a hardware rasterizer.  

 
 Rasterization module  
 

 
The rasterization module is the one that draws the triangles, lines, and points to the frame buffer. It 
responds only to execute calls. Instructions stored in the execute buffer determine the mode of 
operation of the rasterization module.  

 

 
Execute buffers is just another name for display lists. They consist of self-contained, independent 
packets of information. The execute buffer contains a vertex list followed by an instruction stream. 
The instruction stream consists of individual instructions, each one containing an operation code 
(opcode), followed by the data. Figure 14-4 shows the format of the execute buffer.  

 

 

  
 
 Figure 14-4: Direct3D execute buffer format 

   
 

 
The instructions determine how the vertex list is lit and rendered. One of the most common 
instructions is a triangle list, which consists of a list of triangle primitives that reference vertices in 
the vertex list.  

 

 
The size of the execute buffer is determined by the hardware. Usually, 64K is considered 
satisfactory. How caching is implemented by the video card influences the best size for the buffer. 
The GetCaps() method can be used to retrieve the buffer size.  



 

 

In processing execute buffers the transformation module runs through the vertex list, generating 
the transformed vertices. If clipping is enabled, the corresponding clipping information is attached. 
If there is no vertex in view at this point, the entire buffer can be rejected. Otherwise, vertices are 
processed by the lighting module, which adds color to them according to the lighting instructions in 
the execute buffer. Finally, the rasterization module parses the instruction stream. Primitives are 
rendered based on the generated vertex information.  

 

 

The only geometry type that can be processed by the rasterization module are triangles. The 
screen coordinates range from (0, 0) for the top left of the screen or window device to width – 1, 
height – 1 for the bottom right of the device. The depth values range from zero at the front of the 
viewing frustum to one at the back. Rasterization is performed so that if two triangles that share two 
vertices are rendered, no pixel along the line joining the shared vertices is rendered twice. The 
rasterizer culls back facing triangles by determining the winding order of the three vertices of the 
triangle. Only those triangles whose vertices are traversed in a clockwise orientation are rendered.  

 



Retained Mode Elements  
 

 

Retained mode programming consists of building 3D scenes out of components in Direct3D. The 
retained mode programmer does not need to be concerned with the development of geometrical 
primitives, or the structures of 3D objects and data-bases. You can load, rotate, scale, light, 
translate, and otherwise manipulate a 3D object, in real time, using high-level API functions. In this 
section we discuss the core elements of Direct3D retained mode. These are the building blocks 
that we use in the following chapter to construct a Direct3D program.  

 
 Frames  
 

 

A scene in Direct3D, sometimes called a scene graph, is a collection or hierarchy of frames. The 
term frame relates to the notion of a frame of reference. It should not be confused with that of 
single animation image, also called a frame. In retained mode the role of a frame is to serve as a 
container for 3D objects, such as polygon meshes, lights, and cameras. These objects have no 
meaning by themselves. For example, a cube cannot be rendered until it is assigned a position 
within a frame, relative to a light and a camera, and possibly a material, color, and texture.  

 

 

Each scene contains a root or master frame and any number of child frames, each of which can 
have other children of its own. It is a tree-like structure in which the root frame has no parent frame 
and the leaf frames have no children. The root frame is the highest level element of a 3D scene. 
Child frames inherit their characteristics from the parent frames and are physically attached to the 
parent. When a frame is moved, all the objects attached to it, including its child frames, move with 
it. For example, a helicopter in a 3D scene may consist of several frames. One frame could model 
the body, another one the lift rotor blades, and a third one the steering rotor blades. In this case 
the rotor blades would be child frames to the helicopter body. The helicopter is made to fly by 
rotating the blades in the main and tail rotors and by translating the helicopter body frame. 
Because the rotors are child frames of the helicopter body frame, the entire machine moves as a 
unit. Figure 14-5 shows the frame hierarchy in this case.  

 

 

  
 
 Figure 14-5: Frame hierarchy in a scene 

   
 



 
Frame hierarchies in Direct3D are not rigid. Functions are available that enable you to change the 
reference frame, regardless of the parent-child relationships originally established. This flexibility 
adds considerable power to retained mode.  

 
 Meshes  
 

 
The mesh is the principal visual object of a scene and the cornerstone of retained mode 
programming. Direct3D objects are made up of meshes. A mesh is described as a set of faces, 
each of which consists of a simple polygon. This makes a mesh equivalent to a set of polygons. 
Polygon meshes were discussed in Chapter 2.  

 

 

The fundamental polygon type in Direct3D is the triangle. Retained mode applications can 
describe polygons with more than three vertices, but the system automatically translates them into 
triangles when rendering them. Immediate mode applications, on the other hand, are limited to 
triangles. Figure 14-6 shows two versions of the same mesh. The one at the top consists of 12 
quadrilaterals. The one at the bottom is made up of 24 triangles.  

 

 

  
 
 Figure 14-6: Quadrilateral and triangular meshes 

   
 

 

The principal objection to modeling with nontriangular polygons is that in a polygon with more than 
three vertices it is possible for the vertices to lie on different planes (see Figure 2-1). In addition, 
polygons with more than three vertices can be concave. The triangle is not only the simplest of 
polygons, but all the points in the surface of a triangular polygon must lie on the same plane and 
any line drawn from two points in a triangle is inside it. In other words, a figure defined by three 
vertices is coplanar and convex. The renderer requires that polygons are convex and coplanar, so 
triangular modeling facilitates rendering.  

 

 

Most graphics systems, including Direct3D, model objects by means of polygon meshes. Mesh 
information is stored in a database containing the vertices of each polygon and their attributes, 
such as color, texture, and shading. A state-of-the-art hardware-based renderer is capable of 
displaying hundreds of thousands to over one million of these polygons in one second, and at the 
same time applying texture, lighting, and other effects.  



 
 Mesh groups  
 

 
The mesh group is an organizational concept used by Direct3D immediate mode. A mesh group 
consists of a collection of polygons. Each group can have its own material, color, texture, and 
rendering quality. Groups have no names and are not supported in retained mode.  

 
 Faces  
 

 

If a face is a polygon, and a mesh is a collection of faces, then building a mesh consists of building 
the individual faces of which it is composed. Each face is a set of vertices. If the face is a triangle, 
then it is defined by three vertices. A front face is one in which vertices are defined in clockwise 
order. Figure 14-7 shows the front face of a triangular polygon in the Direct3D's left-handed 
coordinate plane.  

 

 

  
 
 Figure 14-7: Front face of a triangular polygon 

   
 

 

Each face has a normal vector, perpendicular to the face. If the normal vector of a face is oriented 
toward the viewer, that side of the face is its front. In Direct3D, only the front side of a face is 
visible. For this reason, if the vertices of the polygon in Figure 14-7 had been defined in 
counterclockwise order, the polygon's face would not be visible at rendering time. Face normals 
are used in Direct3D flat shading mode. Vertex normals are used in Phong and Gouraud shading. 
Figure 14-8 shows the face and vertex normals of a pyramidal object modeled with triangular 
polygons.  

 



 

  
 
 Figure 14-8: Vertex normals and face normals of a pyramid 

   
 
 Shading modes  
 

 

Direct3D documents three shading modes: flat, Gouraud, and Phong shading, but Phong is not 
currently supported. These shading algorithms were described in Chapter 4. In the flat shading 
mode the color of the first vertex of the polygon is duplicated across all the pixels on the object's 
faces. The result is that each face is rendered in a single color. Often the only way of improving the 
rendering is by increasing the number of polygons, which can be computationally expensive. An 
improvement to flat shading is called interpolative or incremental shading. In this case each 
polygon is rendered in more than one shade by interpolating, for the polygon interior points, the 
values calculated for the vertices or the edges. This type of shading algorithm is capable of 
producing a more satisfactory shade rendering with a smaller number of polygons. Direct3D 
describes two incremental shading methods, called Gouraud and Phong shading. Phong is not yet 
supported.  

 

 

In the Gouraud and Phong shade modes, vertex normals are used to give a more satisfactory 
appearance to a polygonal object. In Gouraud shading, the color and intensity of the polygon 
edges are interpolated across the polygon face (see Figure 4-30). In Phong shading, the system 
calculates the appropriate shade value for each pixel. Because Gouraud shading is based on the 
intensity at the edges, it is possible to completely miss a highlight or a spotlight that is contained 
within a face. Figure 14-9 shows two possible cases in which Gouraud shading renders 
erroneously.  



 

  
 
 Figure 14-9: Errors in Gouraud rendering of polygons 

   
 

 

Phong shading is the most effective shading algorithm in use today. This method, developed by 
Phong Bui-Toung is also called normal-vector interpolation. It is based on calculating pixel 
intensities by means of the approximated normal vector at each pixel point in the polygon. Phong 
shading improves the rendering of bright points and highlights that are misrendered in Gouraud 
shading. The one objection to Phong shading is that it takes considerably longer than Gouraud 
shading.  

 
 Interpolation of triangle attributes  
 

 

At rendering time Direct3D interpolates the attributes of a triangle's vertices across the triangle 
face. Color, specular reflection, fog, and alpha blending attributes are interpolated. In interpolation 
the attributes are modified according to the current shade mode, as previously described. The 
interpolation of color and specular attributes depends on the color model. In the RGB model the 
red, green, and blue color components are used in the interpolation. In the monochromatic model 
only the blue component of the vertex color is taken into account. The alpha component of a color 
is treated as a separate interpolant. This is because device drivers can implement transparency in 
two different ways: by texture blending or by stippling.  

 
 Z-buffers  
 

 
One of the problems encountered by the renderer refers to the display of over-lapping polygons. 
Figure 14-10 shows three triangles located between the viewer and the display buffer. In this case 
the question is whether the pixel should be rendered as dark gray, white, or light gray. The answer 
is obviously dark gray because the dark gray polygon is the one closest to the viewer.  



 

  
 
 Figure 14-10: Rendering overlapping triangles 

   
 

 
Several algorithms have been developed for eliminating hidden surfaces at render-ing time. One of 
the best known, attributed to Catmull, is called the z-buffer or depth buffer method. Because of its 
simplicity of implementation and relative efficiency it has become popular in 3D graphics. The z-
buffer algorithm is described in Chapter 4.  

 

 

Direct3D supports the z-buffer method for solving the so-called "polygon-on-top" problem. In 
Direct3D the z-buffer is a rather large block of memory where the depth value for each screen pixel 
is stored. Initially the depth value for a pixel is that of the background. As each polygon is 
rendered, its depth value is examined. This is the z-order. If its depth value is less than the one in 
the z-buffer, then the pixel is rendered with the polygon's attribute. Otherwise it is ignored.  

 

 

In Direct3D z-buffering can be turned on and off. The general rule is that z-buffering improves 
performance when a screen pixel is set several times in succession. The average number of times 
a pixel is written to is called the scene overdraw. Although overdraw is difficult to calculate exactly, 
it is possible to estimate it. If the scene overdraw is less than 2, then best performance is achieved 
by turning z-buffering off.  

 
 Lights  
 

 
Earlier in this chapter we discussed the lighting module in Direct3D as well as the RGB and ramp 
color models. In processing lights the lighting module uses information about the light source, and 
the normal vectors of the polygon vertices, to determine how to render the light source in each 
pixel.  

 

 
The vertex normals are calculated from the face normals of the triangles adjacent to that vertex. 
Face normals are perpendicular to the polygon face, as shown in Figure 14-11. The angle between 
the vertex normals and the light source determines how much light intensity and color are applied 
to the vertex. The mathematical calculations are performed by the lighting module.  



 

  
 
 Figure 14-11: Calculating the vertex normals of a polygon 

   
 

 
Lighting effects are used to improve the visual quality of a scene. Applications can attach lights to 
a frame to represent a light source in a scene. In this case the attached light illuminates the objects 
in the scene. The position and orientation for the light is defined in the frame. Code can move and 
redirect a light source simply by moving and reorienting the frame to which the light is attached.  

 
 Retained mode supports five types of light sources: ambient, directional, parallel point, point, and 
spotlight.  

 
 Ambient light  
 

 
An ambient light source illuminates the entire scene, regardless of the orientation, position, and 
surface characteristics of the objects. All objects are illuminated with equal strength, therefore the 
position and orientation of the containing frame is inconsequential. Multiple ambient light sources 
can be combined within a scene.  

 
 Directional light  
 

 
A directional light source has a specific orientation, but no position. The light appears to illuminate 
all objects with equal intensity, as if it were at an infinite distance from the objects. Directional 
lighting is often used to simulate distant light sources, such as the sun. It provides maximum 
rendering speed.  

 
 Parallel point light  
 

 
The parallel point light can be considered a variation of direction light. In this case the orientation 
of the light is determined by the position of the light source. Whereas a directional light source has 
orientation, but no position, a parallel point light source has orientation and position. The parallel 
point light source has similar rendering-speed performance to the directional source.  

 
 Point light  



 

A point light source radiates light equally in all directions. This makes it necessary to calculate a 
new lighting vector for every face it illuminates, which makes the method more computationally 
expensive than a parallel point light source. One advantage of the point light source is that it 
produces a more faithful lighting effect. When visual fidelity is a concern, a point light source is the 
best option.  

 
 Spotlight  
 

 

A spotlight is a cone-shaped light source with the light at the cone's vertex. Objects within the cone 
are illuminated. The cone produces light of two degrees of intensity, with a central brightly lit 
section called the umbra, and a surrounding dimly lit section called the penumbra. In Direct3D the 
angles of the umbra and penumbra can be individually specified. Figure 14-12 shows the umbra 
and the penumbra in spotlight illumination.  

 

 

  
 
 Figure 14-12: Umbra and penumbra in spotlight illumination 

   
 
 Textures  
 

 
A texture is an image, usually encoded in a 2D bitmap that can be applied to the face of a polygon 
to improve its visual quality. Color plate 6 is a coffee cup to which a red marble texture has been 
applied.  

 

 
Textures are usually stored in standard file formats, most commonly as a Windows bitmap, PCX, 
or GIF. Although any image can be used as a texture, not all images make good textures. Textures 
can be scaled at the time they are applied. Each element of a texture is called a textel, which is a 
composite of the words texture and pixel.  



 

In its simplest implementation, sometimes called point mapping, the rendering software looks up 
each pixel in a texture map and applies it to the corresponding screen pixel. In most cases point 
sampling produces coarse effects that are unnatural and disturbing to the viewer. Satisfactory 
texturing requires that the distance between the object and the viewer be taken into account at the 
time of applying the texture, in other words, that the texture be rendered perspectively.  

 
 The bilinear filtering method of texture rendering uses the weighted average of four texture pixels. 
This results in more pleasant textures than those that result from point mapping.  

 
 Direct3D supports five texture-rendering styles:  
 
   •Decals  
 
   •Texture colors  
 
   •Mipmaps  
 
   •Texture filters and blends  
 
   •Texture transparency  
 
 Decals  
 

 
A decal is a texture applied directly to a scene. Decals are not rendered on a polygon face, but as 
an independent object. They are rectangular in shape, the rectangle facing the viewport, and they 
grow and shrink according to their distance from the viewer. The fact that decals always appear 
facing the viewer considerably limits their usefulness.  

 

 
The origin point of a decal is defined as an offset from the top-left corner of the containing 
rectangle. The default origin is (0,0). In Direct3D an application can set and retrieve the origin of a 
decal. When the decal is rendered, its origin is aligned with its frame's position.  

 
 Texture colors  
 

 

Direct3D code in retained mode can set and retrieve the number of colors that are used to render 
a texture. Applications that use the RGB color model can encode textures in 8-, 24-, and 32-bit 
formats. In the ramp color model textures are represented in 8 bits. However, code that uses the 
ramp model should be careful regarding the number of texture colors. In this mode each color 
requires its own lookup table. If an application uses hundreds of colors, the system must allocate 
and manipulate as many lookup tables.  

 
 Mipmaps  

The term mipmap originates in the Latin expression multum in parvo, which can be translated 



considerable favor.  
 

 

In Direct3D a mipmap is a set of textures representing the same image at progressively lower 
resolutions. Each image in the set is one-quarter the size of the preceding one, which makes the 
entire mipmap take up 4/3 the memory of the original image. Mipmapping provides a 
computationally efficient way of improving the quality of rendered textures. Each scaled image in 
the mipmap is called a level. The image at level 0 is at the same resolution as the original. Figure 
14-13 is a diagram of the mipmap structure.  

 

 

  
 
 Figure 14-13: Mipmap structure 

   
 

 

Mipmaps are created by the DirectDraw interface. Each mipmap level contains its own front and 
back surfaces, which can be flipped in the conventional manner. When the mipmap is created, 
code defines the number of levels, as well as the dimensions of the level 0 mipmap. Figure 14-14 
shows the DirectDraw structure of a mipmap consisting of four levels. In the DirectDraw 
implementation of mipmaps, each level consists of a front and a back surface. As is the case with 
all mipmaps, successive levels have one half the resolution of the preceding one, and one-quarter 
the size.  

 

 

  
 
 Figure 14-14: Example of a DirectDraw mipmap 

   



 
 Texture filters and blends  
 
 The elements of a texture (texels) rarely correspond to individual pixels in the original image. 
Texture filtering is used to specify how to interpolate texels to pixels.  

 
 Direct3D supports six texture-filtering modes. They are:  
 
   •Nearest  
 
   •Linear  
 
   •Mip-nearest  
 
   •Mip-linear  
 
   •Linear-mip-nearest  
 
   •Linear-mip-linear  
 

 

The nearest mode uses the texel with coordinates nearest to the desired pixel value. The result is 
a point filter with no mipmapping. The linear mode uses a weighted average of an area of 2 X 2 
texels surrounding the desired pixel. This is equivalent to bilinear filtering with no mipmapping. In 
the mip-nearest mode the closest mipmap level is chosen and a point filter is applied. In the mip-
linear mode the closest mipmap level is chosen and a bilinear filter is applied. The linear-mip-
nearest mode uses the two closest mipmap levels, and a linear blend is used between point 
filtered samples of each level. In the linear-mip-linear mode the two closest mipmap levels are 
chosen and then combined using a bilinear filter.  

 

 
Texture blending consists of combining the colors of a texture with the colors of the surface to 
which the texture is applied. If done correctly, the result is a translucent surface. Because texture 
blending can result in unexpected colors, the color white is often used for the material texture. 
There are a total of seven texture blending modes:  

 
   •Decal  
 
   •Modulate  
 
   •Decal-alpha  
 
   •Modulate-alpha  
 
   •Decal-mask  



 
   •Copy  
 
   •Add  
 
 Texture blends are discussed in the context of retained mode texture programming, in Chapter 22. 
 
 Texture transparency  
 

 

Direct3D contains methods to directly produce transparent textures. In addition, immediate mode 
programs can take advantage of DirectDraw support for color keys to achieve transparency. By 
selecting a color key that contains a color or color range in the texture, the material's color will 
show through the texture areas within the color key range. The result is a transparent texture. 
Color-key programming in DirectDraw was discussed in Chapter 12.  

 
 Wraps  
 
 In Direct3D a wrap is a way of applying a texture to a face or mesh. Four kinds of wraps are 
available:  

 
   •Flat  
 
   •Cylindrical  
 
   •Spherical  
 
   •Chrome  
 

 

The flat wrap conforms to the faces of an object. The effect is sometimes compared to stretching a 
piece of rubber over the object. The cylindrical wrap treats the texture as if it were a sheet of paper 
wrapped around a cylinder. The left edge of the texture rectangle is joined to the right edge. The 
object is then placed in the middle of the cylinder and the texture is deformed inward onto the 
surface of the object. The spherical wrap is similar to the cylindrical wraps, but in this case the 
wrapping form is a sphere, instead of a cylinder. A chrome wrap allocates texture coordinates so 
that the texture appears to be reflected onto the objects. The chrome wrap takes the reference 
frame position and uses the vertex normals in the mesh to calculate reflected vectors, which are 
based on an imaginary sphere that surrounds the mesh. The resulting effect is that of the mesh 
reflecting whatever is wrapped on the sphere.  

 

 

Texture wrapping is a complex procedure in which a two-dimensional surface is deformed to cover 
the surface of a three-dimensional object. The above analogies are coarse simplifications that do 
not take into account many of the complexities of wrapping. In practice, the results of wrapping 
operations are often different from what was expected. This has led some to believe that, in most 
cases, the complica-tions do not justify the results. The reader interested in the more specific 
details on texture wrapping can refer to the article Texture Wrapping Simplified by Peter Donnelly 
that appears in Microsoft Developers Network documentation. The article includes a demonstration 



program for experimenting with texture wrapping operations.  
 
 Materials  
 

 

Direct3D provides support for an object property called a material. A material determines how a 
surface reflects light. It has two components: an emissive property and a specular property. The 
emissive property determines whether the material emits light. This property is useful in modeling 
lamps, neon signs, or other light-emitting objects. The specular property determines if and how the 
material reflects light.  

 

 

Code controls the emission property of a material by defining the red, green, and blue values for 
the emissive color. The specular property is also defined by the red, green, and blue values of the 
reflected light and by a power setting. The default specular color is white, but code can change it to 
any desired RGB value. The power setting determines the size, and consequently the sharpness, 
of the reflected highlights. A small highlight makes an object appear shiny or metallic. A large 
highlight gives a plastic appearance.  

 
 User-visuals  
 

 

A user-visual object is an application-defined data structure that can be added to a scene and 
rendered, typically by means of a customized rendering module. For example, an application can 
add sound as a user-visual object in a scene, and then render the sound during playback. A user-
visual object has no methods, but it does have a callback function that will be called by the 
renderer. The callback function is called twice: when the object is rendered and when the object is 
told to render itself. This property makes it possible for applications that execute in retained mode 
to use the user-visual mechanism to provide a hook into Direct3D immediate mode.   

 
 Viewports  
 

 
The viewport contains a camera reference frame that determines which scene is to be rendered, 
as well as the viewing position and direction. Rendering takes place along the z-axis of the camera 
frame, assuming the conventional Direct3D Cartesian plane with the positive y-axis in the upward 
direction and the positive x-axis toward the right.  

 
 Viewing frustum  
 

 
What the camera sees from the vantage point of a particular frame is called the viewing frustum. 
The viewport uses a frame object as a camera. In the perspective viewing mode, the viewing 
frustum is a truncated pyramid with its apex at the camera position. The camera's viewing axis 
runs from the pyramid's apex to the center of the base, as shown in Figure 14-15.  



 

  
 
 Figure 14-15: The viewing frustum 

   
 

 
If we assume that the front clipping plane is at a distance D from the camera, and the back clipping 
plane is at a distance F from the front clipping plane, then the viewing angle A is determined by the 
formula  

 

 

  
 

 
where h is one half the height of the front clipping plane, if it is square. If the clipping plane is 
rectangular, then h is one half the height or the width of the front clipping plane, whichever is 
larger. The parameter h defines the field of view of the viewport. The above formula can be used to 
calculate the value of h for a specific camera angle. Figure 14-16 shows the viewport parameters.  

 

 

  
 
 Figure 14-16: Viewport parameters 

   
 

 
Direct3D retained mode applications can set or retrieve the front and the back clipping planes, set 
the camera frame, as well as the viewport's field of view as defined by the parameter h in Figure 
14-16. Direct3D supports two projection types: perspective and orthographic. Projections were 
discussed in Chapter 4.  

 
 Transformations 



 Transformations  
 

 

In the context of Direct3D viewports, transformations are used to convert between screen and 
world coordinates. Direct3D transformations are based on homogenous coordinates as described 
in Chapter 3. The projection matrix, which is a combina-tion of a scaling and a translation 
transformation, produces a four-element homogenous coordinate [x y z w]. The three-element 
homogeneous coordinates are derived by performing x/w, y/w,z/w operations, where x/w and y/w 
are the coordinates to be used in the window and z/w is the depth. The depth ranges from 0 at the 
front clipping plane to 1 at the back clipping plane. The projection matrix is defined as follows:  

 

 

  
 
 In the above matrix the parameters h and D are as in Figure 14-16.  
 
 Picking  
 

 

Direct3D supports the selection of an object by specifying its location in the viewport. This 
operation, called picking, is typically based on the position of the mouse cursor. Picking is accurate 
to the pixel; therefore it can be used in precise object selection by technical applications. The 
drawback of the picking operation is that it involves considerable processing, which may introduce 
a visible delay in the rendering.  

 

 
To pick an object, code passes the x and y screen coordinates to the corresponding method. 
Usually these coordinates are those of the mouse cursor at the time of the pick action. The pick 
function returns either the closest object in the scene, or a depth-sorted list, called the picked 
array, of the objects found at that location.  

 
 Animations and animations sets  
 
 In retained mode an animation provides a mechanism for adding behavior to a 3D scene. An 
animation set consists of one or more animations and a time reference.  

 

 
An animation is defined by a set of keys, which consist of a time value, an associated scaling 
operation, an orientation, or a position. A Direct3D animation object defines how a transformation 
is modified according to the time value. The animation can be set to animate the position, 
orientation, and scaling of visuals, lights, or viewport objects.  

 



key with a time value of 99, a new position key with a time value of 49 would occur halfway 
between the beginning of the animation and the first position key. An animation is driven by calling 
a method that sets its time component. This call sets the visual object's transformation to the 
interpolated position, orientation, and scale of the nearby keys. As with the methods that add 
animation keys, the time value is arbitrary and based on the positions of keys that the application 
has already added. Rotation keys in an animation are based on quaternions. Quaternions, a 
mathematical structure that facilitates rotation transformations, are discussed later in this chapter.  

 

 
A Direct3D animation set allows animation objects to be grouped together. The result is that all the 
animations in the set share the same time parameter, which simplifies the playback of complex 
sequences. Applications can add and remove animations to and from an animation set.  

 



Direct3D Rendering Mathematics  
 

 

The mathematical basis of 3D graphics was covered in Chapters 2, 3, and 4. At this time we lightly 
review some of the basic concepts as they relate to Direct3D programming in retained mode, and 
introduce some new ones that are specifically associated with this development environment. The 
material covered here refers to 3D programming at the API level, as takes place in Direct3D 
retained mode. System-level 3D graphics, which are necessary for immediate mode programming, 
requires a higher level of mathematical processing.  

 
 Direct3D coordinate system  
 

 

The Cartesian coordinate system used in computer graphics was described in detail in Chapter 2. 
Recall now that the labeling of the axes in 3D space is arbitrary, although in computer graphics the 
most common labeling preserves the conven-tional representation of the x- and y-axes used in 
two-dimensional space, and adds the z-axis in the viewer's direction. The positive direction of the 
z-axis can point toward or away from the viewer. The case in which the positive values of the z-
axis are in the direction of the viewer is called a right-handed coordinate system. The one in which 
the positive values of the z-axis are away from the viewer is called a left-handed system. Left- and 
right-handed systems are shown in Figure 14-17.  

 

 

  
 
 Figure 14-17: Left- and right-handed coordinate systems 

   
 

 

It is easy to remember left- or right-handed systems by visualizing which hand needs to be curled 
over the z-axis so that the thumb points in the positive direction. In a left-handed system the left 
hand with the fingers curled on the z-axis has the thumb pointing away from the viewer. In a right-
handed system the thumb points toward the viewer. Direct3D uses a left-handed coordinate 
system.  

 
 Points and vectors in Direct3D  
 

 

Points and vectors are different entities. A point is a location in 3D space defined by its x, y, and z 
coordinates. A vector is a line segment defined by two points and a direction. Vectors do not have 
a location in 3D space. Vectors are usually represented by an arrow with its head pointing in the 
vector's direction and the length of the arrow shaft representing the vector's magnitude. Therefore, 
two line segments of equal length and the same direction represent the same vector quantity. In 
this case the vectors are said to be equivalent. Figure 14-18 represents a vector, labeled u, which 



extends from point A to point B in 3D space.  
 

 

  
 
 Figure 14-18: Vector representation in 3D space 

   
 
 Because a vector is defined by its end points, it can be described by subtracting the coordinates of 
the initial point from those of the terminal point. In the case of Figure 14-16 we can state  

 
 u = B - A  
 
 We can represent points A and B by their respective x-, y-, and z-coordinates. These coordinates 
can be placed in a column matrix, as follows:  

 

 

  
 
 Subtracting the coordinates of points A from B (Bx - Ax, By - Ay, and Bz - Az) yields the vector  
 

 

  
 
 Notice that both vectors and points can be defined by their x, y, and z values. 



 Notice that both vectors and points can be defined by their x, y, and z values.  
 
 Retained mode provides several functions for manipulating vectors, including  
 
   •Calculating the length of a vector  
 
   •Adding and subtracting vectors  
 
   •Calculating cross and dot product of two vectors  
 
   •Vector resizing  
 
   •Creating a unit vector  
 
   •Reflecting a vector about a given normal  
 
   •Rotating a matrix around a vector  
 
   •Scaling a vector  
 
 The length of a vector  
 
 Calculating the length of a vector is a simple matter of applying the Pythagorean theorem in 3D 
space. The length of a vector u, also called the modulus, is conventionally represented as  

 

 

  
 
 The length of vector u is calculated by means of the formula  
 

 

  
 
 Figure 14-19 shows the vector u in 3D space.  



 

  
 
 Figure 14-19: Calculating the length of a vector 

   
 
 Vector addition and subtraction  
 
 Vector addition and subtraction consists of performing either operation on the respective 
coordinate pairs. For example, the sum of vectors u and v is expressed as follows:  

 
   
 
 Dot product of two vectors  
 
 The dot product operation is a way of combining the angle between two vectors and their relative 
length into a single value. The dot product of vectors u and v is expressed as  

 
 

  
 

 
The rule is, to obtain the dot product you multiply the x coordinates of both vectors and add to that 
the product of the y and the z coordinates. It is important to keep in mind that a dot product is a 
value, not a vector, and that this value is useful because it expresses the relationship between the 
vectors. The following are properties of the dot product of vectors v and u:  



 

  
 
 Because the cosine of 90 degrees is zero, this last formula leads to the conclusion that the dot 
product of two perpendicular vectors is zero.  

 
 Calculating the unit vector  
 
 The unit vector is defined as a vector of one unit length. The unit vector notation is the caret (^) 
symbol. The unit vector is defined as follows:  

 

 

  
 
 Cross product of two vectors  
 

 
The cross product notation is named after the symbol used in conventional multiplication, which in 
the case of vectors is different from the period symbol used in the dot product notation, for 
example:  

 
   
 

 
In this case the vector n is called the cross product, or vector product. The result is a vector that is 
normal (perpendicular) to the plane that contains the two operand vectors. Figure 14-20 shows 
vector n, which is normal to the plane containing vectors u and v.  

 

 

  
 
 Figure 14-20: A normal vector 

  



   
 

 
A normal vector is obtained by calculating the cross product of the two operand vectors. In this 
case the resulting vector is normal to the two operand vectors and also to the plane that contains 
them. It is also valid to say that a normal vector is perpendicular, orthogonal, or at right angles to 
the given vector pair.   

 
 Figure 14-21 graphically shows some interesting vector cross products.  
 

 

  
 
 Figure 14-21: Some vector cross products 

   
 
 3D plane  
 
 A plane, in 3D graphics, is a collection of points that have the same value for a common 
coordinate. A plane is named for the two axes that bind it, as shown in Figure 14-22.  

 

 

  



 
 Figure 14-22: Planes in 3D space 

   
 

 

In Figure 14-22 all the points in the x-z plane have the same y coordinate, the ones on the z-y 
plane have the same z coordinate, and those in the y-z plane have the same x coordinate. 
However, this fact is not sufficient to identify a plane because there could be a point that is 
simultaneously located in two intersecting planes. In fact, a point located at the origin in Figure 14-
22 will be located in all three planes.  

 

 

Geometrically speaking, a plane can be defined uniquely in terms of its inclination and one of its 
points. Since a normal vector is perpendicular to a point, a vector can also serve to specify the 
plane. In this manner a plane can be defined as passing through a point P0(x0, y0, z0) and having 
nonzero vector u as a normal vector. By the same token, another point P1 is also on the plane if 
the vector from P0 to P1, designated as v, is perpendicular to the plane vector u. These 
relationships are shown in Figure 14-23.  

 

 

  
 
 Figure 14-23: Vector definition of a plane 

   
 

 

Because a vector has direction and magnitude, but no specific location in 3D space, then the 
vector definition of a plane is valid for any point that is perpendicular to the normal. Also, 
considering that the dot product of two perpendicular vectors is zero, then we can conclude that a 
point is in a plane if, and only if, the dot product of its vector to another point in the plane, and the 
plane vector, is zero. In reference to Figure 14-23 we can state that point P1 is on the plane if  

 
   
 
 The general form of the equation for a plane is  
 
   



 
 where a, b, c, and d are constants and x, y, and z are the coordinates of any point in the plane.  
 
 Quaternions  
 

 

Direct3D retained mode supports a mathematical structure called a quaternion that has found use 
in 3D animation. The quaternion is described as an extension to complex numbers that describes 
both an orientation and a rotation in 3D space. In Direct3D the quaternion consists of a vector, that 
provides the orientation component, and a scalar, that defines the rotation component. This can be 
expressed as  

 

 
  

 
 where s is the rotation scalar of the quaternion and v is the orientation vector.  
 

 
Quaternions provide a fast alternative to the matrix operations that are typically used for 3D 
rotations. The quaternion can be visualized as an axis in 3D space, represented by a vector, and a 
rotation around that axis, represented by a scalar, as shown in Figure 14-24.  

 

 

  
 
 Figure 14-24: Vector/scalar interpretation of the quaternion 

   
 

 

Two fundamental operations can be performed on quaternions: composition and interpolation. 
Composition consists of combining quaternions. For example, the composition of two quaternions, 
q1 and q2, in reference to an object in 3D space, is interpreted to mean: rotate the object on the 
specified axis, by the rotation contained in quaternion q1, and then rotate the object on the 
specified axis by the rotation contained in quaternion q2. Quaternion interpolation is used to 
calculate a smooth path from one axis and orientation to another.  

 
A common problem in computer animation is the generation of in-between frames that are 
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necessary to simulate the smooth movement of an object from one position to another one. For 
example, Figure 14-25 shows images of an F-111 jet. The images at the top, called the key 
frames, represent the initial and final position of the aircraft in a planned animation. To simulate 
this movement, it is necessary to generate a set of in-between images that produce a smooth 
transition from the start frame to the end frame. Part of this image set, usually called the in-
betweens, is shown in the lower part of Figure 14-25.  

 

 

  
 
 Figure 14-25: In-between frames in animation 

   
 

 
Rendering the in-between frames in the case of Figure 14-25 consists of performing several 
rotations on the image data for the F-111 aircraft. Aircraft dynamics use three angles: the yaw 
refers to the vertical axis, the pitch to a horizontal axis through the wings, and the roll through the 
fuselage axis. These angles are shown in Figure 14-26.  

 

 

  
 
 Figure 14-26: Yaw, pitch, and roll angles in aircraft dynamics 

   



 

 

Generating the animation image set in Figure 14-25 requires rotating the aircraft along its yaw, 
pitch, and roll angles. Traditionally, rotations of 3D models have been by means of independent 
coordinates called Euler angles. This approach, although feasible, is computationally expensive 
because the composite rotation is based on three individual rotations along the axes shown in 
Figure 14-26.  

 

 

Quaternions provide a way of changing the orientation of the aircraft by performing a single rotation, 
that is a composite of the three primary ones along the yaw, pitch, and roll angles. This is achieved 
by using composition and interpolation together. A composition is first used to go from the original 
to the final frame. The smooth transition from the start frame to the end frame is then achieved 
through interpola-tion. In Direct3D programming code determines an angle, called the slerp value, 
that defines the position for the intermediate quaternion between two vectors. For example, a slerp 
value of 0.5 creates a quaternion that is midway between the two input quaternions. The quaternion 
method provides a much simpler and computa-tionally faster approach to calculating in-between 
images for animation.  

 



Direct3D File Formats  
 

 

The information that defines a 3D object must be stored in a special file format. You cannot use 
the conventional BMP, GIF, or TIFF file types developed for 2D bitmaps for a 3D image, although 
a 3D application may be capable of rendering a particular view of a 3D object into one of the 2D 
file formats. Several 3D formats have been developed for the PC; in fact, it seems that every 3D 
drawing program supports its own proprietary format. What is worse, file conversion utilities that 
are relatively abundant for 2D imagery are difficult to develop for the 3D formats and, 
consequently, not always available.  

 

 

Some of the 3D file formats have gained some level of prominence, usually proportional to the 
muscle of its corporate sponsors. One of the first PC programs that effectively used 3D was 
AutoCAD, a computer-assisted design application that enjoys a lion's share of this market. The .dxf 
file format was designed by AutoCAD primarily for the CAD environment. Its image handling 
capabilities are confined to 3D faces and polylines, which makes it quite crude for 3D modeling 
and authoring applications. However, these limitations also imply an inherent simplicity and ease 
of implementation, which have made the .dxf format quite popular. In many cases the only way of 
moving image data between two 3D applications is by means of a .dxf file, although the results 
usually leave much to be desired.  

 

 
One of the leading 3D image editing programs is 3D Studio. The current version is named 3D 
Studio MAX. The native file format for 3D Studio, named .3ds, comes close to being the industry 
standard at the present time. Microsoft recognized this hegemony by providing a utility, named 
conv3ds, that converts 3ds files into the format supported by Direct3D.  

 

 

Direct3D supports a single file format called .x. It is used to store objects, meshes, textures, and 
animation sets. It also supports animation sets, which allow playback in real-time. The .x format 
supports multiple references to a single object (such as a mesh) while storing the data for the 
object only once per file. Earlier versions of Direct3D used a file format named .xof, which is now 
considered obsolete. Direct3D retained mode uses the .x format for loading objects into an 
application and for writing mesh information, constructed by the application, in real time.  

 
 Description  
 

 

The DirectX file format is a template-driven structure that allows the storage of user-defined 
objects, meshes, textures, animations, and animation sets. The format supports multiple 
references to an object, such as a mesh. Multiple references allow storing data only once per file. 
The format provides low-level data primitives as well as application-defined higher-level primitives 
via templates. The higher-level primitives include vectors, meshes, matrices, and colors.  

 
 File format architecture  
 

 
The DirectX file format is context-free. Its template-driven architecture does not depend on any 
usage knowledge. The format is used in Direct3D retained mode to describe geometry data, frame 
hierarchies, and animations.  

 
 Reserved words  
 



 The following words are reserved for use by the DirectX format:  
 
 ARRAY   
 BYTE   
 CHAR   
 CSTRING   
 DOUBLE   
 DWORD   
 FLOAT   
 STRING   
 TEMPLATE   
 UCHAR   
 UNICODE   
 WORD   
 
 Header  
 
 The variable length header, which is compulsory, must be located at the beginning of the data 
stream. Table 14-1 lists the elements in the DirectX file header.  

 
 Table 14-1: DirectX File Header  
 
    
 
 Type   

 
Sub Type  

  
Size  

  
Contents 

  
Content Meaning  

 

 
    
 
 Magic number 
(required)  

 

 
   

 
4 bytes   

 
xof   

 
   

 
 Version number 
(required)  

 

 
Major number 
 
Minor number  

 
 
2 bytes 
 
2 bytes  

 
 
03 
 
02  

 
 
Major version 3 
 
Minor version 2  

 

 
 Format Type 
(required)  

 

 
  

 

 
4 bytes  

 

 
txt 
 
bin 
 
com  

 

 
Text File  
 
Binary File  
 
Compressed File 
Compression Type - 
required   

 



 
 if format is 
compressed  

 

 
  

 

 
4 bytes  

 

 
lzw 
 
zip 
 
etc...  

 

 
  

 

 
 Float size (required)   

 
   

 
4 bytes   

 
0064 
 
0032  

 
 
64 bit floats  
 
32 bit floats   

 

 
    
 
 For example, the header  
 
 xof 0302txt   
 

 
corresponds to a file in text format. The code "xof" refers to the old extension for the .x format and, 
when found in the header, indicates an .x file. The digits 0302 correspond to the .x format version 
number, in this case 3.2. The digits 64 indicate that floating-point numbers are encoded in 64-bit. 
Because no compression code is listed, the file is not compressed.  

 
 The header  
 
 xof 0302bin 0032   
 
 corresponds to an .x file in binary format, version 3.2, in which floating-point numbers are encoded 
in 32-bits, uncompressed.  

 
 Comments  
 

 
Comments, which are only applicable in text files, may occur anywhere in the data stream. A 
comment begins with either double slashes "//", or a hash character "#". The comment runs to 
the next new line.  

 
 # This is a comment.  
 // This is also a comment.  
 
 Templates  
 

 
Templates are the basic element of the .x file format. A template contains no data but defines the 
type and order of the data objects in the file. A template is similar to a structure definition. The 
general template format is as follows:  

 
 template <template-name> {  



 <UUID>  
 <member 1>;  
 <member 2>;  
 ...  
 <member n>;  
 [open/close/restricted]  
 [...]  
 }  
 

 
The template name is a string that must not begin with a digit. The underscore character is 
allowed. UUID is the Windows universally unique identifier in OSF DCE format. The UUID is 
surrounded by angle brackets. The template members describe the data elements to which the 
template refers. The member format is as follows:  

 
 <data-type> <name>;  
 
 The primitive data types are listed in Table 14-2.  
 
 Table 14-2: Primitive Data Types for the .x file format  
 
    
 
 Type   

 
Size   

 

 
    
 
 WORD   

 
16 bits  

 

 
 DWORD   

 
32 bits   

 

 
 FLOAT   

 
IEEE float   

 

 
 DOUBLE   

 
64 bits   

 

 
 CHAR   

 
8 bits   

 

 
 UCHAR   

 
8 bits   

 

 
 BYTE   

 
8 bits   

 

   



 STRING   NULL terminated string   
 
 CSTRING   

 
Formatted C-string (currently unsupported)   

 

 
 UNICODE   

 
Unicode string (currently unsupported)   

 

 
    
 
 The template can contain any valid data type as an array. In this case the syntax is  
 
 array <data-type> <name>[<dimension-size>];  
 

 
where <dimension-size> can be either an integer or a named reference to another template 
member whose value is then substituted. Arrays may be n-dimensional. In this case n is 
determined by the number of paired square brackets trailing the statement. For example:  

 
 array DWORD FixedArray[24];  
 array DWORD VariableArray[nElements];  
 array FLOAT Matrix8x8[8][8];  
 

 
Templates may be open, closed, or restricted. These elements determine which data types may 
appear in the immediate hierarchy of a data object. An open template has no restrictions, a closed 
template rejects all data types, and a restricted template allows a named list of data types.  

 
 Data  
 
 The actual data of the .x file is contained in the data objects. Data objects are formatted as follows: 
 <Identifier> [name] {  
 
 <member 1>;  
 ...  
 <member n>;  
 }  
 

 
The Identifier element is compulsory and must match a previously defined data type or 
primitive. The name element is optional. The data members can be a data object, which can be 
nested, a data reference to a previous data object, an integer, float, or string list, in which the 
individual elements are separated by semicolons.  

 
 Retained mode templates  
 
 The following templates are used by Direct3D retained mode:  



 
 Template Name: Header   
 Template Name: Vector   
 Template Name: Coords2d   
 Template Name: Quaternion   
 Template Name: Matrix4x4   
 Template Name: ColorRGBA   
 Template Name: ColorRGB   
 Template Name: Indexed Color   
 Template Name: Boolean   
 Template Name: Boolean2d   
 Template Name: Material   
 Template Name: TextureFilename   
 Template Name: MeshFace   
 Template Name: MeshFaceWraps   
 Template Name: MeshTextureCoords   
 Template Name: MeshNormals   
 Template Name: MeshVertexColors   
 Template Name: MeshMaterialList   
 Template Name: Mesh   
 Template Name: FrameTransformMatrix   
 Template Name: Frame   
 Template Name: FloatKeys   
 Template Name: TimedFloatKeys   
 Template Name: AnimationKey   
 Template Name: AnimationOptions   
 Template Name: Animation   
 Template Name: AnimationSet   
 



Summary  
 

 

Although retained mode programming is the high-level interface to Direct3D, this does not mean 
that it is easy or intuitive. In this chapter you have encountered many of the core topics of Direct3D 
and of retained mode. Some of these elements are related only by the fact that they are necessary 
to understanding retained mode programming. At this point a reader could feel overwhelmed by the 
number of topics covered and by the complexity of some of them. Fortunately, not every direct 
mode program must use all the functionalities for modeling and rendering that are available. In the 
following chapter we begin programming in retained mode, at first using only a small subset of the 
system's functions.  

 



Chapter 15: Fundamentals of Retained Mode 
Programming  
 
 Overview  
 

 

We introduce retained mode by developing a very simple, windowed mode application. In order to 
make clear the fundamentals of retained mode programming we stripped off everything that is not 
essential. The result is that the processing described at this stage has minimal functionality: all we 
do in the code is render a static image from a file in DirectX format. The code executes by 
performing four clearly distinct steps:  

 
   1.Initializing the software interface. That is, creating the Direct3D and DirectDraw components that 

are necessary to the program.  
 
   2.Creating the objects. This implies creating the frames, meshes, lights, materials, and other 

objects that serve as parts of the scene.  
 
   3.Building the scene from the individual component objects.  
 
   4.Rendering the scene. In this step the viewport is cleared and the frame is rendered.  
 

 
Each of these steps is explained in detail and packaged in its own function. All of the coding comes 
together in the sample project 3DRM InWin Demo1, which is furnished in the book's CD-ROM. We 
also include in this chapter a coding template for windowed retained mode programming.  

 



Initializing the Software Interface  
 

 
Direct3D, as does its parent DirectX, uses the Component Object Model (COM) interface 
specification defined by Microsoft. COM is a standard for a component-based architecture that 
aims at being language-independent, reusable, upgradable, and transparent to application code. 
Whether you like or dislike COM, in Direct3D programming you have no other option than to use it. 

 
 IUnknown  
 

 
COM interfaces are derived from a general interface called IUnknown. All other COM interfaces 
inherit from IUnknown, therefore IUnknown methods are always polymorphically visible to COM 
client code. This means that any object instantiated as a COM object has access to the methods of 
IUnknown. There are three relevant methods in IUnknown:  

 
   •The QueryInterface() method interrogates the object about the features it supports. If the call 

is successful, it returns a pointer to the interface.  
 
   •AddRef() increments the object's reference count by 1 when an interface or another application 

binds itself to the object. Application code rarely uses this function.  
 
   •Release() decrements the object's reference count by 1. When the count reaches 0, the object 

is deallocated.  
 

 

The reference count is a memory management technique that enables components to self-destroy. 
It is based on keeping a tally of the number of interfaces allocated to a COM object. Each time an 
interface is allocated, the reference count is incremented. When client code is finished using an 
interface it decrements the reference count by calling the Release() method. If at any time the 
reference count goes to zero, the interface object deletes itself. The AddRef() method is normally 
called by the function, whereas the Release() method is called by your code. When 
QueryInterface() successfully returns a pointer to an interface, it implicitly calls AddRef() to 
increment the reference count. This means that your application must call the Release() method 
before destroying the pointer to the interface.  

 
 Direct3DRMObject  
 

 

We must first clarify that the use of the word object in the context of Direct3D is not related directly 
to object orientation. When you hear the word object in the context of Direct3D you should not 
interpret it as an instance of a class, but in its generic and more conventional sense. Textures, 
cameras, viewports, meshes, and many other elements of Direct3D are loosely referred to as 
objects. The common superclass of all these objects is the Direct3DRMObject. 
Direct3DRMObject is instantiated as a COM object and can, therefore, access the methods of 
the IUnknown interface.  

 

 
Before an application can create the Direct3DRMObject, it must first instantiate a Direct3D 
retained mode object. This is achieved by calling Direct3DRMCreate(). The function's general 
form is as follows:  

 



 HRESULT Direct3DRMCreate(  
 LPIRECT3DRM FAR * lplpD3DRM // Address of interface  
 );  
 

 
The function returns D3DRM_OK if it succeeds. In this case the pointer is valid and can be used to 
access the interface. Any other return value indicates that the function failed and that the pointer is 
invalid.  

 
 QueryInterface()  
 

 
The pointer returned by Direct3DRMCreate() is also a COM object and can therefore access 
the IUnknown methods. Of these methods, QueryInterface() is the one usually called first 
because it provides information on whether a particular COM interface is supported or not. The 
function's general form is as follows:  

 
 HRESULT QueryInterface(  
 REFIID riid, // 1  
 LPVOID* obp // 2  
 );  
 

 

The first parameter is the reference to the unique identifier for the particular interface. It is 
sometimes called the interface identifier, or IID. In DirectX programming this parameter is passed 
to the call as a predefined constant. For example, in the DD Info Demo program developed in 
Chapter 8 we used cascaded calls to QueryInterface() using different IIDs in order to 
determine the most recent version of DirectDraw supported by the system. Code is as follows:  

 
 DDConnect = DirectDrawCreate ( NULL,  
 &lpDD0,  
 NULL);  
   
 // Store pointer and continue if call succeeded   
 if(DDConnect == DD_OK) {  
 DDLevel = 1; // Store level  
 lpDD = lpDD0; // copy pointer  
 // Query the interface to determine most recent version  
 DDConnect = lpDD0->QueryInterface(  
 IID_IDirectDraw2,  
 LPVOID *) &lpDD2);  
 }  
 if(DDConnect == S_OK){  
 DDLevel = 2; // Update level  
 lpDD0->Release(); // Release old pointer  



 lpDD = lpDD2;  
 DDConnect = lpDD->QueryInterface(  
 IID_IDirectDraw4,  
 (LPVOID *) &lpDD4);  
 }   
 if(DDConnect == S_OK){  
 DDLevel = 4; // Update level  
 lpDD2->Release(); // Release old pointer  
 lpDD = lpDD4;  
 }  
 

 

Notice that in the preceding code the call to QueryInterface() is first made with the identifier 
IID_IDirectDraw2, and then with IID_IDirectDraw4, to determine if either of these newer 
versions of DirectDraw is available. In this case the call returns S_OK if it succeeds. If it fails, 
QueryInterface() returns E_NOINTERFACE or one of the following interface-specific error 
values listed in Table 15-1.  

 
 Table 15-1: Interface-Specific Error Values Returned by QueryInterface()  
 
    
 
 DirectX Interface  

 
Returns (Comment)  

 

 
    
 
 DirectDraw  

 
DDERR_INVALIDOBJECT  
 
DDERR_INVALIDPARAMS  
 
DDERR_OUTOFMEMORY 
(IDirectDrawSurface2only)  

 

 
 DirectSound  

 
DSERR_GENERIC 
(IDirectSoundandIDirectSoundBufferonly) 
DSERR_INVALIDPARAM  

 

 
 DirectPlay  

 
DPERR_INVALIDOBJECT 
DPERR_INVALIDPARAMS  

 

 
 Direct3DRetainedMode  

 
D3DRM_OK (No error)  
 
D3DRMERR_BADALLOC (Out of memory) 
D3DRMERR_BADDEVICE (Device not 
compatible)  

 



 
D3DRMERR_BADFILE  
 
D3DRMERR_BADMAJORVERSION  
 
D3DRMERR_BADMINORVERSION  
 
D3DRMERR_BADOBJECT  
 
D3DRMERR_BADTYPE  
 
D3DRMERR_BADVALUE  
 
D3DRMERR_FACEUSED (Face already used in 
a mesh)  
 
D3DRMERR_FILENOTFOUND  
 
D3DRMERR_NOTFOUND (Object not found)  
 
D3DRMERR_UNABLETOEXECUTE  

 
    
 
 When the application is finished using the interface retrieved by a call to this method, it must call 
the Release() method for that interface to free it.  

 
 The COM interface provides two macros, named SUCCEEDED and FAILED, which are defined as 
follows:  

 
 #define SUCCEEDED(Status) ((HRESULT)(Status) >= 0)  
 #define FAILED(Status) ((HRESULT)(Status)<0)   
 

 
These macros are a convenient way to check for the success or failure of any COM function 
without having to deal with the specific error codes. We frequently use these macros in our code 
samples.  

 

 
In Direct3D retained mode programs the call to QueryInterface() uses the 
IID_IDirect3DRM identifier. The call requires a Direct3DRM object. Code usually releases the 
object after the interface has been validated because there is no further use for it. The following 
code fragment is from a function listed later in this chapter.  

 
 // Create the Direct3DRM object.  
 LPDIRECT3DRM pD3DRMTemp;  
 HRETURN retval;  
 ...  
 retval = Direct3DRMCreate(&pD3DRMTemp);  
 if (retval != D3DRM_OK)  



 {  
 // Display error message here  
 return FALSE;  
 }  
 retval = pD3DRMTemp->QueryInterface(IID_IDirect3DRM3,   
 (void **)&lpD3DRM)))  
 if(retval != D3DRM_OK)  
 {   
 pD3DRMTemp->Release();  
 // Display error message here  
 return FALSE;  
 }  
 // Release the object   
 pD3DRMTemp->Release();  
 
 Creating the DirectDraw clipper  
 

 

We mentioned that Direct3D is closely related to DirectDraw and uses much of its functionality. At 
this point we are interested in creating a DirectDraw clipper object that will determine which portion 
of the 3D scene is visible on the viewport. In a windowed mode application all you need to do is 
create a DirectDraw clipper object and then assign to it your application window as the clipping 
plane.  

 

 

The DirectDraw clipper that you need for Direct3D must not be owned by a DirectDraw object. The 
DirectDraw API provides a function named Direct_DrawCreateClipper() for this purpose. 
The resulting objects are known as driver-independentDirectDrawClipper objects. Notice that 
the function DirectDrawCreateClipper() is not equivalent to 
IDirectDraw::Create_Clipper, which creates a clipper owned by a specific DirectDraw 
object. The function's general form is as follows:  

 
 HRESULT DirectDrawCreateClipper(  
 DWORD dwFlags, // 1  
 LPDIRECTDRAWCLIPPER FAR *lplpDDClipper, // 2  
 IUnknown FAR *pUnkOuter // 3  
 );  
 

 

The first parameter is currently not implemented and must be set to zero. The second parameter is 
the address of a pointer to be filled in with the address of the new DirectDrawClipper object. 
The third parameter is provided for future COM features but at the present time must be set to 
NULL. The function returns DD_OK if successful, or one of the following error codes if a failure 
results:  

 
 DDERR_INVALIDPARAMS  



 
 DDERR_OUTOFMEMORY  
 

 
The object created by this function is not released automatically when an application's objects are 
released. They should be explicitly released by application code, although DirectDraw 
documentation states that they will be released automatically when the application terminates.  

 
 Defining the clip list  
 

 

Clipping and clip lists were discussed in Chapter 7. In the context of Direct3D windowed 
applications a clip list is a series of rectangles that delimit the visible areas of the surface. You 
have seen that a DirectDrawClipper object can be attached to any surface and that a window 
handle can be attached to a DirectDrawClipper object. In this case DirectDraw updates the 
DirectDrawClipper clip list using the application window as a clipping plane. As the window 
changes, the clip list is updated.  

 

 
The call to DirectDrawCreateClipper() creates the clipper but does not define the clip list. 
To do this, the application must use the pointer returned by DirectDrawCreateClipper() to 
call SetHWnd(). The function's general form is as follows:  

 
 HRESULT SetHWnd(  
 DWORD dwFlags, // 1  
 HWND hWnd // 2  
 );  
 

 
The first parameter is currently not used and should be set to 0. The second parameter is the 
handle to the window that will be used as a clipping place. The call returns DD_OK if successful, or 
one of the following error codes:  

 
 DDERR_INVALIDCLIPLIST  
 
 DDERR_INVALIDOBJECT  
 
 DDERR_INVALIDPARAMS  
 
 DDERR_OUTOFMEMORY  
 
 The following code fragment creates a driver-independent DirectDrawClipper object and then 
attaches to it the current window as a clipping plane.  

 
 HRESULT retval;  
 HWND hwnd;  
 . . .  



 // Create a DirectDrawClipper object  
 retval = DirectDrawCreateClipper(0, &lpDDClipper, NULL);  
 if (retval != DD_OK)  
 {  
 // Display error message here  
 return FALSE;  
 }  
 // Attach the program Window as a clipper  
 retval = lpDDClipper->SetHWnd(0, hwnd);  
 if (retval != DD_OK)  
 {  
 // Display error message here  
 return FALSE;  
 }  
 
 InitD3D() function  
 

 
The function InitD3D() in the 3DRM InWin Demo1 project, included in the book's CD-ROM, 
performs the processing operations described in this section. A slightly modified version of this 
function is included in the retained mode windowed coding template described later in this chapter. 
Following is a listing of this function.  

 
 //********************************************************  
 // Name: InitD3D()  
 // Description: Initialize Direct3D interface   
 //********************************************************  
 BOOL InitD3D(HWND hwnd)  
 {  
 HRESULT retval; // Return value  
   
 // Initialize the entire global variable structure to zero.   
 memset(&globVars, 0, sizeof(globVars));  
   
 // Create the Direct3DRM object.  
 LPDIRECT3DRM pD3DRMTemp;  
 retval = Direct3DRMCreate(&pD3DRMTemp);  
 if (FAILED(retval))   
 {  
 D3DError("Failed to create Direct3DRM.");  



 return FALSE;  
 }  
 if( FAILED( pD3DRMTemp->QueryInterface(IID_IDirect3DRM3,  
 (void **)&lpD3DRM) ) )  
 {  
 pD3DRMTemp->Release();  
 D3DError("Direct3DRM3 interface not found" );  
 return FALSE;  
 }  
 pD3DRMTemp->Release();  
   
 // Create DirectDrawClipper object  
 retval = DirectDrawCreateClipper(0, &lpDDClipper, NULL);  
 if (FAILED(retval))   
 {  
 D3DError("Failed to create DirectDrawClipper object");  
 return FALSE;  
 }  
 // Attach the program Window as a clipper  
 retval = lpDDClipper->SetHWnd(0, hwnd);  
 if (FAILED(retval))   
 {  
 D3DError("Failed to set the window handle");  
 return FALSE;  
 }  
 return TRUE;  
 }  
 



Building the Objects  
 

 
At this point in the code, the Direct3D retained mode windowed application performed the 
necessary initializations and is ready to start building the scene. To do this, code must first create 
the objects that are used in the scene. Before we tackle the details of object building, a few 
housekeeping chores need to be discussed.  

 
 Preliminary considerations  
 

 
To create the objects, and later, the scene itself, you need the pointer to the Direct3D object, 
returned in the second parameter to the QueryInterface() call discussed previously. In the 
code used in this chapter the pointer is publicly defined as follows:  

 
 LPDIRECT3DRM3 lpD3DRM = NULL;  
 
 By giving the pointer public visibility you are able to use it from several functions without having to 
pass it as a parameter in each call.  

 

 

In addition to the basic Direct3D retained mode pointer (lpD3DRM) just mentioned, you also need 
pointers to the specific objects and devices. For example, to load a file in DirectX format into the 
scene you need to create a meshbuilder object using the CreateMeshBuilder() function that is 
available in the IDirect3DRM interface. The pointer of type LPDIRECT3DRM (stored in the named 
variable lpD3DRM in these examples) provides access to the interface services in IDirect3DRM. 
The CreateMeshBuilder() function takes as a parameter a variable of the type 
LPDIRECT3DMESHBUILDER3. The returned pointer is then used to access the Load() method. 
Other Direct3D objects, such as devices, scenes, cameras, lights, frames, materials, and meshes 
also require pointers to their specific interfaces. In the code samples that follow we require the 
following subset of interface-specific pointers:  

 
 LPDIRECT3DRMDEVICE3  
 
 LPDIRECT3DRMFRAME3  
 
 LPDIRECT3DRMMESHBUILDER3  
 
 LPDIRECT3DRMLIGHT  
 
 LPDIRECT3DRMMATERIAL2  
 
 Sometimes the same pointer type is used for referencing different types of objects. For example, 
the type LPDIRECT3DRMFRAME3 is used to access a scene, a camera, a light, and a child frame.  

 
Whether to make this pointer globally visible or not is mostly a matter of programming style. The 
most common guideline is that if the pointer is required in several functions then it should be 
public. The problem with this rule is that at the time you are developing code it is often difficult to 



predict if a pointer will be required in other functions. Our excuse for abusing public variables in the 
code samples presented in this book is that, today, wasting a few bytes of memory at run time is 
not as important an issue as it was in the memory-starved systems of a few years ago.  

 

 

Direct3D retained mode applications frequently manipulate several objects, such as frames, 
scenes, cameras, lights, and textures. In this case it is useful to create one or more structures that 
define the individual pointers and variables and then instantiate structure variables as required for 
different objects used in the code. An additional benefit of using structures is that all the variables 
in the structure can be cleared simultaneously by means of the memset buffer manipulation 
routine. The following global structure and variables are used in the sample code listed in this 
chapter and in the 3DRM InWin Demo1 program included in the book's CD-ROM.  

 
 // Global variables  
 struct _globVars  
 {  
 LPDIRECT3DRMDEVICE3 aDevice; // Retained mode device  
 LPDIRECT3DRMVIEWPORT2 aViewport; // Direct3DRM viewport  
 LPDIRECT3DRMFRAME3 aScene; // Master frame  
 LPDIRECT3DRMFRAME3 aCamera; // Camera frame  
 BOOL isInitialized; // All D3DRM objects  
 // have been  
 // been initialized.   
 } globVars;  
   
 LPDIRECT3DRM3 lpD3DRM = NULL; // Direct3DRM object manager  
 LPDIRECTDRAWCLIPPER lpDDClipper = NULL;  
 // DirectDrawClipper object   
 HWND hWnd;  
 char szXfile[] = "teapot.x" ; // File to load  
 
 Notice that the template _globVars includes a Boolean variable that keeps track of the 
application's initialization state, named isInitialized.  

 

 

In addition to global variables Direct3D applications often require local ones, typically located 
inside the functions that perform object creation and scene building. As you will see later in this 
chapter, the variables used in creating objects and building a scene can have local lifetime, as long 
as the resulting master frame and its component object are global. In our code the master frame is 
stored in the global structure variable globVars.aScene, listed previously.  

 
 Creating the objects  
 
 The following objects are needed to create a simple, Direct3D scene:  
 
   •A device 



   •A device  
 
   •A master scene frame  
 
   •A camera frame  
 
   •A viewport  
 

 

The functions used in creating these objects commonly use the word "create" in their names; for 
example, CreateDeviceFromClipper(), CreateFrame(), and CreateViewport. After the 
objects are created they can be assembled into a master scene. A global variable, in this case the 
structure variable isInitialized, is used to record the fact that the master scene has been 
built.  

 

 

The term device in the context of Direct3D retained mode is equivalent to a display device. It can 
be visualized as the video memory area to which the scene is rendered. In practice, a Direct3D 
device is always a DirectDraw surface. The viewport is a rectangular area within the device. You 
should also note that neither the device nor the viewport are equivalent to the video buffer, which 
is the area directly mapped to the display surface and shown on the screen.  

 

 
In Direct3D the size of a device is defined when it is created and cannot be changed. To change 
the size of the device you must destroy the old device and create a new one with different 
dimensions. In Direct3D you can create a device from Direct3D objects, from a surface, or from a 
DirectDraw clipper. For the moment we will be concerned with this last method.  

 

 
Because the size of the device must be defined at the time it is created, code needs to obtain the 
width and height of the client area. You can use the GetClientRect() function for this purpose. 
When the call returns, the bottom member of the RECT structure variable contains the height of the 
client area and the right member contains the width.  

 

 

The CreateDeviceFromClipper() function of IDirect3DRM2 interface enables you to create 
a device from a DirectDraw clipper object. Previously in this chapter you called 
DirectDrawCreateClipper() and stored the resulting pointer in the variable lpDDClipper. 
This variable is now needed to create the device. CreateDeviceFromClipper() has the 
following general form:  

 
 HRESULT CreateDeviceFromClipper(  
 LPDIRECTDRAWCLIPPER lpDDClipper, // 1   
 LPGUID lpGUID, // 2  
 int width, // 3  
 int height, // 4  
 LPDIRECT3DRMDEVICE * lplpD3DRMDevice // 5  
 );  
 



paragraph. The second parameter is a globally unique identifier (GUID). Normally, this parameter 
is set to NULL. This forces the system to search for a device with a default set of capabilities. This 
is the recommended way to create a device in retained mode programming because the method 
always works, even if the user installs new hardware. Parameters 3 and 4 refer to the width and 
height of the device and usually correspond with the values obtained by the call to 
GetClientRect(). If the call succeeds, the fifth parameter will be filled with the address of a 
pointer to an IDirect3DRMDevice interface.  

 
 The call returns D3DRM_OK if successful, or an error otherwise.  
 
 The following code fragment shows creating a device using the CreateDeviceFromClipper() 
function  

 
 HWND hwnd; // Handle to the window   
 HRESULT retval; // Return value   
 RECT rc; // Storage for viewport dimensions  
 . . .  
   
 // Obtain size of client area  
 GetClientRect(hwnd, &rc);  
   
 retval = lpD3DRM->CreateDeviceFromClipper(lpDDClipper,   
 NULL, // Default device   
 rc.right,  
 rc.bottom,  
 &globVars.aDevice);  
 if (FAILED(retval))   
 {  
 // Display error message here  
 return FALSE;  
 }  
 
 CreateObjects() function  
 

 
The function CreateObjects() in the 3DRM InWin Demo1 program in the book's CD-ROM 
performs the processing operations discussed in this section. Following is a code listing of this 
function.  

 
 //*************************************************************  
 // Name: CreateObjects()  
 // Description: Create the device and the scene objects  
 //*************************************************************  



 BOOL CreateObjects( HWND hwnd )  
 {  
 // Local variables  
 HRESULT retval; // Return value   
 RECT rc; // Bounding rectangle for main window   
 int width; // Device's width   
 int height; // Device's height   
   
 // Get client area dimensions  
 GetClientRect(hwnd, &rc);  
 // Create device from DirectDraw clipper  
 retval = lpD3DRM->CreateDeviceFromClipper(lpDDClipper,   
 NULL, // Default aDevice   
 rc.right, rc.bottom,  
 &globVars.aDevice);  
 if (FAILED(retval))   
 {  
 D3DError("Failed to create the D3DRM device");  
 return FALSE;  
 }  
   
 // Create the master scene  
 retval = lpD3DRM->CreateFrame(NULL, &globVars.aScene);  
 if (FAILED(retval))   
 {  
 D3DError("Failed to create the master scene frame");  
 return FALSE;  
 }  
 // Create the camera frame  
 retval = lpD3DRM->CreateFrame(globVars.aScene,  
 &globVars.aCamera);  
 if (FAILED(retval))   
 {  
 D3DError("Failed to create the camera frame");  
 return FALSE;  
 }  
   
 // Create the Direct3DRM viewport using the device, the  



 // camera frame, and the device's width and height.  
 width = globVars.aDevice->GetWidth();  
 height = globVars.aDevice->GetHeight();  
   
 retval = lpD3DRM->CreateViewport(globVars.aDevice,  
 globVars.aCamera, 0, 0,  
 width, height,   
 &globVars.aViewport);  
 if (FAILED(retval))   
 {  
 globVars.isInitialized = FALSE;  
 globVars.aDevice->Release();  
 return FALSE;  
 }  
 // Create the scene  
 if (!BuildScene(globVars.aDevice, globVars.aScene,   
 globVars.aCamera))  
 return FALSE;  
   
 // Record that global variables are initialized  
 globVars.isInitialized = TRUE;  
 return TRUE;  
 }  
 



 Creating the Master Scene  
 

 

In Direct3D literature the notions of a scene and that of a frame sometimes overlap. A frame may 
have a parent frame from which it inherits all its attributes, even dynamic ones. For example, if a 
parent frame is rotating at a given rate, the resulting child frame rotates identically. A scene, on the 
other hand, is described as a frame with no parent. Some confusion results from the fact that you 
can create a scene (a frame with no parent) and later on associate it with a parent frame, at which 
time is ceases to be a scene and becomes a child frame. The CreateFrame() function of the 
IDirect3DRM2 interface is used for creating both frames and scenes. The function's general form 
is as follows:  

 
 HRESULT CreateFrame(  
 LPDIRECT3DRMFRAME lpD3DRMFrame, // 1  
 LPDIRECT3DRMFRAME* lplpD3DRMFrame // 2  
 );  
 

 
The first parameter is the address of the frame that serves as a parent. If this parameter is NULL, 
then a scene is created. The second parameter is the variable that will be filled with a pointer to an 
IDirect3DRMFrame interface if the call succeeds.  

 
 The method returns D3DRM_OK if successful, or an error otherwise.  
 
 As previously discussed, we usually store the master scene in a global variable to make it visible 
throughout the code. The following code fragment shows the creation of a master scene.  

 
 // Create the master scene  
 retval = lpD3DRM->CreateFrame(NULL, &globVars.aScene);  
 if (FAILED(retval))  
 {  
 // Display error message here  
 return FALSE;  
 }  
 
 Notice that using NULL for the first parameter in the call to CreateFrame() ensures that the 
results are a scene; in other words, a frame with no parent.  

 
 Creating the scene's camera frame  
 

 

In Direct3D retained mode the camera is implemented as a frame object. The camera frame 
determines the viewing position and direction because the viewport renders only what is visible 
along the positive z-axis of the camera frame. In addition, the camera frame determines which 
scene is rendered. Later in this chapter you will set the camera's position. For now, you need to 
create the camera frame, which you do by means of the same CreateFrame() function that was 
used in creating the master scene in the previous section. The one difference is that the camera 



frame is a child frame of the master scene. Therefore, in this case, the first parameter passed to 
CreateFrame() refers to the master scene, and the second one to the camera frame. The 
following code fragment shows the processing.  

 
 // Create the camera frame  
 retval = lpD3DRM->CreateFrame(globVars.aScene,  
 &globVars.aCamera);  
 if (FAILED(retval))   
 {  
 // Display error message here  
 return FALSE;  
 }  
 
 Creating the scene's viewport  
 

 
The viewport defines the rectangular area into which the scene is rendered. In this sense the 
viewport can be described as a 2D construct that is used in rendering 3D objects. Here again you 
should keep in mind that the viewport is not the video buffer, and that rendering to the viewport 
does not display the image.  

 

 
We have seen that the viewport uses the camera frame object to define which scene is rendered 
as well as the viewing position and direction. A viewport is defined in terms of its viewing frustum, 
as explained in Chapter 14. The viewport is created by calling the CreateViewport() function of 
the IDirect3DRM interface. The function's general form is as follows.  

 
 HRESULT CreateViewport(  
 LPDIRECT3DRMDEVICE lpDev, // 1  
 LPDIRECT3DRMFRAME lpCamera, // 2  
 DWORD dwXPos, // 3  
 DWORD dwYPos, // 4  
 DWORD dwWidth, // 5  
 DWORD dwHeight, // 6  
 LPDIRECT3DRMVIEWPORT* lplpD3DRMViewport // 7  
 );  
 

 
The first parameter is the device on which the viewport will be created. The second parameter is 
the camera frame that defines the position and direction of the viewport. Parameters 3 and 4 refer 
to the position of the viewport and parameters 5 and 6 to its dimension. All of these are expressed 
in device coordinates.  

 

 
If the call succeeds, parameter 7 is the variable that will be filled with a pointer to an 
IDirect3DRMViewport interface. The call returns D3DRM_OK if successful, or an error 
otherwise.  



 

 

The position of the viewport relative to the device frame is specific to the application's design and 
the proposed rendering operations. However, the size of the viewport must not be greater than that 
of the physical device, otherwise the call to CreateViewport() fails. To make sure that the 
viewport is not larger than the physical device you can use the GetWidth() and GetHeight() 
functions, of IDirect3DRMDevice, to obtain the necessary dimensions. Note that the 
IDirect3DRMViewport interface also has GetWidth() and GetHeight() methods that 
retrieve the size of the viewport. At this time because the viewport has not yet been created you 
must use the functions of IDirect3DRMDevice.   

 
 The following code fragment shows obtaining the device size and then creating the viewport.  
 
 int width; // Storage for device size  
 int height;  
 . . .  
 // Obtain device size and store in local variables  
 width = globVars.aDevice->GetWidth();  
 height = globVars.aDevice->GetHeight();  
 // Create the viewport  
 retval = lpD3DRM->CreateViewport(globVars.aDevice,  
 globVars.aCamera,  
 0, 0,   
 width, height,  
 &globVars.aViewport);  
 if (FAILED(retval))   
 {  
 // Display error message here  
 globVars.isInitialized = FALSE;  
 globVars.aDevice->Release();  
 return FALSE;  
 }  
 



Building the Master Scene  
 

 
After all the global objects are built (in this case the device, the scene, the camera, and the 
viewport) you can proceed to build the master scene. In this example you assume that the mesh 
object is stored in a file in DirectX format, and that it is located in the same directory as the 
executable code. In the case that you are following, these steps are required:  

 
   1.Creating a meshbuilder object and using it to load the mesh file  
 
   2.Creating a child frame within the scene and adding the loaded mesh into the child frame  
 
   3.Setting the camera position  
 
   4.Creating the light frame  
 
   5.Creating the lights used in illuminating the scene and attaching them to frames  
 
   6.Creating a material and setting it in the mesh  
 
   7.Setting the mesh color  
 
   8.Releasing all local variables used in building the scene  
 

 

In regards to this last step you must consider that in the process of building the master scene you 
create and use a host of Direct3D retained mode objects, such as meshes, cameras, lights, 
textures, and materials. After the scene is created, the individual objects that were used in building 
it are no longer needed because they have become part of the scene itself. For this reason, it is 
usually possible to limit the lifetime of these objects to the process of scene creation. This means 
that the pointers and variables required for creating the objects can have local scope and visibility. 
It also means that the individual objects can and should be released after they are incorporated 
into the scene.  

 
 Creating and using the meshbuilder object  
 

 

As its name implies, the meshbuilder component is a tool for building meshes. The meshbuilder 
itself cannot be rendered. In this chapter we use the meshbuilder object to load a mesh previously 
stored in a file in DirectX format. You can use the meshbuilder functions to assemble 3D images 
manually. However, by far the most common way of creating images is by using a 3D image editor 
program, such as 3D Studio Max.  

 
 The first step is to create the meshbuilder object by means of the CreateMeshBuilder() 
function that is part of IDirect3DRM interface. The function has the following general form:  

 
 HRESULT CreateMeshBuilder(  



 LPDIRECT3DRMMESHBUILDER* lplpD3DRMMeshBuilder // 1  
 );  
 

 
The call's only parameter is the address of a pointer that is filled with the 
IDirect3DRMMeshBuilder interface if the call is successful. The function returns D3DRM_OK if it 
succeeds, or an error otherwise.  

 

 
In the example that you are currently following you use the meshbuilder object's Load() function 
to load a file in DirectX format. The file is loaded into the meshbuilder itself and takes the form of a 
mesh. Later in the code this mesh is stored in a frame. The Load() function has the following 
general form:  

 
 HRESULT Load(  
 LPVOID lpvObjSource, // 1  
 LPVOID lpvObjID, // 2  
 D3DRMLOADOPTIONS d3drmLOFlags, // 3  
 D3DRMLOADTEXTURECALLBACK d3drmLoadTextureProc, // 4  
 LPVOID lpvArg // 5  
 );  
 

 

The first parameter is the source to be loaded. It can be a file, a resource, a memory block, or a 
stream, depending on the source flags specified in the third parameter. The second parameter is 
the object name or position. This parameter depends on the identifier flags specified in the third 
parameter. If the D3DRMLOAD_BYPOSITION flag is specified, the second parameter is a pointer to 
a DWORD value that gives the object's order in the file. This parameter can be NULL. The third 
parameter is a flag of type D3DRMLOADOPTIONS describing the load options. Table 15-2 lists these 
flags.  

 
 Table 15-2: Flags in the D3DRMLOADOPTIONS Type  
 
    
 
 Flag  

 
Description  

 

 
    
 
 Flags modifying the first parameter (lpvObjSource):  
 
 D3DRMLOAD_FROMFILE  

 
The lpvObjSource parameter is interpreted 
as a string representing a local filename.  

 

 
 D3DRMLOAD_FROMRESOURCE  

 
The lpvObjSource parameter is interpreted 
as a pointer to a D3DRMLOADRESOURCE 
structure.  

 



 
 D3DRMLOAD_FROMMEMORY  

 
The lpvObjSource parameter is interpreted 
as a pointer to a D3DRMLOADMEMORY structure. 

 

 
 D3DRMLOAD_FROMURL  

 
The lpvObjSource parameter is interpreted 
as a URL.  

 

 
 Flags modifying the second parameter (lpvObjID):  
 
 D3DRMLOAD_BYNAME  

 
The lpvObjID parameter is interpreted as a 
string.  

 

 
 D3DRMLOAD_BYGUID  

 
The lpvObjID parameter is interpreted as a 
GUID.  

 

 
 Other flags:  
 
 D3DRMLOAD_FIRST  

 
The first progressive mesh found is loaded. 
This is the default mode.  

 

 
    
 

 
The fourth parameter to the Load() function is used when loading textures that require special 
formatting. In this case the specified callback function is called. This parameter can be NULL. The 
fifth parameter is the address of a data structure passed to the callback function in the fourth 
parameter. The function returns D3DRM_OK if successful, or an error otherwise.  

 
 The following code fragment shows the creation of a meshbuilder object and its use in loading a 
file in DirectX format.  

 
 char szXfile[] = "teapot.x" ; // DirectX file  
 LPDIRECT3DRMMESHBUILDER3 meshbuilder = NULL;  
 HRESULT retval;  
 . . .  
   
 // Create the meshbuilder object  
 retval = lpD3DRM->CreateMeshBuilder(&meshbuilder);  
 if (FAILED(retval))  
 // Meshbuilder creation error handler goes here  
 . . .  
 // Use meshbuilder to load a mesh from a DirectX file  
 retval = meshbuilder->Load(szXfile,   



 NULL,  
 D3DRMLOAD_FROMFILE,  
 NULL,  
 NULL);  
 if (FAILED(retval))   
 {  
 // Load error handler goes here  
 . . .  
 
 After this code executes, the file named teapot.x is converted into a mesh that becomes the 
meshbuilder object itself.  

 
 Add mesh to frame  
 

 
Currently your mesh is stored in a meshbuilder object, which cannot be rendered. The next step 
consists of creating a frame and loading the mesh into this frame. You previously used 
CreateFrame(). Now you use this same method to create a child frame. The coding is as 
follows:  

 
 LPDIRECT3DRMFRAME3 childframe = NULL;  
 . . .  
 // Create a child frame within the scene  
 retval = lpD3DRM->CreateFrame(aScene, &childframe);  
 if(FAILED(retval))  
 // Error in creating frame handler goes here  
 . . .  
 

 

In Direct3D a visual object, or simply a visual, is one that is displayed when the frame is in view. 
Meshes, textures, and even frames can be visuals, although the most common visual is the mesh. 
When a texture object is labeled as a visual it becomes a decal. In this example we use the 
AddVisual() function, of the IDirect3DRMFrame interface, to add the mesh to the child frame 
as a visual. AddVisual() has the following general form:  

 
 HRESULT AddVisual(  
 LPDIRECT3DRMVISUAL lpD3DRMVisual // 1  
 );  
 
 The function's only parameter is the address of a variable that represents the 
Direct3DRMVisual object to be added to the frame.  

 
 The call returns D3DRM_OK if successful, or an error otherwise. The following code fragment shows 
adding the mesh to the child frame.  



 
 // Add mesh into the child frame as a visual  
 retval = childframe->AddVisual(  
 (LPDIRECT3DRMVISUAL)meshbuilder);  
 if(FAILED(retval))  
 {  
 // Failed AddVisual() error handler goes here  
 }  
 

 
Notice that we used the pointer returned by the CreateFrame() call, which in this case is the 
variable childframe, of type LPDIRECT3DRMFRAME3, to access the AddVisual() function. The 
meshbuilder object is passed as a parameter and the result is that the mesh is added to the frame, 
and therefore to the scene.  

 
 Setting the camera position  
 

 
Previously in this chapter you created the camera as a global object. The camera object was 
stored in the variable named aCamera, of type LPDIRECT3DRMFRAME3, which is a member of the 
globVars structure. The camera object was created with the following statement:  

 
 // Create the camera frame  
 retval = lpD3DRM->CreateFrame(globVars.aScene,  
 &globVars.aCamera);  
 

 
You have seen that the camera frame determines which scene is rendered and the viewing 
position and direction. In Direct3D the viewport renders only what is visible along the positive z-
axis of the camera frame, with the up direction being in the direction of the positive y-axis.  

 

 

When a child frame is created, it is positioned at the origin of the parent frame, that is, at 
coordinates (0,0,0). Applications can call the SetPosition() function of the 
IDirect3DRMFrame interface to set the position of a frame relative to a reference point in the 
parent frame. To position the camera in its parent frame (the scene), you call SetPosition() 
using the variable aCamera as an interface reference. The general form of the SetPosition() 
function is as follows:  

 
 HRESULT SetPosition(  
 LPDIRECT3DRMFRAME lpRef, // 1  
 D3DVALUE rvX, // 2  
 D3DVALUE rvY, // 3  
 D3DVALUE rvZ // 4  
 );  
 
The first parameter is the address of the parent frame that is used as a reference. The second, 
thi d d f th t th d di t f th iti f th hild f



third, and fourth parameters are the x, y, and z coordinates of the new position for the child frame. 
The call returns D3DRM_OK if successful, or an error otherwise.  

 

 

The camera position determines what, if anything, is visible when the scene is rendered. For 
example, changing the position of the camera along the z-axis makes the objects in the scene 
appear larger or smaller (see Figure 15-1). The default position of the camera frame at the scene 
origin may be so close to the viewing frustum that a small portion of the object is visible. The 
following code fragment shows positioning of the camera frame so that it is located -7 units along 
the z-axis.  

 
 retval = aCamera->SetPosition(aScene,  
 D3DVAL(0), // x  
 D3DVAL(0), // y  
 -D3DVAL(7) // z  
 );  
 if (FAILED(retval))   
 {  
 // Camera position error handler goes here  
 }  
 

 

  
 
 Figure 15-1: Effect of changing the camera position along the z-axis 

   
 
 Creating and positioning the light frame  
 

 

There is no default lighting in Direct3D retained mode. The objects in a scene without lights are 
invisible. To illuminate the scene, code must create the light frame and position it in relation to the 
parent frame. After this is done, one or more lights can be added to the light frame and the scene 
illuminated. This means that you will be dealing with two different types of objects: the light frame 
object, which is of type LPDIRECT3DRMFRAME3, and one or more lights, which are of type 
LPDIRECT3DRMLIGHT.  

 

 
You start by creating the light frame that is attached to the scene as a parent frame. Here again 
you use the CreateFrame() function, which is part of the IDirect3DRM3 interface. The 
following code fragment shows the processing.  

 
 LPDIRECT3DRMFRAME3 lights = NULL;  
 . . .  



 // Create a light frame as a child of the scene frame  
 retval = lpD3DRM->CreateFrame(aScene, &lights);  
 if(FAILED(retval))  
 {   
 // Light frame creation error handler goes here  
 }  
 
 To set the position of the light frame you use the SetPosition() function of 
IDirect3DRMFrame interface, as in the following code fragment.  

 
 // Position the light frame within the scene  
 retval = lights->SetPosition(aScene,  
 D3DVAL(5), // x  
 D3DVAL(0), // y  
 -D3DVAL(7)); // z  
 if(FAILED(retval))  
 {  
 // Light frame positioning error handler goes here  
 }  
 

 

The position of the light frame is often related to the position of the camera frame. Because our 
camera frame was located at coordinates (0,0,-7), we position the light frame at the same y and z 
coordinates as the camera, but at a greater x coordinate. The result is that the light or lights placed 
in this frame will appear to come from the right of the camera and at the same vertical level (y 
coordinate) and distance from the object (z coordinate).  

 
 Creating and setting the lights  
 

 

Now that you have a light frame, you are able to create one or more lights. There are two methods 
in the IDirect3DRM interface that enable you to create lights: CreateLight() and 
CreateLightRGB(). CreateLight() requires that you specify the light color by referring to a 
structure of type D3DCOLOR, which is obtained by calling the macros D3DRGB or D3DRGBA. 
CreateLightRGB() allows defining the light color directly. Because it is easier to code, we will 
use CreateLightRGB() in the examples in this chapter. The function's general form is as 
follows:  

 
 HRESULT CreateLightRGB(  
 D3DRMLIGHTTYPE ltLightType, // 1  
 D3DVALUE vRed, // 2  
 D3DVALUE vGreen, // 3  
 D3DVALUE vBlue, // 4  
 LPDIRECT3DRMLIGHT* lplpD3DRMLight // 5  



 );  
 
 The first parameter is one of the lighting types defined in the D3DRMLIGHTYPE enumerated type. 
Table 15-3 lists the constants that enumerate the different light types.  

 
 Table 15-3: Enumerator Constants in D3DRMLIGHTTYPE  
 
    
 
 Constant  

 
Description  

 

 
    
 
 D3DRMLIGHT_AMBIENT  

 
Light is an ambient source  

 

 
 D3DRMLIGHT_POINT  

 
Light is a point source  

 

 
 D3DRMLIGHT_SPOT  

 
Light is a spotlight source  

 

 
 D3DRMLIGHT_DIRECTIONAL  

 
Light is a directional source  

 

 
 D3DRMLIGHT_PARALLELPOINT  

 
Light is a parallel point source  

 

 
    
 

 

The second, third, and fourth parameters are the RGB color values for the light. They are 
expressed in a D3DVALUE type, which is Direct3D's designation for a float data type. The valid 
range is 0.0 to 1.0. A value of 0.0 indicates the maximum dimness and a value of 1.0 the maximum 
brightness. The fifth parameter is the address that will be filled by a pointer to an 
IDirect3DRMLight interface. The call returns D3DRM_OK if successful, or an error otherwise.  

 
 The following code fragment creates a parallel point source light with a slight bluish tint.  
 
 LPDIRECT3DRMLIGHT light1 = NULL;  
 . . .  
 // Create a bright parallel point light  
 // Color values are as follows:  
 // 0.0 = totally dim and 1.0 = totally bright  
 retval = lpD3DRM->CreateLightRGB(D3DRMLIGHT_PARALLELPOINT,   
 D3DVAL(0.8), // Red intensity  
 D3DVAL(0.8), // Green intensity  



 D3DVAL(1.0), // Blue intensity  
 &light1);  
 if(FAILED(retval))  
 {  
 // Light creation error handler goes here  
 }  
 

 

With the preceding call to CreateLightRGB() we have created a parallel point type light of a 
specific intensity and color composition. This light is stored in a variable of type 
LPDIRECT3DRMLIGHT, in this case named light1. However, it will not illuminate the scene until 
the light is attached to a frame. The light frame created in the preceding section can be used at 
this time. The code is as follows:  

 
 // Add light to light frame  
 retval = lights->AddLight(light1);  
 if(FAILED(retval))  
 {  
 // Light-to-frame attachment error handler goes here  
 }  
 

 

Often the visual quality of a scene improves considerably if a dim, ambient light is added. 
Nonambient lights (directional, parallel point, point, and spot lights) are usually attached to a frame 
so that the light source can be positioned within the scene. Ambient light sources have no position 
and, therefore, it is inconsequential to which frame they are attached. Most often we attach 
ambient lights to the master scene frame.  

 

 

You create an ambient light using the same CreateLightRGB() or CreateLight() method 
used for a nonambient light. In this case the enumerator constant passed in the first parameter 
(see Table 15-3) is D3DRMLIGHT_AMBIENT. For ambient lights the values for the red, green, and 
blue component are usually in the lower part of the range. When created, the ambient light can be 
attached to any frame or to the master scene. Either option produces identical results because the 
light uniformly illuminates the scene independent of its position. The following code fragment 
shows creating a dim, ambient light and attaching it to the master scene.  

 
 LPDIRECT3DRMLIGHT light2 = NULL;  
 . . .  
 // Create a dim, ambient light and attach it to the scene frame,  
 retval = lpD3DRM->CreateLightRGB(D3DRMLIGHT_AMBIENT,   
 D3DVAL(0.1), // Red value  
 D3DVAL(0.1), // Green value  
 D3DVAL(0.1), // Blue value  
 &light2);  
 if(FAILED(retval))  



 {  
 // Ambient light creation error handler goes here  
 }  
 // Attach ambient light to scene frame  
 retval = aScene->AddLight(light2);  
 if(FAILED(retval))  
 {  
 // Light attachment error handler goes here  
 }  
 

 
Increasing the intensity of the ambient light often results in washed-out images. Color plate 7 
shows three versions of a teapot image in which the intensity of the ambient light has been 
increased from 0.1 to 0.8 for all three primary colors.  

 
 Creating a material  
 

 

The material property of an object determines how it reflects light. Two properties are associated 
with a material: emissive and specular. The emissive property of a material makes it appear to 
emit light and the specular property determines the sharpness of the reflected highlights thus 
making the surface appear hard and metallic or soft and plastic. The value of the specular property 
is defined by a power setting that determines the sharpness of the reflected highlights. A specular 
value of 5 gives a metallic appearance and higher values give a more plastic appearance.  

 
 Applications set the emissive property of a material using the SetEmissive() method of the 
IDirect3DRMMaterial interface. The function's general form is as follows:  

 
 HRESULT SetEmissive(  
 D3DVALUE *lpr, // 1  
 D3DVALUE *lpg, // 2   
 D3DVALUE *lpb // 3  
 );  
 

 
The function's three parameters are the intensity settings for the red, green, and blue components 
of the emitted light. The valid range for each color is 0.0 to 1.0. The function returns D3DRM_OK if it 
succeeds or an error otherwise.  

 

 

The emissive property is useful in simulating self-luminous objects such as neon lights, 
radioactivity, or ghostly characters. The specular property of a material is more commonly used 
than the emissive property. The specular property has a power and a color component. The color 
component is set with the SetSpecular() function of the IDirect3DRMMaterial interface. 
The general form for this function is as follows:  

 
 HRESULT SetSpecular(  
 D3DVALUE r, // 1  



 D3DVALUE g, // 2  
 D3DVALUE b // 3  
 );  
 
 The three parameters correspond to the value of the RGB color components for the specular 
highlights. The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 

 

The power setting for the specular property of a material can be defined when the material is 
created or afterwards. In the first case you use the CreateMaterial() method of the 
IDirect3DRM interface. To change the specular power of an existing material you can use the 
SetSpecular() method of IDirect3DRMMaterial interface. CreateMaterial() has the 
following general form:  

 
 HRESULT CreateMaterial(  
 D3DVALUE vPower, // 1  
 LPDIRECT3DRMMATERIAL * lplpD3DRMMaterial // 2  
 );  
 

 
The first parameter is the sharpness of the reflected highlights, with a value of 5 corresponding to 
a metallic appearance. The second parameter is the address that will be filled with a pointer to an 
IDirect3DRMMaterial interface. The function returns D3DRM_OK if it succeeds, or an error 
otherwise.  

 

 

After a material is created it must be attached to a mesh or to a specific face of a mesh. Retained 
mode provides two related functions, both of which are named SetMaterial(). The 
SetMaterial() function of the IDirect3DRMFace interface attaches the material to a specific 
face of a mesh. The SetMaterial() function of the IDirect3DRMMeshBuilder interface 
attaches the material to all the faces of a mesh. The latter function has the following general form:  

 
 HRESULT SetMaterial(  
 LPDIRECT3DRMMATERIAL2 lpIDirect3DRMmaterial // 1  
 );  
 

 
The function's only parameter is the address of IDirect3DRMMaterial interface for the 
Direct3DRMMeshBuilder object, which is of type LPDIRECT3DMATERIAL2. The function 
returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 The following code fragment shows creating a material and assigning to it a specular power of 0.8. 
After the material is created, it is attached to an existing mesh.  

 
 LPDIRECT3DRMMATERIAL2 material1 = NULL;  
 . . .  
 // Create a material setting its specular property  
 retval = lpD3DRM->CreateMaterial(D3DVAL(8.0), &material1);  



 if(FAILED(retval))  
 {  
 // Failed material creation error handler goes here  
 }  
 // Set the material on the mesh  
 retval = meshbuilder->SetMaterial(material1);  
 if(FAILED(retval))  
 {  
 // Material attachment error handler goes here  
 }  
 
 Setting the mesh color  
 

 

Meshes have no natural color. If you attempt to render a mesh without setting it to a color attribute 
the result is an image in shades of gray, as shown in the top part of color plate 8. Retained mode 
includes several methods to set the color of objects, all of which are named SetColorRGB(). 
One of these methods belongs to the Direct3DRMFace interface and is used to set the color of a 
mesh face. A second SetColorRGB() function is part of IDirect3DRMFrame interface and 
serves to set the color of a mesh contained in a mesh. In this case the material mode is set to 
D3DRMMATERIAL_FROMFRAME. A third SetColorRGB() method is used to set the color of a light. 
The fourth one belongs to the IDirect3DRMMeshBuilder interface and is used to set all the 
faces of a mesh to a particular color attribute. This version of the SetColorRGB() function has 
the following general form:  

 
 HRESULT SetColorRGB(  
 D3DVALUE red, // 1  
 D3DVALUE green, // 2  
 D3DVALUE blue // 3  
 );  
 
 The three parameters of this function determine the red, green, and blue color components of the 
mesh. The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 The following code fragment shows using the SetColorRGB() function referenced by a 
meshbuilder object. In this case the color is set to bright green.  

 
 LPDIRECT3DRMMESHBUILDER3 meshbuilder = NULL;   
 . . .  
 // Set the mesh color (bright green in this case).   
 retval = meshbuilder->SetColorRGB(D3DVAL(0.0), // red   
 D3DVAL(0.7), // green   
 D3DVAL(0.0)); // blue  



   
 if(FAILED(retval))  
 {  
 // Mesh color setting error handler goes here  
 }  
 
 The lower image in color plate 8 shows the object rendered after the mesh is assigned the color 
value (0.0,0.7,0.0).  

 
 Clean-up operations  
 

 

After the master scene is built (usually by creating a meshbuilder and a mesh, loading the mesh 
into a child frame, setting the camera position, creating and positioning the lights, and creating the 
mesh material and color) you can proceed to release all the local objects used in the process. The 
individual objects are preserved in the scene and will be rendered on the screen. The Release() 
function of the IUnknown interface, mentioned earlier in this chapter, is used to deallocate the 
individual object and reduce the object count by one. The function's general form is as follows:  

 
 ULONG Release();  
 
 The function returns the new reference count in a variable of type ULONG. The COM object 
deallocates itself when its reference count reaches 0.  

 
 In reference to the code samples listed in this section, the clean-up operation is in the following 
code fragment:  

 
 // Local variables  
 LPDIRECT3DRMFRAME3 lights = NULL;  
 LPDIRECT3DRMMESHBUILDER3 meshbuilder = NULL;  
 LPDIRECT3DRMLIGHT light1 = NULL;  
 LPDIRECT3DRMLIGHT light2 = NULL;  
 LPDIRECT3DRMMATERIAL2 material1 = NULL;  
 . . .  
 // Release local objects  
 lights->Release();  
 meshbuilder->Release();  
 light1->Release();  
 light2->Release();  
 material1->Release();  
 
 The BuildScene() function  



 

 
The BuildScene() function in the 3DRM InWin Demo1 program in the book's CD-ROM performs 
all of the processing operations discussed in this section. Following is a code listing of this 
function.  

 
 //*************************************************************  
 // Name: BuildScene()  
 // Description: Create the scene  
 //*************************************************************  
 BOOL BuildScene( LPDIRECT3DRMDEVICE3 aDevice,   
 LPDIRECT3DRMFRAME3 aScene,   
 LPDIRECT3DRMFRAME3 aCamera )  
 {  
 // Local variables  
 LPDIRECT3DRMFRAME3 lights = NULL;  
 LPDIRECT3DRMMESHBUILDER3 meshbuilder = NULL;  
 LPDIRECT3DRMFRAME3 childframe = NULL;  
 LPDIRECT3DRMLIGHT light1 = NULL;  
 LPDIRECT3DRMLIGHT light2 = NULL;  
 LPDIRECT3DRMMATERIAL2 material1 = NULL;  
 HRESULT retval;  
   
 // Create the meshbuilder object  
 retval = lpD3DRM->CreateMeshBuilder(&meshbuilder);  
 if (FAILED(retval))  
 goto ERROR_EXIT;  
   
 // Use meshbuilder to load a mesh from a DirectX file  
 retval = meshbuilder->Load(szXfile, // Source  
 NULL,  
 D3DRMLOAD_FROMFILE, // Options  
 NULL, NULL);  
 if (FAILED(retval))   
 {  
 D3DError("Failed to load file.");  
 goto DIRECT_EXIT;  
 }  
   
 // Create a child frame within the aScene.  



 retval = lpD3DRM->CreateFrame(aScene, &childframe);  
 if(FAILED(retval))  
 goto ERROR_EXIT;  
   
 // Add mesh into the child frame as a visual  
 retval = childframe->AddVisual(  
 (LPDIRECT3DRMVISUAL)meshbuilder);  
 if(FAILED(retval))  
 goto ERROR_EXIT;  
 // Set up the camera frame position  
 retval = aCamera->SetPosition(aScene,  
 D3DVAL(0), // x  
 D3DVAL(0), // y  
 -D3DVAL(7)); // z  
 if (FAILED(retval))   
 {  
 D3DError_("Failed to position the camera in the frame.");  
 goto DIRECT_EXIT;  
 }  
 // Create a light frame as a child of the scene frame  
 retval = lpD3DRM->CreateFrame(aScene, &lights);  
 if(FAILED(retval))  
 goto ERROR_EXIT;  
   
 // Position the light frame within the scene  
 retval = lights->SetPosition(aScene,  
 D3DVAL(5), // x  
 D3DVAL(0), // y  
 -D3DVAL(7)); // z  
 if(FAILED(retval))  
 goto ERROR_EXIT;  
   
 // Create a bright, parallel point light  
 // Color values are as follows:  
 // 0.0 = totally dim and 1.0 = totally bright  
 retval = lpD3DRM->CreateLightRGB(D3DRMLIGHT_PARALLELPOINT,   
 D3DVAL(0.8), // Red intensity  
 D3DVAL(0.8), // Green intensity  



 D3DVAL(1.0), // Blue intensity  
 &light1);  
 if(FAILED(retval))  
 goto ERROR_EXIT;  
   
 // Add light to light frame  
 retval = lights->AddLight(light1);  
 if(FAILED(retval))  
 goto ERROR_EXIT;  
   
 // Create a dim, ambient light and attach it to the scene   
 // frame,  
 retval = lpD3DRM->CreateLightRGB(D3DRMLIGHT_AMBIENT,   
 D3DVAL(0.2), // red  
 D3DVAL(0.2), // green  
 D3DVAL(0.2), // blue  
 &light2);  
 if(FAILED(retval))  
 goto ERROR_EXIT;  
   
 retval = aScene->AddLight(light2);  
 if(FAILED(retval))  
 goto ERROR_EXIT;  
   
 // Create a material setting its specular property  
 retval = lpD3DRM->CreateMaterial(D3DVAL(8.0), &material1);  
 if(FAILED(retval))  
 goto ERROR_EXIT;  
   
 // Set the material on the mesh  
 retval = meshbuilder->SetMaterial(material1);  
 if(FAILED(retval))  
 goto ERROR_EXIT;  
   
 // Set the mesh color (bright green in this case).   
 retval = meshbuilder->SetColorRGB(D3DVAL(0.0), // red   
 D3DVAL(0.7), // green   
 D3DVAL(0.0)); // blue  



   
 if(FAILED(retval))  
 goto ERROR_EXIT;  
   
 //******************************  
 // Function succeeds. Clean up  
 //******************************  
 childframe->Release();  
 lights->Release();  
 meshbuilder->Release();  
 light1->Release();  
 light2->Release();  
 material1->Release();  
 return TRUE;  
   
 //******************************  
 // Error exits  
 //******************************  
 ERROR_EXIT:  
 D3DError("Failure building the scene");  
 DIRECT_EXIT:  
 childframe->Release();  
 lights->Release();  
 meshbuilder->Release();  
 light1->Release();  
 light2->Release();  
 material1->Release();  
 return FALSE;  
 }  
 



Rendering the Scene  
 

 
To render is to convert image data into an actual image. In all the processing operations performed 
so far in this chapter, all we have done is manipulate data. Nothing has been shown on the screen, 
or even formatted into a displayable construct.  

 

 
In Chapter 14 you learned that Direct3D rendering takes place on three separate modules called 
the transformation, lighting, and rasterization modules. But when programming in retained mode, 
the individual modules are not visible. Instead, the rendering operation is conceptualized as 
consisting of four functions:  

 
   •The Move() function of the IDirect3DRMFrame interface applies the rotations and velocities to 

all the frames in the hierarchy.  
 
   •The Clear() function of the IDirect3DRMViewport interface clears the viewport to the 

current background color.  
 
   •The Render() function, that is part of the IDirect3DRNFrame, renders the scene into the 

viewport.  
 
   •The Update() function of the IDirect3DRMDevice interface copies the rendered image to the 

display surface.  
 
 The Move() function is discussed in the context of retained mode animation programming (see 
Chapter 25).  

 
 Clearing the viewport  
 

 

In Direct3D retained mode the viewport is one of the objects of the IDirect3DRM interface. It is 
defined as a rectangular area in the device space. The viewport extent is always measured in 
device units, which are pixels for the screen device. The viewport origin is the offset of the viewport 
within the device space. Previously in this chapter we created a viewport using the 
CreateViewport() function of the lpD3DRM interface. At that time we assigned the viewport to 
a device frame and a camera frame. We also defined the viewport origin by means of its position in 
the device frame, as well as its extent.  

 
 Clearing the viewport is accomplished by calling the Clear() function of the 
IDirect3DRMViewport interface. The function's general form is as follows:  

 
 HRESULT Clear();  
 
 No parameters are necessary because the viewport to be cleared is the one calling the function, 
as in the following code fragment:  

 
 // Global Structure  
 struct _globVars  



 {  
 . . .  
 LPDIRECT3DRMVIEWPORT2 aViewport; // Direct3DRM viewport  
 . . .  
 } globVars;  
   
 // Clear the viewport.  
 retval = globVars.aViewport->Clear(D3DRMCLEAR_ALL);  
 if (FAILED(retval))   
 {  
 // Viewport clearing error handler goes here  
 }  
 
 Rendering to the viewport  
 

 

In Chapter 14 we showed you that a scene is organized in a tree-like structure that consists of a 
root, or master frame, and any number of child frames. Child frames inherit their characteristics 
from the parent frames to which they are physically attached. When a frame is moved, all the child 
frames move with it. The parent frame and its child frames are known as a frame hierarchy. In 
retained mode this frame hierarchy can be changed by code.  

 

 

The Render() function of the IDirect3DRMViewport interface renders a frame hierarchy to a 
given viewport. The call renders the visual on a given frame and all of its child frames. Frames 
above it on the hierarchy are not rendered or affected. This mode of operation is sometimes 
described as being state based, which means that the state of the renderer is determined by the 
part of the frame tree currently being traversed. The general form of the Frame() function is as 
follows:  

 
 HRESULT Render(  
 LPDIRECT3DRMFRAME lpD3DRMFrame // 1  
 );  
 

 
The function's only parameter is the address of the variable that represents the 
Direct3DRMFrame object at the top of the frame hierarchy to be rendered. The function returns 
D3DRM_OK if it succeeds, or an error otherwise. The following code fragment shows a call to the 
Render() function.  

 
 // Global Structure  
 struct _globVars  
 {  
 . . .  
 LPDIRECT3DRMVIEWPORT2 aViewport; // Direct3DRM viewport  



 LPDIRECT3DRMFRAME3 aScene; // Master frame  
 . . .   
 } globVars;  
 . . .  
 // Render the scene  
 retval = globVars.aViewport->Render(globVars.aScene);  
 if (FAILED(retval))   
 {  
 // Rendering failure error handler goes here  
 }  
 
 In this case, the argument of the Render() call is the master frame. This determines that all other 
frames attached to the master frame are rendered.  

 
 Updating the screen  
 

 

We have now rendered the scene to the viewport, but nothing yet shows on the video display. For 
this to happen you must call the Update() function of the IDirect3DRMDevice interface. 
Update() copies the image in the viewport to the display surface. It also provides a system-level 
tick, called the heartbeat. This tick is discussed in the context of retained mode animation (see 
Chapter 25). The general form of the Update() function is as follows:  

 
 HRESULT Update();  
 

 

No parameters are necessary because the device is referenced in the call. Each time Update() is 
called, the system optionally sends execution to an application-defined callback function. 
Applications define the callback function by means of the AddUpdateCallback() function of the 
IDirect3DRMDevice interface. The callback function is convenient when the application needs 
to update scene data during each beat of the renderer. AddUpdateCallback() is discussed in 
the context of retained mode animation (see Chapter 25). The Update() function returns 
D3DRM_OK if it succeeds, or an error otherwise.  

 
 RenderScene() function  
 

 
The RenderScene() function that is part of the 3DRM InWin Demo1 program in the book's CD-
ROM performs the processing operations discussed in this section. Following is a code listing of 
this function.  

 
 //**************************************************************  
 // Name: RenderScene()  
 // Description: Clear the viewport, render the frame, and  
 // update the window.  
 //**************************************************************  



 static BOOL RenderScene()  
 {  
 HRESULT retval;  
   
 // Clear the viewport.  
 retval = globVars.aViewport->Clear(D3DRMCLEAR_ALL);  
 if (FAILED(retval))   
 {  
 D3DError("Clearing viewport failed.");  
 return FALSE;  
 }  
   
 // Render the aScene to the viewport.  
 retval = globVars.aViewport->Render(globVars.aScene);  
 if (FAILED(retval))   
 {  
 D3DError("Rendering scene failed.");  
 return FALSE;  
 }  
 // Update the window.  
 retval = globVars.aDevice->Update();  
 if (FAILED(retval))   
 {  
 D3DError("Updating device failed.");  
 return FALSE;  
 }  
 return TRUE;  
 }  
 



Sample Project 3DRM InWin Demo1  
 

 

The project named 3DRM InWin Demo1 located in the Chapter 15 subfolder in the book's CD-
ROM demonstrates the basic retained mode operations discussed in this chapter. The program 
displays a file in DirectX format. The filename is contained in a global string and can be edited by 
the user. The file furnished in the workspace directory is named teapot.x. This is one of the 3D files 
that comes with the DirectX SDK. Rendering is static because no animation is attempted at this 
point. Figure 15-2 is a screen snapshot of the 3DRM InWin Demo1 program.  

 

 

  
 
 Figure 15-2: Screen snapshot of the 3DRM InWin Demo1 program 

   
 
 To facilitate reuse, we grouped the processing into four functions:  
 
   1.InitD3D() initializes the retained mode interface and creates a DirectDraw_Clipper object 

based on the application window.  
 
   2.CreateObjects() creates the device and objects that form the 3D scene.  
 
   3.BuildScene() uses the objects created in the previous step to build the application's main 

frame.  
 
   4.RenderScene() renders the scene to the viewport and displays it.  
 
 The functions were discussed in detail and are listed in previous sections of this chapter.  
 



Windowed Retained Mode Coding Template  
 

 

The project directory 3DRM InWin Template, located in the Chapter 15 subfolder in the book's CD-
ROM, contains a template program that could be useful in the initial stages of developing a 
Direct3D retained mode, windowed application. To use it you can copy the template file named 
3DRM InWin Template.cpp to your own workspace. Then rename the file and edit it to suit your 
application. Alternatively you can copy or rename the entire directory. When using the template file 
make sure that you have referenced the libraries dxguid.lib, ddraw.lib, d3drm.lib, and winmm.lib. 
To include these libraries you must edit the Object/Libraries modules windows on the Link tab of 
Developer Studio Project Settings dialog box, as shown in Figure 15-3.  

 

 

  
 
 Figure 15-3: Direct3D Libraries referenced in the Project Settings dialog box  
 



Summary  
 

 

In this chapter we explained the coding that goes into a simple, windowed mode, Direct3D 
application that executes in retained mode. The program used as a model is contained in the 3DRM 
InWin Demo1 project folder in the book's CD-ROM. The sample program renders a 3D image 
stored in a file in Microsoft's DirectX format. We purposefully eliminated from the code everything 
that is not strictly necessary to accomplish this purpose. The fact that this extremely simple program 
requires approximately 450 lines of code indicates the complexity of 3D programming, even when it 
takes place in a high-level environment such as Direct3D retained mode. In the following chapter 
we use this same, basic code structure to introduce a finer level of object modeling and rendering.  

 



Chapter 16: System-Level Operations  
 
 Overview  
 

 

Having finished our overview of Direct3D retained mode and having followed the coding of a simple 
program, we are now ready to plunge into the details of the application programming interface. We 
begin this chapter with an introduction to the retained mode interface and its organization. The 
remainder is devoted to discussing the Direct3D retained mode highest-level controls. Lacking a 
better term, we call these controls the system-level interface. The functions at this level are used for 
creating the Direct3D retained mode objects, accessing system-level variables, and in performing 
top-level calculations and transformations. The design and coding of a Direct3D application starts 
with the system-level controls.  

 



Direct3D Retained Mode API  
 

 
The retained mode API is a set of interrelated, COM-based interfaces. One of the difficulties in 
understanding Direct3D is deciphering the organization of this interface. Figure 16-1 shows the 
retained mode interface hierarchy at the time of this writing.  

 

 

  
 
 Figure 16-1: Retained mode interface hierarchy chart 

   
 

 

Some of the interfaces in Figure 16-1 are updates. The digit following the interface name indicates 
its sequential order. For example, IDirect3DRMDEvice3 replaced IDirect3DRMDevice2, 
which in turn replaced the original IDirect3DRMDevice interface. In this case each successive 
interface added methods to the preceding one. Figure 16-1 shows only the latest version of the 
interfaces.  

 

 

Until the release of DirectX 6, each new interface inherited from its predecessor. For example, 
IDirect3DRMFrame2, introduced in DirectX 5.0, inherits from IDirect3DRMFrame. DirectX 6 
changed this mode of operation; since its introduction the new interfaces do not inherit, but re-
implement the functions in its predecessors. This means that the DirectX 6 IDirect3DRMFrame3 
interface does not inherit from Direct3DRMFrame2 or IDirect3DRMFrame. However, Microsoft 
documentation states that all the methods in the previous interfaces remain unchanged and that 
existing code will not be broken by the new implementations.  

 

 

Another change introduced in DirectX6 refers to Microsoft's conventions for sequentially 
numbering functions. The interface inheritance mechanism that was in place up to DirectX 6 made 
it necessary for each new method to be identified by a sequential digit. This enabled code to 
conform to the new signatures. For example, IDirect3DRMFrame::AddMoveCallback() had 
two parameters. The new version of that method, which takes three parameters, was named 
Direct3DRMFrame2::AddMoveCallback2(). We already mentioned that, starting with DirectX 
6.0, the new interfaces do not inherit from the old ones. Therefore this method numbering scheme 
became obsolete. For this reason, some retained mode method names that were appended with a 



digit in a previous interface have reverted to their original names in the post-DirectX 6 
implementations. This is the case with the AddModeCallback() function of 
IDirect3DRMFrame3, which replaces AddMoveCallback2() of IDirect3DRMFrame2. Keep 
in mind that the practice of dropping the sequential digit applies to method names only, not to the 
interface designations. To avoid duplication and confusion, in this book we refer to the most recent 
version of the interface only.  

 

 

In addition to the functions related to the specific interfaces listed in Figure 16-1, there are 
functions in the retained mode API that are not derived from any specific interface. These are 
sometimes called the nonmember or retained mode functions. In Chapter 14 you used one of the 
nonmember functions to create the Direct3D retained mode object. The code in the sample 
program 3DRM InWin Demo1 is as follows:  

 
 // Create the Direct3DRM object.  
 LPDIRECT3DRM pD3DRMTemp;  
 retval = Direct3DRMCreate(&pD3DRMTemp);  
 

 
Notice that because Direct3DRMCreate() is a nonmember function, there is no interface 
pointer in the call statement. The remaining functions in this group perform auxiliary operations 
such as manipulating colors, matrices, vectors, and quaternions. Table 16-1 describes the 
Direct3D retained mode nonmember functions.  

 
 Table 16-1: Direct3D Nonmember Functions  
 
    
 
 Function  

 
Description  

 

 
    
 
 Color manipulations  

 
  

 

 
 D3DRMColorGetAlpha()  

 
Retrieve alpha component  

 

 
 D3DRMColorGetBlue()  

 
Retrieve blue component  

 

 
 D3DRMColorGetGreen()  

 
Retrieve green component  

 

 
 D3DRMColorGetRed()  

 
Retrieve red component  

 

 
 D3DRMCreateColorRGB()  

 
Create color in RGB format  

 

 
 D3DRMCreateColorRGBA()  

 
Create color in RGBA format  

 



 
 Matrix manipulations  

 
  

 

 
 D3DRMMatrixFromQuaternion()  

 
Calculate matrix from rotation of a unit 
quaternion  

 

 
 Vector manipulations  

 
  

 

 
 D3DRMVectorAdd()  

 
Sum of two vectors  

 

 
 D3DRMVectorCrossProduct()  

 
Cross product of two vectors  

 

 
 D3DRMVectorDotProduct()  

 
Dot product of two vectors  

 

 
 D3DRMVectorModulus()  

 
Length of vector according to modulus formula  

 

 
 D3DRMVectorNormalize()  

 
Scale vector to modulus 1  

 

 
 D3DRMVectorRandom()  

 
Random unit of vector  

 

 
 D3DRMVectorReflect()  

 
Reflect vector ray about a given normal  

 

 
 D3DRMVectorRotate()  

 
Rotate vector around a given axis  

 

 
 D3DRMVectorScale()  

 
Scale vector uniformly in all three axes  

 

 
 D3DRMVectorSubtract()  

 
Subtract two vectors  

 

 
 Quaternion manipulations  

 
  

 

 
 D3DRMQuaternionFromRotation()  

 
Retrieves a unit quaternion from a rotation on a 
given axis  

 

 
 D3DRMQuaternionMultiply()  

 
Product of two quaternion structures  

 

 
 D3DRMQuaternionSlerp()  

 
Linear interpolation between two quaternion 
structures  

 

 
 Instance creation  

 
  

 

 
 Direct3DRMCreate()  

 
Create instance of Direct3DRM object  

 



 
    
 



The System-Level Interface  
 
 Direct3D retained mode applications use the functions of the IDirect3DRM3 interface to create 
retained mode objects. The most important objects created by IDirect3DRM3 are the following:  

 
   •Viewports  
 
   •Devices  
 
   •Frames  
 
   •Meshbuilders and meshes  
 
   •Faces  
 
   •Lights  
 
   •Materials  
 
   •Shadows  
 
   •Textures  
 
   •Wraps  
 
   •ClippedVisuals  
 
   •Animations and animation sets  
 
   •UserVisuals  
 
   •Uninitialized objects  
 
 Table 16-2 lists the functions available in the IDirect3DRM3 interface.  
 
 Table 16-2: Methods of IDirect3DRM Interface  
 
    
 
 Groups  

 
Functions  

 



 
    
 
 Viewports  

 
* CreateViewport()  

 

 
 Devices  

 
CreateDevice()*  
 
CreateDeviceFromClipper() 
 
CreateDeviceFromD3D() 
 
CreateDeviceFromSurface() 
 
GetDevices()  

 

 
 Frames  

 
* CreateFrame()  

 

 
 Meshes  

 
CreateMesh()*  
 
CreateMeshBuilder() 
 
CreateProgressiveMesh()  

 

 
 Faces  

 
CreateFace()  

 

 
 Lights  

 
* CreateLight()*  
 
CreateLightRGB()  

 

 
 Materials  

 
* CreateMaterial()  

 

 
 Shadows  

 
CreateShadow()  

 

 
 Textures  

 
CreateTexture()  

 

 
   

 
CreateTextureFromSurface() 
 
LoadTexture() 
 
LoadTextureFromResource() 
 
SetDefaultTextureColors() 
 
SetDefaultTextureShades()  

 

 
 Wraps  

 
CreateWrap()  

 

   



 Animations  CreateAnimation() 
 
CreateAnimationSet()  

 
 General support  

 
AddSearchPath() 
 
GetSearchPath() 
 
SetSearchPath() 
 
EnumerateObjects() 
 
CreateObject() 
 
CreateUserVisual() 
 
GetNamedObject() 
 
Load() 
 
Tick() 
 
SetOptions()  

 

 
    
 

 
We encountered some of these functions in Chapter 15, while developing the 3DRM InWin Demo1 
program. Those that were discussed in detail in Chapter 15 are marked with asterisks in Table 16-
2. These functions are not revisited in this chapter. The remaining topics are organized as follows: 

 
   •Creating devices  
 
   •Creating meshes and faces  
 
   •Creating materials, shadows, textures, and wraps  
 
   •Creating animations and animation sets  
 
   •General support functions  
 

 
In this chapter we are mainly concerned with the processing operations that take place at the 
system level. Most of the topics discussed are revisited later in the book in the context of lower-level 
interfaces, or in chapters devoted to specific functionalities, as is the case with Direct3D animation. 

 



Creating and Obtaining Devices  
 

 

There are four documented methods in the IDirect3DRM interface for creating devices. One of 
them, CreateDevice(), is not implemented in Windows. The remaining methods are named 
CreateDeviceFromClipper(), CreateDeviceFromD3D(), and 
CreateDeviceFromSurface(). In Chapter 15 you used CreateDeviceFromClipper() 
passing NULL in the second parameter. Because this is the way that is recommended by Microsoft 
for creating a retained mode device, no further comment on this function is necessary at this time. 

 

 

A common characteristic of all three device-creation methods is that they all return an 
IDirect3DRMDevice3 interface. This interface provides the functionality of an 
IDirect3DDevice3 immediate mode device, and it supports the DrawPrimitive interface and 
execute buffers. This interface is the one required for progressive meshes, alpha blending, and for 
sorting of transparent objects.  

 
 Creating a device from a Direct3D object  
 

 

Program output is always associated with an output device. This output device represents the 
visual display destination for the renderer and determines the renderer's behavior. Applications 
can define multiple viewports on a device. This allows different aspects of the same scene to be 
viewed simultaneously. In addition, code can specify several output devices, allowing multiple 
destination devices for the same scene. Retained mode devices can render directly to the screen, 
to Windows, or into application memory.  

 

 

In windowed applications the most useful and common way of creating a Direct3D display device 
is using CreateDeviceFromClipper() previously mentioned. This approach has the 
advantage that a DirectDraw clipper is attached to the window automatically. The 
CreateDeviceFromD3D() function creates a Windows device by using a specified Direct3D 
object. This function is used often in creating a device for full-screen mode programs. The function 
has the following general form:  

 
 HRESULT CreateDeviceFromD3D(  
 LPDIRECT3D2 lpD3D, // 1  
 LPDIRECT3DDEVICE2 lpD3DDev, // 2   
 LPDIRECT3DRMDEVICE3 *lplpD3DRMDevice // 3  
 );  
 

 

The first parameter is a pointer to an instance of a Direct3D immediate mode object. The second 
parameter is a pointer to a Direct3D immediate mode Direct3DDevice2 object. If NULL is 
passed in the second parameter, the function searches for a hardware device with the minimum 
set of capabilities required for retained mode. The third parameter is the address that will be filled 
with a pointer to an IDirect3DRMDevice3 interface if the call succeeds. The call returns 
D3DRM_OK if it is successful, or an error otherwise.  

 
 Creating a device from a surface  
 



 
The CreateDeviceFromSurface() function provides a mechanism for creating a Direct3D 
device based on a DirectDraw surface. CreateDeviceFromSurface() is used in full-screen 
Direct3D programs. The method's general form is as follows:  

 
 HRESULT CreateDeviceFromSurface(  
 LPGUID lpGUID, // 1  
 LPDIRECTDRAW lpDD, // 2  
 LPDIRECTDRAWSURFACE lpDDSBack, // 3  
 LPDIRECT3DRMDEVICE2 * lplpD3DRMDevice // 4  
 );  
 

 

The first parameter is the address of the globally unique identifier (GUID) used as the required 
device driver. As is the case in CreateDeviceFromClipper(), if this parameter is NULL, the 
default device driver is used. The second parameter is the address of the DirectDraw object that is 
used as a surface. The third parameter is the address of the DirectDrawSurface object that 
represents the back buffer. The fourth parameter is the address that is filled with a pointer to an 
IDirect3DRMDevice2 interface. The function returns D3DRM_OK if it is successful, or an error 
otherwise.  

 
 Obtaining the device  
 
 The GetDevice() function of IDirect3DRM3 returns all Direct3DRM devices that have been 
created in the system. The function has the following general form:  

 
 HRESULT GetDevices(  
 LPDIRECT3DRMDEVICEARRAY *lplpDevArray // 1  
 );  
 
 The only parameter is the address of a pointer that is filled with the resulting array of Direct3DRM 
devices. The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 

 
If the call succeeds, an array of devices is filled with all the devices in the system. To obtain each 
particular device, code needs to call the functions in the IDirect3DRMDeviceArray interface. 
The GetSize() method returns the number of elements in the array. Its general form is as 
follows:  

 DWORD GetSize();  
 

 
When the size of the array is known, code can proceed to examine each element by means of the 
GetElement() function of IDirect3DRMDeviceArray. The function's general form is as 
follows:  

 
 HRESULT GetElement(  
 DWORD index, // 1  
 LPDIRECT3DRMDEVICE *lplpD3DRMDevice // 2  



 );  
 

 

The first parameter is the offset of the element in the array. The second parameter is filled with a 
pointer to the IDirect3DRMDevice interface. However, you cannot cast this parameter to a 
different version of the interface. For example, if the pointer you want is to IDirect3DRMDevice3, 
you must use QueryInterface() to obtain it. The function returns D3DRM_OK if it succeeds, or an 
error otherwise.  

 



Creating Meshes and Faces  
 

 
In Chapter 15 you created a mesh using the meshbuilder object. On that occasion the meshbuilder 
loaded a mesh file, in DirectX format. Then you created a child frame within the scene, and added 
the mesh into the child frame. Most retained mode applications use meshes developed in an 
image editing program. These meshes are stored in files and loaded into the scene as needed.  

 

 

Alternatively, although rarely in retained mode, an application can create the individual faces of a 
polygon mesh using the methods in the IDirect3DRMFace2 interface. In this case the face is 
constructed using the AddVertex() and AddVertextAndNormalIndex() functions. Code can 
read the vertices using the GetVertex() and GetVertices() functions, or set the color, 
texture, and material of the face by using SetColor(), SetColorRGB(), SetTexture(), and 
SetMaterial(). Table 16-3 lists the methods in the IDirect3DRMFace2 interface.  

 
 Table 16-3: Functions in the IDirect3DRMFace2 Interface  
 
    
 
 Function  

 
Description  

 

 
    
 
 Color manipulations  

 
  

 

 
 GetColor()  

 
Retrieves the face color  

 

 
 SetColor()  

 
Sets color and alpha component  

 

 
 SetColorRGB()  

 
Sets color in RGB format  

 

 
 Materials  

 
  

 

 
 GetMaterial()  

 
Retrieves the material property  

 

 
 SetMaterial()  

 
Sets the material property  

 

 
 Textures  

 
  

 

 
 GetTexture()  

 
Retrieves the applied texture  

 

 
 GetTextureCoordinateIndex()  

 
Retrieves the index of the texture 
coordinate vertex  

 



 
 GetTextureCoordinates()  

 
Retrieves the texture coordinates of 
a vertex  

 

 
 SetTexture()  

 
Sets the face texture  

 

 
 SetTextureCoordinates()  

 
Sets the texture coordinates of a 
vertex  

 

 
 SetTextureTopology()  

 
Sets the texture topology of a face  

 

 
 Vertices and normals  

 
  

 

 
 AddVertex()  

 
Adds a vertex to a face  

 

 
 AddVertexAndNormalIndexed()  

 
Uses the index for the vertex and 
the normal to add a vertex and a 
normal to a face  

 

 
 GetNormal()  

 
Retrieves the normal vector of a 
face  

 

 
 GetVertex()  

 
Retrieves the position and the 
normal of a vertex in a face  

 

 
 GetVertexCount()  

 
Retrieves the number of vertices  

 

 
 GetVertexIndex()  

 
Retrieves the index of the vertex in a 
face  

 

 
 GetVertices()  

 
Retrieves the position and the 
normal vector of each vertex in a 
face  

 

 
    
 
 Because building meshes out of primitive components is not a common operation in retained mode 
programming, we do not discuss the mesh primitive functions at this point.  

 

 
A progressive mesh is defined as a set of discrete steps that go from the coarsest to the most 
refined representation of the object. Progressive meshes were introduced to Direct3D in DirectX 5. 
In addition to rendering an image in a series of progressively refined steps, they also allow the 
progressive download of a mesh from a remote source.  

 
One of the methods of IDirect3DRM is CreateProgressiveMesh(). This function creates a 



progressive mesh object. Its general form is as follows:  
 
 HRESULT CreateProgressiveMesh(  
 LPDIRECT3DRMPROGRESSIVEMESH *lplpD3DRMProgressiveMesh // 1  
 );  
 

 
The only parameter is the address that will be filled with a pointer to an 
IDirect3DRMProgressiveMesh interface if the call succeeds. The function returns D3DRM_OK 
if it succeeds, or an error otherwise.  

 
 After the progressive mesh object is created, it can be used to access any of the functions in 
IDirect3DRMProgressiveMesh. Table 16-4 lists the functions in this interface.  

 
 Table 16-4: Functions in the IDirect3DRMProgressiveMesh Interface  
 
    
 
 Function  

 
Description  

 

 
    
 
 Creating and Copying Meshes  

 
  

 

 
 Clone()  

 
Creates a copy of the current mesh object.  

 

 
 CreateMesh()  

 
Builds a mesh using the current level of detail.  

 

 
 Duplicate()  

 
Creates a copy of the 
Direct3DprogressiveMesh object. The 
level of detail for the duplicate object can be set 
independently.  

 

 
 GetBox()  

 
Retrieves the object's bounding box.  

 

 
 Loading  

 
  

 

 
 Abort()  

 
Terminates the current download.  

 

 
 GetLoadStatus()  

 
Returns the current status of the load.  

 

 
 Load()  

 
Loads a progressive mesh from a file, a 
resource, or a URL.  

 



 
 Mesh Quality  

 
  

 

 
 SetQuality()  

 
Sets the rendering quality of the progressive 
mesh.  

 

 
 GetQuality()  

 
Retrieves the D3DRMRENDERQUALITY 
enumerated constant that specified the 
rendering quality of a progressive mesh.  

 

 
 Level of Detail  

 
  

 

 
 GetDetail()  

 
Returns the current level of detail (range is 0.0 
to 1.0).  

 

 
 GetFaceDetail()  

 
Retrieves the number of faces in a progressive 
mesh.  

 

 
 GetFaceDetailRange()  

 
Retrieves the minimum and maximum face 
count.  

 

 
 GetVertexDetail()  

 
Retrieves the number of vertices in a 
progressive mesh.  

 

 
 GetVertexDetailRange()  

 
Retrieves the minimum and maximum vertex 
count.  

 

 
 SetDetail()  

 
Sets the current level of detail (range is 0.0 to 
1.0).  

 

 
 SetFaceDetail()  

 
Sets the level of detail for a face.  

 

 
 SetMinRenderDetail()  

 
Sets the minimum level of detail, larger than the 
base mesh, that will be rendered during a load. 

 

 
 SetVertexDetail()  

 
Sets the level of detail for a vertex.  

 

 
 Events Handling  

 
  

 

 
 RegisterEvents()  

 
Registers an event that will be signaled when a 
predefined condition is met.  

 

 
    
 



 Programming operations using progressive meshes is discussed in the context of Direct3D 
animation.  

 



Creating Materials, Shadows, Textures, and Wraps  
 

 

Materials, textures, shadows, and wraps are fundamental mesh attributes in Direct3D 
programming. An object's rendering quality depends largely on our abilities in manipulating these 
four attributes. In this chapter we consider the creation of these attributes and provide an overview 
of the interfaces that are used in their manipulation. The programming details are described 
beginning in Chapter 18.  

 
 Materials  
 

 
In the 3DRM InWin Demo1 program presented in Chapter 15 you created a material using the 
CreateMaterial() function of IDirect3DRM. Notice that a material object can also be created 
in immediate mode using the CreateMaterial() function of IDirect3D3. Immediate mode 
provides a much finer degree of control over material properties than retained mode.  

 

 
The call to CreateMaterial() of the IDirect3DRM3 interface returns a pointer to the 
IDirect3DRMMaterial2 interface if the call succeeds. This interface upgrade to 
IDirect3DRMMaterial became available in DirectX 6. The interface provides the methods 
listed in Table 16-5.  

 
 Table 16-5: Functions in the IDirect3DRMMaterial2 Interface  
 
    
 
 Function  

 
Description  

 

 
    
 
 Ambient  

 
  

 

 
 GetAmbient()  

 
Retrieves the material's ambient value.  

 

 
 SetAmbient()  

 
Sets the ambient value for the material. Default is the 
diffuse color.  

 

 
 Emissive property  

 
  

 

 
 GetEmissive()  

 
Retrieves the RGB components of the material's emissive 
property  

 

 
 SetEmissive()  

 
Sets the RGB components of the material's emissive 
property.  

 

 
 Specular Power  

 
  

 



 
 GetPower()  

 
Retrieves the power value for the material's specular 
property.  

 

 
 SetPower()  

 
Sets the power value for the material's specular property. 

 

 
 Specular property  

 
  

 

 
 GetSpecular()  

 
Retrieves the RGB components of the material's specular 
property.  

 

 
 SetSpecular()  

 
Sets the RGB components of the material's specular 
property.  

 

 
    
 
 Manipulating materials properties is discussed in Chapter 18.  
 
 Shadows  
 

 

In nature, illuminated objects produce shadows. In Direct3D, a shadow is a projection of a mesh, 
rendered as a visual and a light, onto a plane. The shadow is produced by calling the 
CreateShadow() method of the IDirect3DRM interface. The resulting shadow object is a 
visual. When this shadow object is attached to a frame it becomes visible at rendering time. The 
general form of CreateShadow() is as follows:  

 
 HRESULT CreateShadow(  
 LPDIRECT3DRMVISUAL lpVisual, // 1  
 LPDIRECT3DRMLIGHT lpLight, // 2  
 D3DVALUE px, // 3  
 D3DVALUE py, // 4  
 D3DVALUE pz, // 5  
 D3DVALUE nx, // 6  
 D3DVALUE ny, // 7  
 D3DVALUE nz, // 8  
 LPDIRECT3DRMVISUAL * lplpShadow // 9  
 );  
 

 

The first parameter is the address of the Direct3DRMVisual object that is casting the shadow. 
The second parameter is the address of the IDirect3DRMLight interface that is the light source. 
The third, fourth, and fifth parameters, represented by the variables px, py, and pz in the general 
form, are the coordinates of a point on the plane on which the shadow is projected. The sixth, 
seventh, and eight parameters, represented by the variables nx, ny, and nz in the general forms, 



define the normal to the plane on which the shadow is projected. In this manner the shadow's 
plane of projection is defined in terms of a point on this plane and its normal vector. The ninth 
parameter is an address that is initialized with a pointer to the shadow visual, if the call succeeds. 
The call returns D3DRM_OK if it succeeds, or an error otherwise.  

 

 
Applications that use CreateObject() of the IDirect3DRM3 interface to create a shadow 
object then call the Init() function of IDirect3DRMShadow2 interface to initialize it. This 
function has the following general form:  

 
 HRESULT Init(  
 LPDIRECT3DRMVISUAL lpVisual, // 1  
 LPDIRECT3DRMLIGHT lpLight, // 2  
 D3DVALUE px, // 3  
 D3DVALUE py, // 4  
 D3DVALUE pz, // 5  
 D3DVALUE nx, // 6  
 D3DVALUE ny, // 7  
 D3DVALUE nz, // 8  
 );  
 
 The meaning of the eight parameters to the Init() call are the same as those of the first eight 
parameters of the call to CreateShadow() described earlier.  

 

 
In addition to the Init() function, the IDirect3DRMShadow2 interface contains functions that 
allow changing the visual, light, plane, and option shadow parameters. The interface provides the 
methods listed in Table 16-6.  

 
 Table 16-6: Functions in the IDirect3DRMShadow2 Interface  
 
    
 
 Function  

 
Description  

 

 
    
 
 Initialization  

 
  

 

 
 Init()  

 
Initialized the shadow object  

 

 
 Parameter manipulations  

 
  

 

 
 GetLight()  Retrieves the light source associated with the  



shadow   
 
 GetOptions()  

 
Retrieves the shadow option flag (Currently 
D3DRMSHADOW_TRUEALPHA)  

 

 
 GetPlane()  

 
Retrieves the shadow plane in point/normal 
form  

 

 
 GetVisual()  

 
Retrieves the visual to be shadowed  

 

 
 SetLight()  

 
Sets the light that produces the shadow  

 

 
 SetOptions()  

 
Sets the shadow option (Currently 
D3DRMSHADOW_TRUEALPHA)  

 

 
 SetPlane()  

 
Sets the plane onto which the shadow is 
projected (in point/normal form)  

 

 
 SetVisual()  

 
Sets the visual to be shadowed  

 

 
    
 
 Currently the only shadow option implemented is D3DRMSHADOW_TRUEALPHA. This option creates 
a shadow that does not have visual artifacts when true alpha is enabled.  

 
 Rendering shadows is discussed starting in Chapter 18.  
 
 Textures  
 

 
In Chapter 14 you learned that a texture is a 2D image, usually encoded in bitmap form, that is 
used to enhance the rendering of a 3D mesh object. IDirec3DRM3 contains several texture-
related functions, listed in Table 16-7.  

 
 Table 16-7: Texture-related Functions in the IDirect3DRM3 Interface  
 
    
 
 Function  

 
Description  

 

 
    
 
 CreateTexture()  

 
Creates a texture from a memory image  

 



 
 CreateTextureFromSurface()  

 
Creates a texture from a DirectDraw surface  

 

 
 LoadTexture()  

 
Load a texture from a file in .bmp or .ppm 
format  

 

 
 LoadTextureFromResource()  

 
Loads a texture from a program resource  

 

 
 SetDefaultTextureColors()  

 
Sets the number of default colors to be used 
with a texture object  

 

 
 SetDefaultTextureShades()  

 
Sets the number of default shades to be used 
with a texture object  

 

 
    
 

 
The first four functions in Table 16-7 contain a parameter that is the address of a pointer to a 
IDirect3DRMTexture3 interface. This version of the interface, which was introduced in DirectX 
6, provides a series of functions that perform texture management and control operations. 
IDirec3DRMTexture3 contains the functions listed in Table 16-8.  

 
 Table 16-8: Functions in the IDirect3DRMTexture3 Interface  
 
    
 
 Function  

 
Description  

 

 
    
 
 Color  

 
  

 

 
 GetColors()  

 
Retrieves the maximum number of colors 
defined for a texture object  

 

 
 SetColors()  

 
Sets the maximum number of colors for a 
texture object defined in the ramp color model  

 

 
 Decals  

 
  

 

 
 GetDecalOrigin()  

 
Retrieves the offset of the decal origin  

 

 
 GetDecalScale()  

 
Retrieves the scale of a decal  

 

   



 GetDecalSize()  Retrieves the size of a decal  
 
 GetDecalTransparency()  

 
Returns TRUE if decal is transparent  

 

 
 GetDecalTransparentColor()  

 
Retrieves the transparent color of a decal  

 

 
 SetDecalOrigin()  

 
Sets the offset of the decal origin  

 

 
 SetDecalScale()  

 
Sets the decal scale  

 

 
 SetDecalSize()  

 
Sets the decal size  

 

 
 SetDecalTransparency()  

 
Sets the decal transparent attribute to TRUE or 
FALSE  

 

 
 SetDecalTransparentColor()  

 
Sets the transparent color for a decal  

 

 
 Images  

 
  

 

 
 GetImage()  

 
Returns the address of the image used in 
creating the texture  

 

 
 Initialization  

 
  

 

 
 InitFromFile()  

 
Initializes a texture object using data contained 
in a file  

 

 
 InitFromImage()  

 
Initializes a texture object from a memory 
image  

 

 
 InitFromResource2()  

 
Initializes a texture object from a specified 
resource  

 

 
 InitFromSurface()  

 
Initializes a texture object from a DirectDraw 
surface  

 

 
 Mipmap generation  

 
  

 

 
 GenerateMIPMap()  

 
Generates a mipmap from a single image 
source. The mipmap resolution is down to 1 X 
1.  

 

 
 Miscellaneous  

 
  

 



 
 GetCacheOptions()  

 
Retrieves the relative importance of a texture 
and the flag that controls texture management 
priorities  

 

 
 GetSurface()  

 
Retrieves the DirectDraw surface used in 
creating a texture  

 

 
 SetCacheOptions()  

 
Sets the relative importance of a texture and 
the flag that controls texture management 
priorities  

 

 
 SetDownsampleCallback()  

 
Specifies the callback function to be called 
when a texture is downsampled  

 

 
 SetValidationCallback()  

 
Specifies the callback function that validates 
and updates the primary source texture  

 

 
 Renderer notification  

 
  

 

 
 Changed()  

 
Specifies the region of the texture that has 
changed  

 

 
 Shading  

 
  

 

 
 GetShades()  

 
Retrieves the number of shades per texture 
color  

 

 
 SetShades()  

 
Sets the number of shades per texture color  

 

 
    
 

 
Better performance is obtained if applications retain textures that are reused instead of creating 
them when they are needed. Square textures are handled better by the renderer. This is also the 
case with texture sizes that are powers of 2, such as 16, 32, 64, 128, 256, 512 pixels-per-side. 
Programming operations on textures are discussed in Chapter 22.  

 
 Wraps  
 

 

A wrap is a specific way of deforming a 2D surface so that it covers a 3D object according to a 
particular scheme. Direct3D supports four types of wraps: flat, cylindrical, spherical, and chrome, 
which were discussed in Chapter 14. Applying wraps is a complex process. In most cases 
developers use the facilities of the 3D modeling tool, which allow wrapping textures on objects as 
they are created. However, we have seen that Direct3D provides primitives for creating meshes. 
Wraps may be of use when a mesh is created using these primitives.  

 



 The CreateWrap() function of the IDirect3DRM3 interface creates a wrapping function that can 
be used to map texture coordinates to a face or mesh. The function's general form is as follows:  

 
 HRESULT CreateWrap(  
 D3DRMWRAPTYPE type, // 1  
 LPDIRECT3DRMFRAME3 lpRef, // 2  
 D3DVALUE ox, // 3  
 D3DVALUE oy, // 4  
 D3DVALUE oz, // 5  
 D3DVALUE dx, // 6  
 D3DVALUE dy, // 7  
 D3DVALUE dz, // 8  
 D3DVALUE ux, // 9  
 D3DVALUE uy, // 10  
 D3DVALUE uz, // 11  
 D3DVALUE ou, // 12  
 D3DVALUE ov, // 13  
 D3DVALUE su, // 14  
 D3DVALUE sv, // 15  
 LPDIRECT3DRMWRAP *lplpD3DRMWrap // 16  
 );  
 
 The first parameter is one of the constants defined in the D3DRMWRAPTYPE enumeration. They are 
listed in Table 16-9.  

 
 Table 16-9: Constants in the D3DRMWRAPTYPE Enumerated Type  
 
    
 
 Constant  

 
Description  

 

 
    
 
 D3DRMWRAP_FLAT  

 
Wrap is flat  

 

 
 D3DRMWRAP_CYLINDER  

 
Wrap is cylindrical  

 

 
 D3DRMWRAP_SPHERE  

 
Wrap is spherical  

 

 
 D3DRMWRAP_CHROME  Wrap allocates texture coordinates so that the texture  



appears to be reflected onto the objects  
 
    
 

 

The second parameter is the frame that defines the object to which the wrap is applied. The 
parameters labeled ox, oy, and oz are the coordinates of the wrap origin. The parameters labeled 
dx, dy, and dz are the coordinates of the z-axis of the wrap. The parameters labeled ux, uy, and 
uz are the coordinates of the y-axis of the wrap. The parameters labeled ou and ov define the 
origin of the texture. The parameters su and sv are the scale factor of the texture. Finally, the 
sixteenth parameter is the address that is filled with a pointer to an IDirect3DRMWrap interface if 
the call succeeds. The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 The IDirect3DRMWrap interface provides the two methods listed in Table 16-10.  
 
 Table 16-10: Function in the IDirect3DRMWrap Interface  
 
    
 
 Function  

 
Description  

 

 
    
 
 Apply()  

 
Applies the wrap to the destination object, usually a face 
or mesh  

 

 
 ApplyRelative()  

 
Applies the wrap to the vertices of the object  

 

 
    
 
 Because of the limited use of texture wraps we do not consider them any further.  
 



Animations  
 

 

Most 3D applications implement animation in one form or another. A 3D program whose execution 
is limited to displaying an object on a flat screen makes little use of the modeling and rendering 
powers of 3D graphics. But, in implementing animation, you encounter many difficulties and 
limitations, which make this field the most challenging one of 3D programming. Later in the book 
we devote several chapters to 3D animation. At this point the discussion is limited to those 
animation functions that are available at the highest rendering levels.  

 

 

We must start by differentiating the generic term animation and the specific concept of a retained 
mode animation, as related to the CreateAnimation() or CreateAnimationSet() functions 
of the IDirect3DRM3 interface. In this latter sense an animation is a mechanism for adding 
behavior to a 3D scene. The behavior is defined by a set of keys. The key contains a time value, 
as well as a scaling operation, an orientation, or a position. The Direct3DRMAnimation 
interface provides functions that define how a transformation is modified according to the key. 
Animations, in this sense, refer to the position, orientation, and scaling of Direct3DRMVisual, 
Direct3DRMLight, and Direct3DRMViewport objects.  

 
 Creating the animation  
 

 
In creating retained mode animations, code usually starts by calling Create_Animation() or 
CreateAnimationSet() functions of IDirect3DRM3. CreateAnimation() creates an empty 
IDirect3DRMAnimation2 object. When created, the animation object is usually attached to a 
frame. The function's general form is as follows:  

 
 HRESULT CreateAnimation(  
 LPDIRECT3DRMANIMATION2 *lplpD3DRMAnimation // 1  
 );  
 

 
The function's only parameter is the address of a pointer to the IDirect3D_RMAnimation2 
interface, which is filled if the call succeeds. The function returns D3DRM_OK if it succeeds, or an 
error otherwise.  

 

 

The pointer returned by the CreateAnimation() function provides access to the 
IDirect3DRMAnimation2 interface. This interface provides functions to animate the position, 
orientation, and scale of a frame object. This frame object can be a visual, a light, or a viewport. 
Animation controls are based on keys, each one key containing a time and a value component. 
The functions allow adding and deleting keys, animating the frame, setting the animation time, and 
changing animation options. Table 16-11 lists the functions in IDirect3DRMAnimation3.  

 
 Table 16-11: Function in the IDirect3DRMAnimation3 Interface  
 
    
 
 Function  

 
Description  

 

 



    
 
 Key operations  

 
  

 

 
 AddKey()  

 
Adds a new key to the animation  

 

 
 AddPositionKey()  

 
Adds a position key based on a time key and the 
coordinates for each axis  

 

 
 AddRotateKey()  

 
Adds a rotate key based on a time key and a rotation 
quaternion  

 

 
 AddScaleKey()  

 
Adds a scale key based on a time key and a scale factor 
for each axis  

 

 
 DeleteKey()  

 
Removes all keys at a particular time  

 

 
 DeleteKeyByID()  

 
Removes a particular key  

 

 
 GetKeys()  

 
Retrieves a key corresponding to a particular time range  

 

 
 ModifyKey()  

 
Modifies the value of a key  

 

 
 Frame and time  

 
  

 

 
 GetFrame()  

 
Retrieves animation's frame  

 

 
 SetFrame()  

 
Sets the animation frame  

 

 
 SetTime()  

 
Sets the animation time  

 

 
 Animation options  

 
  

 

 
 GetOptions()  

 
Retrieves the animation options  

 

 
 SetOptions()  

 
Sets the animation options  

 

 
    
 
 Several types of animation are supported in Direct3D. The variables representing these options 
are described in the D3DANIMATIONOPTIONS structure, as follows:  



 

   

1.D3DRMANIMATION_CLOSED defines an animation that plays continually. When the end is 
reached, the animation loops back to the beginning. Code can ensure a smooth transition in the 
animation by making the last key in the animation a repeat of the first. In this case the 
IDirect3DRMAnimation2 and IDirect3DRMAnimationSet2 interfaces interpret the 
repeated key as the time difference between the last and first keys in the animation loop.  

 
   2.D3DRMANIMATION_LINEARPOSITION defines a linear animation position.  
 
   3.D3DRMANIMATION_OPEN defines an animation that plays once and stops.  
 
   4.D3DRMANIMATION_POSITION defines an animation's position matrix that should overwrite any 

transformation matrices set by other methods.  
 
   5.D3DRMANIMATION_SCALEANDROTATION defines an animation's scale and rotation matrix that 

should overwrite any transformation matrices set by other methods.  
 
   6.D3DRMANIMATION_SPLINEPOSITION defines an animation whose position is set using splines. 
 

 
Animation keys, as used in the AddKey(), GetKeys(), and ModifyKey() functions listed in 
Table 16-11, are encoded in a structure of type D3DRMANIMATIONKEY. The structure is defined as 
follows:  

 
 typedef struct _D3DRMANIMATIONKEY  
 {  
 DWORD dwSize;  
 DWORD dwKeyType;  
 D3DVALUE dvTime;  
 DWORD dwId ;  
 union  
 {  
 D3DRMQUATERNION dqRotateKey;  
 D3DVECTOR dvScaleKey;  
 D3DVECTOR dvPositionKey;  
 };  
 } D3DRMANIMATIONKEY;   
 
 The dwSize member defines the size of the animation. The dwKeyType member is the type of 
key, represented by one of the following values:  

 
 D3DRMANIMATION_ROTATEKEY = 0x01   
 D3DRMANIMATION_SCALEKEY = 0x02   



 D3DRMANIMATION_POSITIONKEY = 0x03   
 

 

The dvTime member is the key's zero-based time value, in arbitrary units. For example, if an 
application adds a position key with a time value of 99, a new position key with a time value of 49 
would occur exactly halfway between the beginning of the animation and the first position key. The 
time member is encoded in a D3DVALUE type. The dwId member is the key's identifier, encoded in 
a DWORD type. The dqRotateKey union member is the value of the D3DRMQUATERNION structure 
type that defines the rotation. The dvScaleKey union member is the value of the D3DVECTOR 
structure type that defines the scale.  

 
 The dvPositionKey union member is the value of the D3DVECTOR structure type that defines the 
position.  

 
 An animation is driven by calling the SetTime() function. This sets the visual object's 
transformation to the interpolated position, orientation, and scale of the nearby keys.  

 
 Creating the animation set  
 

 

The CreateAnimationSet() function creates an object that contains several 
Direct3DRMAnimation2 objects, which in turn can animate several frames. The 
CreateAnimationSet() function is used when you need to animate several frames at the same 
time. The fact that several frames are animated by the same time parameter provides a 
synchronization mechanism for implementing complex animations. The function's general form is 
as follows:  

 
 HRESULT CreateAnimationSet (  
 LPDIRECT3DRMANIMATIONSET2 *lplpD3DRMAnimationSet // 1  
 );  
 

 

The function's only parameter is the address that is filled with a pointer to an 
IDirect3DRMAnimationSet2 interface if the call succeeds. The function returns D3DRM_OK if 
successful, or an error otherwise. The IDirect3DRMAnimationSet2 interface contains functions 
for adding and deleting animations, loading animation sets, and for setting the time parameter. 
Table 16-12 lists the functions in IDirec3DRMAnimationSet2.  

 



General Support Functions  
 

 
Several functions available in the IDirect3DRM3 interface perform auxiliary operations, or are 
difficult to classify. We have grouped them in this section and refer to them as general support 
functions. However, the grouping of these functions should not lead you to believe that they are of 
secondary significance. Some of the most useful functions of Direct3D are in this group.  

 
 Table 16-12: Function in the IDirect3DRMAnimationSet2 Interface  
 
    
 
 Function  

 
Description  

 

 
    
 
 Animation manipulations  

 
  

 

 
 AddAnimation()  

 
Adds an animation to an animation set  

 

 
 DeleteAnimation()  

 
Removes an animation from an animation set  

 

 
 GetAnimations()  

 
Retrieves an array containing the animations in 
an animation set  

 

 
 Load()  

 
Loads an animation set from a file, resource, 
memory, URL, or other sources  

 

 
 Time  

 
  

 

 
 SetTime()  

 
Sets the time for a specific animation set  

 

 
    
 
 Search path functions  
 

 

There is an environment variable in retained mode, named D3DPATH, that holds a list of 
directories, which are searched when the application needs to load a mesh, frame, animation, or 
texture, stored in a file. The path-related functions of IDirect3DRM3 enable you to obtain and set 
the search path and add directories to the current search path. Table 16-13 lists the path-related 
function in IDirect3DRM3.  

 
 Table 16-13: Path-related Functions in the IDirect3DRM3 Interface  



 
    
 
 Function  

 
Description  

 

 
    
 
 AddSearchPath()  

 
Adds a directory list to the end of the current 
file search path  

 

 
 GetSearchPath()  

 
Returns a string containing the search path 
formatted as a series of directories separated 
by the ; symbols  

 

 
 SetSearchPath()  

 
Sets the current search path, which is passed 
as a string containing the various directories, 
separated by the ; symbols  

 

 
    
 
 Object-based functions  
 
 Three loosely-related functions in the IDirect3DRM3 interface are associated with Direct3D 
objects. These are CreateObject(), GetNamedObject(), and EnumerateObjects().  

 

 

The CreateObject() function is used internally by the various creation methods in the 
IDirect3DRM interface, such as CreateAnimation(), CreateFace(), CreateLight(), and 
so on. The CreateObject() function creates a new object, but does not initialize it. The objects 
created by the other creation functions, on the other hand, are initialized automatically. The only 
documented use of this function is in implementing aggregation of Direct3DRM objects. The 
function's general form is as follows:  

 
 HRESULT CreateObject(  
 REFCLSID rclsid, // 1  
 LPUNKNOWN pUnkOuter, // 2  
 REFIID riid, // 3  
 LPVOID FAR *ppv // 4  
 );  
 

 
The first parameter is a class identifier for the object to be created. The second parameter is a 
pointer to the outer IUnknown object if COM aggregation is being used. The third parameter is the 
interface identifier GUID. The fourth parameter is the address of a pointer to the object created if 
the call succeeds. The function returns D3DRM_OK if successful, or an error otherwise.  

 



 
The GetNamedObject() function of IDirect3DRM3 provides a way of finding a Direct3DRM 
object given its name. Objects loaded from files in DirectX format are named. The function's 
general form is as follows:  

 
 HRESULT GetNamedObject(   
 const char *lpName, // 1  
 LPDIRECT3DRMOBJECT *lplpD3DRMObject // 2  
 );  
 

 

The first parameter is a pointer to a NULL terminated string containing the name of the object to be 
searched for. The second parameter is the address that is initialized with the Direct3DRMObject
pointer if the call succeeds. The call returns D3DRM_OK if it succeeds, or an error code otherwise. If 
no object with the specified named is found, the function returns D3DRM_OK but, in this case, the 
lplpD3DRMObject parameter is NULL.  

 

 

A Direct3D scene often contains several objects, which code may need to count or may have them 
to perform some specific task. The EnumerateObjects() function of IDirect3DRM3 calls a 
callback function for each object in the scene. The callback function, of type 
D3DRMOBJECTCALLBACK, can be used to count the objects or to perform object-specific 
operations. The function has the following general form:  

 
 HRESULT EnumerateObjects(  
 D3DRMOBJECTCALLBACK func, // 1  
 LPVOID lpArg // 2  
 );  
 

 
The first parameter is the address of the application-defined callback function that is called for 
each retained mode object in the scene. The second parameter is the address of the application-
defined data passed to the callback function. The function returns D3DRM_OK if it succeeds, or an 
error otherwise.  

 
 The callback function is defined as follows:  
 
 void (*D3DRMOBJECTCALLBACK)(  
 LPDIRECT3DRMOBJECT lpD3DRMobj, // 1  
 LPVOID lpArg); // 2  
 

 
The first parameter passed to the callback function is a pointer to the IDirect3DRMObject 
interface for the object being enumerated. The application must use the Release() function for 
each enumerated object. The second parameter is the address of a pointer to application-defined 
data passed to the callback function. The function returns void.  

 
 Creating a UserVisual Object  



 

Direct3D UserVisual objects provide a mechanism whereby a retained mode application can 
access immediate mode execute buffers or perform other low-level rendering operations. You can 
think of the UserVisual as a retained mode application's back door into immediate mode. In this 
manner applications can take advantage of the high-level convenience of retained mode, and still 
be capable of using immediate mode to improve rendering performance or to implement special 
effects.  

 
 The call to CreateUserVisual() defines the address of a callback function that is called during 
the rendering process. The function's general form is as follows:  

 
 HRESULT CreateUserVisual(   
 D3DRMUSERVISUALCALLBACK fn, // 1  
 LPVOID lpArg, // 2  
 LPDIRECT3DRMUSERVISUAL *lplpD3DRMUV // 3  
 );  
 

 
The first parameter is the address of an application-defined callback function. The second 
parameter is the address of the application-defined data that is passed to the callback function. 
The third parameter is the address that is filled with a pointer to an IDirect3DRMUserVisual 
interface if the call succeeds. The function returns D3DRM_OK if it succeeds, or an error otherwise. 

 

 

The third parameter to the CreateUserVisual() function returns a pointer to the 
IDirect3DRMUserVisual interface. The interface provides a single function, named Init(), 
which is used to initialize a user visual object created by calling the CreateObject() function of 
IDirect3DRM. Objects created with the CreateUserVisual() function are initialized 
automatically.  

 
 The callback function for the CreateUserVisual() call is of type 
D3DRMUSERVISUAL_CALLBACK and is defined as follows:  

 
 int (*D3DRMUSERVISUALCALLBACK)(  
 LPDIRECT3DRMUSERVISUAL lpD3DRMUV, // 1  
 LPVOID lpArg, // 2  
 D3DRMUSERVISUALREASON lpD3DRMUVreason, // 3  
 LPDIRECT3DRMDEVICE lpD3DRMDev, // 4  
 LPDIRECT3DRMVIEWPORT lpD3DRMview // 5  
 );  
 

 

The first parameter to the callback function is the address of a pointer to the 
Direct3DRMUserVisual object. The second parameter is the address of a pointer to 
application-defined data passed to this callback function. The third parameter is one of the 
members of the D3DRMUSERVISUALREASON enumerated type. The following constants are 
defined in the enumeration:  

 

   1.D3DRMUSERVISUAL_CANSEE. The application should return TRUE if the user-visual object is 
visible in the viewport. The application uses the device specified in the lpD3DRMview parameter 



visible in the viewport. The application uses the device specified in the lpD3DRMview parameter 
to determine if this is the case.  

 
   2.D3DRMUSERVISUAL_RENDER. The application should render the user-visual element. In this 

case, the application uses the device specified in the lpD3DRMDev parameter.  
 

 

The fourth parameter is the address of a pointer to a Direct3DRMDevice object used to render 
the Direct3DRMUserVisual object. The fifth parameter is the address of a pointer to a 
Direct3DRMViewport object. This parameter is used to determine whether the 
Direct3DRMUserVisual object is visible. The callback function should return TRUE if the 
lpD3DRMUVreason parameter is D3DRMUSERVISUAL_CANSEE, and the user-visual object is 
visible in the viewport. It should return FALSE otherwise. If the lpD3DRMUVreason parameter is 
D3DRMUSERVISUAL_RENDER, the return value is application-defined. Microsoft documentation 
states that it is always safe to return TRUE.  

 

 

The UserVisual callback function is called twice during the rendering process. The first time it is 
called, the third parameter is set to D3DRMUSERVISUAL_CANSEE. In this case the callback 
function is expected to determine if the UserVisual is currently in view. If so, the callback should 
return TRUE. The application can use the fifth parameter to determine this. Then the UserVisual
callback is called again with the third parameter set to D3DRMUSERVISUAL_RENDER. At this time 
the callback function is expected to render the 3D image data.  

 
 Loading a retained mode object  
 

 
The Load() function of IDirect3DRM3 provides a mechanism for loading an object stored in a 
file, resource, memory block, or a stream. These are objects typically stored in DirectX format files. 
The function's general form is as follows:  

 
 HRESULT Load(   
 LPVOID lpvObjSource, // 1  
 LPVOID lpvObjID, // 2  
 LPIID *lplpGUIDs, // 3  
 DWORD dwcGUIDs, // 4  
 D3DRMLOADOPTIONS d3drmLOFlags, // 5  
 D3DRMLOADCALLBACK d3drmLoadProc, // 6  
 LPVOID lpArgLP, // 7  
 D3DRMLOADTEXTURE3CALLBACK d3drmLoadTextureProc, // 8  
 LPVOID lpArgLTP, // 9  
 LPDIRECT3DRMFRAME3 lpParentFrame // 10  
 );  
 

 The first parameter is the source for the object to be loaded. This can be a file, resource, memory 
block, or stream, depending on the source flags specified in the fifth parameter. The second 
parameter is the object name or position to be loaded. Which one it is depends on the identifier 



second parameter is a pointer to a DWORD value that gives the object's order in the file. The second 
parameter can be NULL. The third parameter is the address of an array of interface identifiers to 
be loaded. The following are possible GUIDs:  

 
 IID_IDirect3DRMProgressiveMesh  
 
 IID_IDirect3DRMMeshBuilder3  
 
 IID_IDirect3DRMAnimationSet2  
 
 IID_IDirect3DRMAnimation2  
 
 IID_IDirect3DRMFrame3  
 

 
The fourth parameter is the number of elements specified in the third parameter. The fifth 
parameter is the value of the D3DRMLOADOPTIONS type describing the load options. Table 16-14 
lists the constants that are defined in the D3DRMLOADOPTIONS data type.  

 
 Table 16-14: D3DRMLOADOPTIONS Constants  
 
    
 
 Constant  

 
Value  

 

 
    
 
 D3DRMLOAD_FROMFILE  

 
0x00L  

 

 
 D3DRMLOAD_FROMRESOURCE  

 
0x01L  

 

 
 D3DRMLOAD_FROMMEMORY  

 
0x02L  

 

 
 D3DRMLOAD_FROMURL  

 
0x08L  

 

 
 D3DRMLOAD_BYNAME  

 
0x10L  

 

 
 D3DRMLOAD_BYPOSITION  

 
0x20L  

 

 
 D3DRMLOAD_BYGUID  

 
0x30L  

 

 
 D3DRMLOAD_FIRST  

 
0x40L  

 



 
 D3DRMLOAD_INSTANCEBYREFERENCE  

 
0x100L  

 

 
 D3DRMLOAD_INSTANCEBYCOPYING  

 
0x200L  

 

 
 D3DRMLOAD_ASYNCHRONOUS  

 
0x400L  

 

 
    
 

 

The sixth parameter is the address of the callback function used when the system reads the 
specified object. This callback function is of type D3DRMLOADCALLBACK. The seventh parameter is 
the address of application-defined data passed to the D3DRMLOADCALLBACK callback function. 
The eighth parameter is the address of a D3DRMLOADTEXTURE3CALLBACK callback function used 
to load any textures that require special formatting. This parameter can be NULL. The ninth 
parameter is the address of application-defined data passed to the 
D3DRMLOADTEXTURE3CALLBACK callback function. The tenth parameter is the address of a 
parent of the Direct_3DRMFrame object. This argument only affects the loading of animation 
sets. The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 Producing a heartbeat  
 

 

Direct3D frames can contain moving positions and rotations that are used by the renderer in 
implementing animated effects. The Tick() function of the IDirect3DRM3 interface produces a 
heartbeat pulse that updates the positions of all moving frames according to their current motion 
attributes. At this time the scene is also rendered and the corresponding callback functions are 
called. Tick() is a synchronous method; control is not returned to the caller until rendering is 
complete. The function has the following general form:  

 
 HRESULT Tick(  
 D3DVALUE d3dvalTick // 1  
 );  
 

 
The function's only parameter is a value that defines the velocity and rotation step for the 
SetRotation() and SetVelocity() functions of the IDirect3DRMFrame3 interface. These 
functions are discussed in Chapter 17. Tick() returns D3DRM_OK if the call succeeds, or an error 
otherwise.  

 

 
Microsoft documentation states that other retained mode methods enable implementing the 
heartbeat function with more rendering flexibility. The Move() method of IDirect3DRMFrame3 
interface is one of them. Move() is discussed in Chapter 19.  

 
 Setting the retained mode geometry  
 
Most applications use a left-handed coordinate system, which is the default in Direct3D. 
Nevertheless, DirectX 6 introduced a new function, named SetOption(), in the IDirect3DRM3 



interface, which provides a way of changing to right-handed geometry. The function's general form 
is as follows:  

 
 HRESULT GetOptions(  
 LPDWORD lpdwOptions // 1  
 );  
 
 The function's only parameter is a pointer to a flag value that indicates one of the following values: 
 
 D3DRMOPTIONS_LEFTHANDED. Use left-handed geometry. This value is the default.  
 
 D3DRMOPTIONS_RIGHTHANDED. Use right-handed geometry.  
 
 The function returns one of the following values:  
 
 DDERR_INVALIDOBJECT  
 
 DDERR_INVALIDPARAMS  
 
 DD_OK  
 
 The selected retained mode geometry affects functions in the following interfaces:  
 
 IDirect3DRMClippedVisual  
 
 IDirect3DRMMesh  
 
 IDirect3DRMMeshBuilder3  
 
 IDirect3DRMProgressiveMesh  
 
 IDirect3DRMShadow2  
 
 IDirect3DRMTexture3  
 
 IDirect3DRMViewport2  
 



Summary  
 

 

In this chapter we examined the retained mode interface and its organization. We also investigated 
the highest-level functions and controls that are available in Direct3D. The functions at this level are 
used for creating the Direct3D retained mode objects, accessing system-level variables, and 
performing calculations and transformations. In the following chapter we descend one notch in the 
retained mode hierarchy, and examine the functionality that is available at the device level. As we 
descend into this hierarchy, we progressively gain more knowledge of the modeling and rendering 
powers of Direct3D retained mode.  

 



 Chapter 17: Device-Level Operations  
 
 Overview  
 

 

Direct3D retained mode device-level operations provide mechanisms for controlling the display 
device and the rendering output. Device-level functions enable applications to control the 
rendering quality; to set modes and retrieve information regarding shading, textures, transparency, 
and dithering; and to define the number of buffers used in rendering operations. In addition, 
device-level functions provide information regarding the device dimensions, the color model, the 
viewports associated with the device, and other useful data. Because operations at the device-
level are independent of the scene or the scene components, device-level controls can be 
activated at the time the scene is being rendered.  

 

 
It is important to realize that programming operations at the device level refer mostly to initialization, 
mode setting, performance control, and data retrieval. Although device-level controls influence the 
rendering, the actual rendering manipulations take place at lower levels and are discussed later in 
this book.  

 



 Retained Mode Device Interface  
 

 
We have seen that Direct3D retained mode applications use the functions of the IDirect3DRM 
interface to create retained mode objects. One of the objects created is the Direct3D retained 
mode device. In program 3DRM InWin Demo1, listed in Chapter 15, the device was created with 
the following statement:  

 
 retval = lpD3DRM->CreateDeviceFromClipper(lpDDClipper,   
 NULL,   
 rc.right, rc.bottom,  
 &globVars.aDevice);  
 

 
The fact that the reference pointer is of type LPD3DRM ensures that the device is a retained mode 
device. After the device is created, applications can use the functions of the 
IDirect3DRMDevice3 interface. These methods provide interaction between the application and 
the output device, typically the video display.  

 
 Functions in IDirect3DRMDevice3  
 

 

Applications use the methods of the IDirect3DRMDevice3 interface to interact with the output 
device. The interfaces support Draw Primitive methods and execute buffers. This interface is 
required for progressive meshes, alpha blending, and for sorting transparent objects. 
IDirect3DRMDevice3 includes all the functions in IDirect3DRMDevice2 and 
IDirect3DRMDevice interfaces, and adds FindPreferred_TextureFormat() to select a 
specific texture format. It also adds four new functions that eliminate the possibility of setting a 
state to a value equal to its current value. These are GetStateChangeOptions(), 
LightStateChange(), RenderState_Change(), and SetStateChangeOptions(). Table 
17-1 lists the functions available in IDirect3DRMDevice3 interface.  

 
 Table 17-1: Functions of IDirect3DRMDevice3 Interface  
 
    
 
 Groups  

 
Methods  

 

 
    
 
 Initialization  

 
Init()  

 

 
   

 
InitFromClipper() 
 
InitFromD3D2() 
 
InitFromSurface()  

 



 
 State changes  

 
GetStateChangeOptions()  

 

 
   

 
LightStateChange() 
 
RenderStateChange() 
 
SetStateChangeOptions()  

 

 
 Window updates and notifications  

 
AddUpdateCallback()  

 

 
   

 
DeleteUpdateCallback() 
 
Update()  

 

 
 Rendering quality  

 
GetQuality() 
 
SetQuality()  

 

 
 Rendering attributes  

 
GetShades() 
 
SetShades() 
 
GetTextureQuality() 
 
SetTextureQuality() 
 
FindPreferredTextureFormat() 
 
GetRenderMode() (transparency) 
 
SetRenderMode() (transparency) 
 
GetDither() 
 
SetDither()  

 

 
 Device information  

 
GetDirect3DDevice2()  

 

 
   

 
GetHeight() 
 
GetTrianglesDrawn() 
 
GetViewports() 
 
GetWidth() 
 
GetWireframeOptions() 
 
GetColorModel()  

 



 
 Buffer control  

 
GetBufferCount()  

 

 
   

 
SetBufferCount()  

 

 
    
 
 Device initialization functions  
 

 

The IDirect3DRMDevice3 interface contains four functions that perform initializa-tion 
operations: Init(), InitFromClipper(), InitFromD3D2(), and InitFrom_Surface(). 
Notice that the names of these initialization functions match those of the device creation functions 
described in Chapter 16 and listed in Table 16-2, namely CreateDevice(), 
CreateDeviceFromClipper(), CreateDeviceFromD3D(), and 
CreateDeviceFromSurface(). The Init() function, like its matching function 
CreateDevice(), is not implemented in Windows.  

 

 

The device-creation functions, mentioned previously, automatically initialize the device at the time 
it is created. This is the way recommended by Microsoft for creating and initializing devices in 
Direct3D. Because the create device-type methods of IDirect3DRM3 encapsulate the 
functionality of device creation and initialization, most applications will not use the initialization 
function in the IDirect3DRMDevice3 interface. For this reason we do not discuss these function 
any further.  

 
 Render state changes  
 

 

Device render states refer to controls in the Direct3D device rasterization module. Immediate 
mode applications can alter the render state by modifying attributes that relate to shading, fog, 
texture styles, texture filtering, and other rasterization options. Applications control the render state 
by using functions of the IDirect3DDevice3 interface, which is part of Direct3D immediate 
mode.  

 

 

Earlier versions of retained mode could not assume that render and light states would remain the 
same from one call to the next. This resulted in retained mode often setting the state to a value 
equal to its current value. The IDirect3DRMDevice3 interface introduced several new functions 
that eliminated these redundant state changes. The functions are named 
GetStateChangeOptions(), LightStateChange(), Render_StateChange(), and 
SetStateChangeOptions().  

 

 
The only effect that results from avoiding redundant state changes is a minor increase in application 
performance. Furthermore, state changes are part of Direct3D immediate mode. For these reasons 
we do not discuss state change functions at this point.  

 



Window Updates and Notifications  
 

 
In the sample program presented in Chapter 15, named 3DRM InWin Demo1, and also in the one 
developed later in this chapter, we render a scene to a device by following three steps: first we 
clear the viewport, then we render the scene to the viewport, and finally we update the Window. 
The code is as follows:  

 
 // Clear the viewport.  
 retval = globVars.aViewport->Clear(D3DRMCLEAR_ALL);  
 if (FAILED(retval))   
 {  
 // Viewport clearing error handler goes here  
 }  
   
 // Render the scene to the viewport.  
 retval = globVars.aViewport->Render(globVars.aScene);  
 if (FAILED(retval))   
 {  
 // Scene rendering error handler goes here  
 }  
 // Update the Window  
 retval = globVars.aDevice->Update();  
 if (FAILED(retval))   
 {  
 // Window update error handler goes here  
 }  
 

 
Notice that the third of these operations, updating the Window, is performed by means of the 
Update() function of the IDirect3DRMDevice3 interface. It is this call that copies the image in 
the viewport to the screen. The function's general form is as follows:  

 
 HRESULT Update( );  
 

 
In addition to copying the image from the viewport to the display buffer, Update() provides an 
update pulse to the device driver. The function returns D3DRM_OK if it succeeds, or an error 
otherwise.  

 

 

Each call to the Update() function causes the system to call an application-defined callback 
function of type D3DRMDEVICE3UPDATECALLBACK. The update callback mechanism is useful to 
code that needs to override the renderer's default behavior. Because this usually requires going 
into immediate mode programming, the mech-anism is not frequently used by retained mode 
applications. The callback function's general form is as follows:  



 
 void (*D3DRMDEVICE3UPDATECALLBACK)(  
 LPDIRECT3DRMDEVICE3 lpobj, // 1  
 LPVOID lpArg, // 2  
 int iRectCount, // 3  
 LPD3DRECT d3dRectUpdate // 4  
 );  
 

 

The first parameter passed to the callback function is the address of a pointer to the 
Direct3DRMDevice3 object to which this callback function applies. The second parameter is the 
address of a pointer to application-defined data passed to the callback function. The third 
parameter is the number of rectangles specified in the fourth parameter. The fourth parameter is 
an array of one or more D3DRECT structures that describe the area to be updated. The coordinates 
are in device units. The function returns nothing.  

 

 
Two other functions in IDirect3DRMDevice3 relate to update notifications: 
Add_UpdateCallback() and DeleteUpdateCallback(). The first one is used to install an 
update notification callback and the second one to remove an installed update callback. 
AddUpdateCallback() has the following general form:  

 
 HRESULT AddUpdateCallback(  
 D3DRMDEVICE3UPDATECALLBACK d3drmUpdateProc, // 1  
 LPVOID arg // 2  
 );  
 

 
The first parameter is a pointer to an application-defined callback function, of type 
D3DRMDEVICE3UPDATECALLBACK, discussed previously. The second parameter is a pointer to 
the application-defined data to be passed to the update callback function. The function returns 
D3DRM_OK if it succeeds, or an error otherwise.  

 

 
To remove an update callback function that was added by using the AddUpdate_Callback() 
you use the DeleteUpdateCallback() function of IDirect3DRM_Device3. The function has 
the following general form:  

 
 HRESULT DeleteUpdateCallback(  
 D3DRMDEVICE3UPDATECALLBACK d3drmUpdateProc, // 1  
 LPVOID arg // 2  
 );  
 
 The arguments are the same as for the AddUpdateCallback() function. The function returns 
D3DRM_OK if it succeeds, or an error otherwise.  

 



Rendering Quality  
 

 
Retained mode code can manipulate the degree of realism with which an object is rendered. This 
is usually referred to as the rendering quality. The rendering quality consists of three individual 
elements:  

 

   
•The shading mode. Currently flat and Gouraud shading modes are implemented. Direct3D 
retained mode assumes that the quality of the shading mode is lowest for the flat mode and 
highest for Gouraud. Phong mode has not yet been implemented.  

 
   •The light mode. This can be on or off. The on value is assumed to be of higher quality than the 

off value.  
 
   •The fill mode. Points, wireframe, and solid fill modes are currently available. Solid is assumed to 

be of the highest quality, followed by the wireframe and points modes.  
 
 Rendering quality rules  
 

 
Rendering qualities can be applied to the devices as well as to mesh, progressive mesh, and 
meshbuilder objects. The resulting quality of rendering is determined by the quality values of the 
device and the objects according to predefined rules. These rules are as follows:  

 

   
1.In regards to quality settings that affect the device, progressive mesh, and meshbuilder objects, 
retained mode uses the lowest quality at rendering time. For example, if the shading mode for a 
meshbuilder object is set to Gouraud and the rendering quality for the device is flat, then the 
rendering takes place using the flat quality setting.  

 
   2.In regards to mesh objects, the device quality setting is ignored and the quality setting for the 

mesh group is used.  
 
 Default quality settings  
 
 The default setting for the render quality changes for the device and the different objects. Table 
17-2 shows the values.  

 
 Table 17-2: Default Settings for Rendering Quality  
 
    
 
 Object  

 
Shading  

  
Light   

  
Fill  

 

 
    
 
 Device  

 
Flat  

  
On   

  
Solid  

 



 
 Mesh  

 
Gouraud  

  
On   

  
Solid  

 

 
 Meshbuilder  

 
Gouraud  

  
On   

  
Solid  

 

 
 ProgressiveMesh  

 
Gouraud  

  
On   

  
Solid  

 

 
    
 

 

The final rendered quality is determined by the installed settings for each of the object types, by 
the default setting of those not specifically changed by code, and by the rendering rules described 
previously. For example, if the application has created a mesh group, its quality settings will take 
precedence. If no mesh object exists, as is often the case in retained mode, then the lower settings 
of the meshbuilder, progressive mesh, and device objects will be used. For example, if code 
changes the device setting to Phong shading without modifying the default setting of the 
meshbuilder object, then the device Phong setting for the device is ignored and the meshbuilder 
setting (in this case Gouraud) is used by the renderer.  

 

 

After you destroy the objects used in creating the scene, the quality setting for these objects is no 
longer accessible to code. In this case changing the quality settings at the device level has no 
effect on the rendering. For example, if you created the scene by means of a meshbuilder object, 
using the default quality, as is the case in the sample program developed in Chapter 15, then 
changing the device quality to a higher value has no effect because the lowest one is used by the 
renderer. More concretely, because the default shading for a meshbuilder object is Gouraud, you 
cannot produce Phong shading by changing the device quality at rendering time. However, if you 
create the meshbuilder object with the highest possible settings (presently Phong shading, lights 
on, and solid fill) then you can change the rendering quality by manipulating the quality settings at 
the device level.  

 
 Changing the rendering quality  
 

 
In the discussion that follows we assume that the mesh was created using a mesh-builder object, 
as is the case in the 3DRM InWin Demo1 program developed in Chapter 15 and the 3DRM InWin 
Demo2 program developed later in this chapter. For the moment we ignore objects created using 
the mesh or progressive mesh interfaces.  

 

 
To set the rendering quality of a meshbuilder object, use the SetQuality() function of the 
IDirect3DRMMeshBuilder interface. To set the rendering quality of a device object, use the 
SetQuality() function of the IDirect3DRMDevice3 interface. Both functions have identical 
signatures. Their general form is as follows:  

 
 HRESULT SetQuality (  
 D3DRMRENDERQUALITY rqQuality // 1  
 );  
 
 The only parameter is a value obtained from the D3DRMRENDERQUALITY enumeration, which is 
defined as follows:  



 
 typedef enum _D3DRMSHADEMODE {  
 D3DRMSHADE_FLAT = 0,  
 D3DRMSHADE_GOURAUD = 1,  
 D3DRMSHADE_PHONG = 2,  
 D3DRMSHADE_MASK = 7,  
 D3DRMSHADE_MAX = 8  
 } D3DRMSHADEMODE;  
 typedef enum _D3DRMLIGHTMODE {  
 D3DRMLIGHT_OFF = 0 * D3DRMSHADE_MAX,  
 D3DRMLIGHT_ON = 1 * D3DRMSHADE_MAX,  
 D3DRMLIGHT_MASK = 7 * D3DRMSHADE_MAX,  
 D3DRMLIGHT_MAX = 8 * D3DRMSHADE_MAX  
 } D3DRMLIGHTMODE;  
 typedef enum _D3DRMFILLMODE {  
 D3DRMFILL_POINTS = 0 * D3DRMLIGHT_MAX,  
 D3DRMFILL_WIREFRAME = 1 * D3DRMLIGHT_MAX,  
 D3DRMFILL_SOLID = 2 * D3DRMLIGHT_MAX,  
 D3DRMFILL_MASK = 7 * D3DRMLIGHT_MAX,  
 D3DRMFILL_MAX = 8 * D3DRMLIGHT_MAX  
 } D3DRMFILLMODE;  
 

 
D3DRMRENDERQUALITY contains three enumerations: one for the shade mode, one for the light 
mode, and one for the fill mode. D3DRMRENDERQUALITY is defined in terms of these 
enumerations, as follows:  

 
 typedef DWORD D3DRMRENDERQUALITY;  
 #define D3DRMRENDER_WIREFRAME  
 (D3DRMSHADE_FLAT+D3DRMLIGHT_OFF+D3DRMFILL_WIREFRAME)  
 #define D3DRMRENDER_UNLITFLAT  
 (D3DRMSHADE_FLAT+D3DRMLIGHT_OFF+D3DRMFILL_SOLID)  
 #define D3DRMRENDER_FLAT  
 (D3DRMSHADE_FLAT+D3DRMLIGHT_ON+D3DRMFILL_SOLID)  
 #define D3DRMRENDER_GOURAUD  
 (D3DRMSHADE_GOURAUD+D3DRMLIGHT_ON+D3DRMFILL_SOLID)  
 #define D3DRMRENDER_PHONG  
 (D3DRMSHADE_PHONG+D3DRMLIGHT_ON+D3DRMFILL_SOLID)  
 

 
Notice that each of the constants is defined as the sum of the three primitives for shade mode, 
light mode, and fill mode listed previously. Table 17-3 lists the descriptions and actions of these 



constants.  
 
 Table 17-3: Constants Defined for the SetQuality() Function  
 
    
 
 Constant  

 
Action  

 

 
    
 
 D3DRMRENDER_WIREFRAME  

 
Display only the edges  

 

 
 D3DRMRENDER_UNLITFLAT  

 
Flat shading without lighting  

 

 
 D3DRMRENDER_FLAT  

 
Flat shaded with lighting  

 

 
 D3DRMRENDER_GOURAUD  

 
Gouraud shading  

 

 
 D3DRMRENDER_PHONG  

 
Phong shading  

 

 
    
 
 Applications can use these predefined constants when setting the rendering quality, as in the 
following code fragment:  

 
 HERESULT retval;  
 LPDIRECT3DRMMESHBUILDER3 meshbuilder = NULL;  
 . . .  
 // Set highest rendering quality for meshbuilder  
 retval = meshbuilder->SetQuality(D3DRMRENDER_PHONG);  
 if(FAILED(retval))  
 {  
 // Failed quality setting error handler goes here  
 }  
 
 Expressing quality numerically  

The predefined constants listed in Table 17-3 are useful in cases in which you can determine the 



calculated numerically. The values for the enumerations are listed in Table 17-4.  
 
 Table 17-4: Numerical Values Used in Calculating the Render Quality  
 
    
 
 Mode  

 
Value  

 

 
    
 
 Shade mode  

 
  

 

 
 Flat  

 
0  

 

 
 Gouraud  

 
1  

 

 
 Phong  

 
2  

 

 
 Mask  

 
7  

 

 
 Max  

 
8  

 

 
 Light mode  

 
  

 

 
 Off  

 
0 (0 X 8)  

 

 
 On  

 
8 (1 X 8)  

 

 
 Mask  

 
56 (7 X 8)  

 

 
 Max  

 
64 (8 X 8)  

 

 
 Fill Mode  

 
  

 

 
 Points  

 
0 (0 X 64)  

 

 
 Wireframe  

 
64 (1 X 64)  

 

 
 Solid  

 
128 (2 X 64)  

 

 
 Mask 

 
448 (7 X 64) 

 



 Mask  448 (7 X 64)  
 
 Max  

 
512 (8 X 64)  

 

 
    
 

 
Using Table 17-4, an application can calculate any quality setting combination by adding the 
values of the desired attributes. For example, the setting for wireframe fill, light on, and flat shading 
is 64 + 8 + 0 = 72. The following code fragment shows setting the rendering quality using 
numerical values.  

 
 // Variables for render quality setting  
 int shadeValue = 0; // Shade mode default is FLAT  
 int lightValue = 8; // Light mode default is ON  
 int fillValue = 128; // Fill mode default is SOLID  
 . . .  
   
 HRESULT retval;  
 int qualityValue;  
 . . .  
 // Set device rendering quality  
 qualityValue = fillValue + lightValue + shadeValue;  
 retval = globVars.aDevice->SetQuality(qualityValue);  
 if(FAILED(retval))  
 {  
 // Device quality setting error handler goes here  
 }  
 
 Interaction and visual effects  
 

 

The rendering quality settings for shade, light, and fill attributes sometimes interact with each 
other. Of these, the most obvious one results from turning the light attribute off. In this case the 
rendering appears as a flat outline and the shade and fill attributes are ignored. The shade 
attributes, flat, Gouraud, and Phong, require a solid fill mode and the light mode should be turned 
on. On the other hand, the fill attributes wire-frame and points are unaffected by the selected 
shade attribute.  

 

 
The Set Quality command of the Rendering menu, in the 3DRM InWin Demo2 project in the book's 
CD-ROM, enables you to change the shade, light, and fill attributes to all the documented values. 
Figure 17-1 shows the dialog box used for setting the rendering qualities in the 3DRM InWin 
Demo2 program.  



 

  
 
 Figure 17-1: Set Rendering Quality dialog box in the 3DRM InWin Demo2 program 

   
 

 

The fill mode settings of points, wireframe, and solid have different visual results. In the points 
mode only the vertex points are displayed. In the wireframe mode the vertex points are joined by 
straight lines. In both the points and the wireframe modes, the shade mode value is ignored. The 
solid fill mode renders the polygon faces using the flat, Gouraud, or Phong shade mode; whichever 
is currently selected. Figure 17-2 shows the effects of the various fill modes.  

 

 

  
 
 Figure 17-2: Points, wireframe, and solid fill mode 

   
 

 
The shade modes, flat, Gouraud, and Phong, all required the solid fill mode value as well as the 
light attribute on. Figure 17-3 shows the same object rendered in each of the Direct3D shade 
modes.  



 

  
 
 Figure 17-3: Flat, Gouraud, and Phong shade mode values 

   
 
 Obtaining the rendering quality  
 
 Applications can obtain the texture quality at the device level by calling the GetQuality() 
function of IDirect3DRMDevice3 interface. The function has the following general form:  

 
 D3DRMRENDERQUALITY GetQuality();  
 

 

The returned value is the rendering quality encoded in one or more members of the enumerated 
type D3DRMRENDERQUALITY mentioned previously. Code can decipher which of the shading, light, 
and fill mode qualities are present by testing for the individual constants. Alternatively it is possible 
to mask out the individual bit fields that encode the shade, light, and fill mode attributes, as shown 
in Figure 17-4.  

 

 

  
 
 Figure 17-4: Rendering quality bit fields 



 Figure 17-4: Rendering quality bit fields  
 



Rendering Attributes  
 

 
In this section we discuss four rendering attributes that are accessed at the device level: texture, 
shades, transparency, and dithering. IDirect3DRMDevice3 provides functions for setting and 
retrieving the values assigned to these attributes.  

 
 Texture  
 

 

The notion of texture quality actually includes texture filters, blends, and trans-parency. However, 
the Direct3D SetTextureQuality() function, of the IDirect_3DRMDevice3 interface, applies 
to texture filters only. Texture filtering is the texture rendering control that takes place at the device 
level. Therefore, we now focus our attention on this texture quality. Transparency is discussed 
later in this chapter and blends in other chapters.  

 
 Texture filters  
 

 
Texture filters specify how to interpolate texels to pixels. The fundamentals of texture filtering were 
discussed in Chapter 14. We now recall that Direct3D supports the following texture filtering 
modes:  

 
   •nearest  
 
   •linear  
 
   •mip-nearest  
 
   •mip-linear  
 
   •linear-mip-nearest  
 
   •linear-mip-linear  
 

 

In the nearest mode, the renderer uses the texel with coordinates nearest to the desired pixel 
value. The result is a point filter with no mipmapping. This is the default texture filter. In the linear 
mode the weighted average of an area of 2 X 2 texels surrounding the desired pixel is used. This 
mode does not support mipmapping. In the mip-nearest mode the closest mipmap level is chosen 
and a point filter is applied. In the mip-linear mode the closest mipmap level is chosen and a 
bilinear filter is applied. The linear-mip-nearest mode uses the two closest mipmap levels, and a 
linear blend is used between point filtered samples of each level. In the liner-mip-linear mode the 
two closest mipmap levels are chosen and then combined using a bilinear filter.  

 
 Setting the texture quality  
 
 Applications change the texture filter by means of the SetTextureQuality() function of the 
IDirect3DRMDevice3 interface. The function's general form is as follows:  



 
 HRESULT SetTextureQuality(  
 D3DRMTEXTUREQUALITY tqTextureQuality // 1  
 );  
 
 The function's only parameter is one of the members of the D3DRMTEXTUREQUALITY enumerated 
type. The default is D3DRMTEXTURE_NEAREST. The enumerated type is defined as follows:  

 
 typedef enum _D3DRMTEXTUREQUALITY{  
 D3DRMTEXTURE_NEAREST,  
 D3DRMTEXTURE_LINEAR,  
 D3DRMTEXTURE_MIPNEAREST,  
 D3DRMTEXTURE_MIPLINEAR,  
 D3DRMTEXTURE_LINEARMIPNEAREST,  
 D3DRMTEXTURE_LINEARMIPLINEAR  
 } D3DRMTEXTUREQUALITY;  
 
 The function returns D3DRM_OK if it succeeds, or an error otherwise.  
 
 The 3DRM InWin Demo2 project in the book's CD-ROM contains a menu entry for setting the 
texture quality. Figure 17-5 shows the resulting dialog box.  

 

 

  
 
 Figure 17-5: Set Texture Quality dialog box in the 3DRM InWin Demo2 program 

   
 

 
In the 3DRM InWin Demo2 program changing the texture quality has no visible effect on the 
displayed image because the coffeepot object contains no texture wrap. In Chapter 22 we discuss 
creating and using textures and provide sample code in which changing the texture filter affects 
the displayed image.  

 
 Obtaining the texture quality  
 

 
Applications can obtain the texture quality presently associated with the device by means of the 
GetTextureQuality() function of the IDirect3DRMDevice3 interface. The texture quality is 
relevant only if the device is set in the RGB mode. The function has the following general forms:  



 
 D3DRMTEXTUREQUALITY GetTextureQuality();  
 

 
The returned value is the current texture quality constant for the device as defined in the 
D3DRMTEXTUREQUALITY enumerated type previously listed. Code can read the results 
numerically or by testing for one of the predefined constants.  

 

 
The sample program 3DRM InWin Demo2 furnished in the book's CD-ROM contains a Get Quality 
command that obtains the device quality and displays the corresponding message box. The 
following code fragment shows the processing.  

 
 // Global variables  
 struct _globVars  
 {  
 LPDIRECT3DRMDEVICE3 aDevice; // Retained mode aDevice   
 . . .   
 } globVars;  
 D3DRMTEXTUREQUALITY textQual;  
 . . .  
   
 // Get Texture quality menu command  
 case ID_TEXT_GETQUAL:  
 textQual = globVars.aDevice->GetTextureQuality();  
 if(textQual == D3DRMTEXTURE_NEAREST)  
 MessageBox(NULL, "Nearest",  
 "Texture Quality", MB_OK);  
 if(textQual == D3DRMTEXTURE_LINEAR)  
 MessageBox(NULL, "Linear",  
 "Texture Quality", MB_OK);  
 if(textQual == D3DRMTEXTURE_MIPNEAREST)  
 MessageBox(NULL, "Mip-Nearest",  
 "Texture Quality", MB_OK);  
 if(textQual == D3DRMTEXTURE_MIPLINEAR)  
 MessageBox(NULL, "Mip-Linear",  
 "Texture Quality", MB_OK);  
 if(textQual == D3DRMTEXTURE_LINEARMIPNEAREST)  
 MessageBox(NULL, "Linear-Mip-Nearest",  
 "Texture Quality", MB_OK);  
 if(textQual == D3DRMTEXTURE_LINEARMIPLINEAR)  
 MessageBox(NULL, "Linear-Mip-Linear",  



 "Texture Quality", MB_OK);   
 break;  
 
 Shading  
 

 

In the present context the term shading is unrelated to the shade modes (flat, Gouraud, and 
Phong) that were discussed in previous sections. Instead, the term shades refers to shades-of-
gray in Direct3D's monochromatic or ramp model. The SetShades() function of 
IDirect3DRMDevice3 sets the number of shades used in the monochromatic or ramp modes. 
The function has the following general form:  

 
 HRESULT SetShades(   
 DWORD ulShades // 1  
 );  
 
 The function's only parameter is the new number of shades. The default value is 32 and the value 
must be a power of 2. The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 The function GetShades() of IDirect3DRMDevice3 retrieves the number "of shades used in 
the ramp model. The function's general form is as follows:  

 
 DWORD GetShades();  
 
 The call returns the number of shades.  
 
 Transparency  
 

 
Transparency controls were first implemented in the IDirect3DRMDevice2 interface of DirectX 
5. The two transparency-related methods introduced at that time are named SetRenderMode() 
and GetRenderMode(). The IDirect3DRMDevice3 interface intro-duced in DirectX 6 added 
some new features to the transparency control functions.  

 

 
Transparency determines how the color pixels of an object displayed, sometimes called the 
destination, interact with the color pixels of a previously displayed object, sometimes called the 
source. Notice that the Direct3D notion of source and destination is counter-intuitive.  

 

 

Direct3D currently supports two major transparency modes (stippled and alpha blending) and 
several minor ones. The stippled transparency mode is the default setting. In this mode 
transparency is achieved by replacing some of the destination pixels with source pixels. The result 
is similar to viewing the scene through a screen that has been painted with the source image. For 
this reason it is also called screen door transparency.  

 
 Blended transparency refers to alpha blending of the source and the destination pixels. Alpha 
blending is discussed in detail later in this section.  

 



 

In addition to the two major modes, stippled transparency and alpha blending, DirectX 6 introduced 
several submodes and transparency controls. In the sorted transparency mode transparent 
polygons in the scene are buffered, sorted, and rendered in a second pass. Sorted transparency is 
not compatible with alpha blending. Transparent polygons in external visuals or user visuals are 
not sorted. Only Direct3D retained mode visuals (such as D3DRMMesh objects and 
D3DRM_MeshBuilder objects) are affected by this submode.  

 

 
DirectX 6 also introduced a transparency control that takes into account the viewer's location and 
the light direction in providing a more realistic rendering of specular lights. Previous versions of 
DirectX supported flat specular light that did not take into account the viewer's location.  

 
 Setting and obtaining the render mode  
 

 
The IDirect3DRMDevice3 interface contains a function to set the transparency mode and 
another one to obtain the currently installed transparency mode. SetRenderMode() determines 
how a transparent object is rendered. The function has the following general form:  

 
 HRESULT SetRenderMode(   
 DWORD dwFlags // 1  
 );  
 

 
The function's only parameter is one or more of the transparent mode flags. The default (dwFlags 
= 0) sets the transparency mode to stippled or screen door transparency. The other possible 
values for the transparency flag are as follows:  

 
   1.D3DRMRENDERMODE_BLENDEDTRANSPARENCY (dwFlags = 1) sets the transparency mode to 

alpha blending.  
 
   2.D3DRMRENDERMODE_DISABLESORTEDALPHAZWRITE (dwFlags = 32) specifies that no depth 

information will be written to the z-buffer when drawing sorted, transparent objects.  
 
   3.D3DRMRENDERMODE_LIGHTINMODELSPACE (dwFlags = 8) is defined in the documentation 

but not implemented.  
 

   

4.D3DRMRENDERMODE_SORTEDTRANSPARENCY (dwFlags = 2) sets the transparency mode so 
that transparent polygons in the scene are buffered, sorted, and rendered in a second pass. This 
flag assumes alpha blending. Transparent polygons in external visuals or user visuals are not 
sorted. Only native Direct3D retained mode visuals (such as D3DRMMesh objects and 
D3DRMMeshBuilder objects) are sorted.  

 
   5.D3DRMRENDERMODE_VIEWDEPENDENTSPECULAR (dwFlags = 16) enables more realistic 

specular lights that depend both on the light direction and the viewer's location.  
 
 The function returns D3DRM_OK if it succeeds, or an error otherwise.  

The function GetRenderMode() of IDirect3DRMDevice3 retrieves the current transparency 



flags. The function's general form is as follows:  
 
 DWORD GetRenderMode();  
 
 The return value is used to determine the state of one or more current transparency flags. These 
flags are bitmapped, as shown in Figure 17-6.  

 

 

  
 
 Figure 17-6: Rendering mode bitmapped flags 

   
 
 Code can test for the presence of the rendering mode flags by ANDing with the corresponding bit 
masks. The value of the individual constants are shown in Table 17-5.  

 
 Table 17-5: Numeric Value of Transparency Flags  
 
    
 
 Flag   

 
Value  

 

 
    
 
 D3DRMRENDERMODE_BLENDEDTRANSPARENCY   

 
1  

 

 
 D3DRMRENDERMODE_DISABLESORTEDALPHAZWRITE   

 
32  

 

 
 D3DRMRENDERMODE_LIGHTINMODELSPACE   

 
8 (reserved)  

 

 
 D3DRMRENDERMODE_SORTEDTRANSPARENCY   

 
2  

 

 
 D3DRMRENDERMODE_VIEWDEPENDENTSPECULAR   

 
16  

 

 
    



 
 Alpha blending  
 

 

Rendering transparent objects is computationally expensive and difficult to imple-ment; transparent 
rendering in real time is even more painstaking. True-to-life, 3D rendering of transparent objects 
cannot be achieved with any method short of ray tracing. Alpha blending is a relatively simple 
technique for achieving a transparent quality that can be considered satisfactory in some 
applications. In alpha blending the pixels are given a transparent or semitransparent attribute in 
addition to their red, green, and blue values. This transparent attribute, called the alpha 
component, is stored separately from the RGB values. The resulting encoding is said to be in 
RGBA format, where the letter A represents the alpha channel or transparency value. Typically the 
alpha channel uses the same bit depth as the red, green, and blue components. For example, a 
32-bit RGBA encoding uses 8 bits for each of the RGB color values and 8 bits for the alpha 
channel. In this case the bit field allows repre-senting 256 transparency levels. A value of 0 
indicates maximum transparency for that pixel, and a value of 255 maximum opacity.  

 

 
Windows 98 and Windows 2000 support alpha blending in the GDI. DirectX, starting with version 
6.0, also provides some alpha blending support, most of it in immediate mode. In this context the 
alpha channel value defines the pixel's transparency. When alpha blending is enabled, the colors, 
materials, and textures of a surface are blended with transparency onto another surface.  

 

 
The SetRenderState() function of IDirect3DDevice3 (notice IDirect3DDevice3 is an 
immediate mode interface) enables you to set the render state. The function has the following 
general form:  

 
 HRESULT SetRenderState(  
 D3DRENDERSTATETYPE dwRenderStateType, // 1  
 DWORD dwRenderState // 2  
 );  
 

 
The first parameter is the device state variable that is being modified. This parameter can be any 
of the members of the D3DRENDERSTATETYPE enumerated type. The follow-ing is a partial listing 
of the constants in this enumeration:  

 
 typedef enum _D3DRENDERSTATETYPE {   
 D3DRENDERSTATE_TEXTUREHANDLE = 1, // texture handle   
 D3DRENDERSTATE_ANTIALIAS = 2, // antialiasing mode   
 D3DRENDERSTATE_TEXTUREADDRESS = 3, // texture address   
 D3DRENDERSTATE_TEXTUREPERSPECTIVE = 4, // perspective correction   
 D3DRENDERSTATE_WRAPU = 5, // wrap in u direction   
 D3DRENDERSTATE_WRAPV = 6, // wrap in v direction   
 D3DRENDERSTATE_ZENABLE = 7, // enable z test   
 D3DRENDERSTATE_FILLMODE = 8, // fill mode   
 D3DRENDERSTATE_SHADEMODE = 9, // shade mode   
 D3DRENDERSTATE_LINEPATTERN = 10, // line pattern   



 D3DRENDERSTATE_MONOENABLE = 11, // enable mono rendering   
 D3DRENDERSTATE_ROP2 = 12, // raster operation   
 D3DRENDERSTATE_PLANEMASK = 13, // physical plane mask   
 D3DRENDERSTATE_ZWRITEENABLE = 14, // enable z writes   
 D3DRENDERSTATE_ALPHATESTENABLE = 15, // enable alpha tests   
 D3DRENDERSTATE_LASTPIXEL = 16, // draw last pixel in a line  
 D3DRENDERSTATE_TEXTUREMAG = 17, // how textures are magnified  
 D3DRENDERSTATE_TEXTUREMIN = 18, // how textures are reduced   
 D3DRENDERSTATE_SRCBLEND = 19, // blend factor is source   
 D3DRENDERSTATE_DESTBLEND = 20, // blend factor is destination  
 D3DRENDERSTATE_TEXTUREMAPBLEND = 21, // blend mode for map   
 D3DRENDERSTATE_CULLMODE = 22, // back-face culling mode  
 D3DRENDERSTATE_ZFUNC = 23, // z-comparison  
 D3DRENDERSTATE_ALPHAREF = 24, // reference alpha value   
 D3DRENDERSTATE_ALPHAFUNC = 25, // alpha-comparison function  
 D3DRENDERSTATE_DITHERENABLE = 26, // enable dithering   
 D3DRENDERSTATE_ALPHABLENDENABLE = 27, // enable alpha blending   
 D3DRENDERSTATE_FOGENABLE = 28, // enable fog   
 D3DRENDERSTATE_SPECULARENABLE = 29, // enable specular highlights   
 D3DRENDERSTATE_ZVISIBLE = 30, // enable z-checking   
 D3DRENDERSTATE_SUBPIXEL = 31, // enable subpixel correction   
 D3DRENDERSTATE_SUBPIXELX = 32, // x subpixel correction   
 D3DRENDERSTATE_STIPPLEDALPHA = 33, // enable stippled alpha  
 D3DRENDERSTATE_FOGCOLOR = 34, // fog color   
 D3DRENDERSTATE_FOGTABLEMODE = 35, // fog mode   
 D3DRENDERSTATE_FOGTABLESTART = 36, // fog table start   
 D3DRENDERSTATE_FOGTABLEEND = 37, // fog table end   
 D3DRENDERSTATE_FOGTABLEDENSITY = 38, // fog density   
 D3DRENDERSTATE_STIPPLEENABLE = 39, // enables stippling   
 D3DRENDERSTATE_EDGEANTIALIAS = 40, // antialias edges   
 D3DRENDERSTATE_COLORKEYENABLE = 41, // enable color-key   
 // transparency   
 D3DRENDERSTATE_BORDERCOLOR = 43, // border color   
 D3DRENDERSTATE_TEXTUREADDRESSU = 44, // u texture address mode   
 D3DRENDERSTATE_TEXTUREADDRESSV = 45, // v texture address mode   
 D3DRENDERSTATE_MIPMAPLODBIAS = 46, // mipmap LOD bias   
 D3DRENDERSTATE_ZBIAS = 47, // z-bias   
 D3DRENDERSTATE_RANGEFOGENABLE = 48, // enables range-based fog   



 D3DRENDERSTATE_ANISOTROPY = 49, // maximum anisotropy   
 . . .,  
 } D3DRENDERSTATETYPE;  
 

 

The second parameter to the SetRenderState() function is the new value for the 
Direct3DDevice render state. The meaning of this parameter depends on the value of the first 
parameter. For example, if the first parameter is D3DRENDERSTATE_SRCBLEND or 
D3DRENDERSTATE_DESTBLEND, then the second parameter would be one of the members of the 
D3DBLEND enumerated type. The D3DBLEND enumeration constants, numeric values, and 
descriptions are shown in Table 17-6. In Table 17-6 RGBA values of the source and destination 
are indicated with the subscripts s and d.  

 
 Table 17-6: D3DBLEND Enumeration Constants  
 
    
 
   

 
Blend/Comment   

  
  

 

 
 Constant  

 
Value 

  
R  

  
G  

  
B   

  
A  

 

 
    
 
 D3DBLEND_ZERO  

 
1  

  
0  

  
0  

  
0   

  
0  

 

 
 D3DBLEND_ONE  

 
2  

  
1  

  
1  

  
1   

  
1  

 

 
 D3DBLEND_SRCCOLOR  

 
3  

  
s  

  
s  

  
s   

  
s  

 

 
 D3DBLEND_INVSRCCOLOR  

 
4  

  
1-s  

  
1-s  

  
1-s   

  
1-s  

 

 
 D3DBLEND_SRCALPHA  

 
5  

  
s  

  
s  

  
s   

  
s  

 

 
 D3DBLEND_INVSRCALPHA  

 
6  

  
1-s  

  
1-s  

  
1-s   

  
1-s  

 

 
 D3DBLEND_DESTALPHA  

 
7  

  
d  

  
d  

  
d   

  
d  

 

 
 D3DBLEND_INVDESTALPHA  

 
8  

  
1-d  

  
1-d  

  
1-d   

  
1-d  

 

 
 D3DBLEND_DESTCOLOR  

 
9  

  
d  

  
d  

  
d   

  
d  

 

 
 D3DBLEND_INVDESTCOLOR  

 
10  

  
1-d  

  
1-d  

  
1-d   

  
1-d  

 



 
 D3DBLEND_SRCALPHASAT  

 
11  

  
1-d  

  
1-d  

  
1-d   

  
1  

 

 
 D3DBLEND_BOTHSRCALPHA  

 
12  

  
obsolete 

  
  

  
   

  
  

 

 
 D3DBLEND_BOTHINVSRCALPHA  

 
13  

  
1-s  

  
1-s  

  
1-s   

  
1-s/ 

 

 
   

 
  

  
1-d  

  
1-d  

  
1-d   

  
1-d  

 

 
    
 

 
Applications use the D3DRENDERSTATE_ALPHABLENDENABLE enumerated constant (value = 27) 
to enable alpha transparency blending. Direct3D supports several types of alpha blending; 
however, keep in mind that they may not all be supported by the hardware.  

 

 
The type of alpha blending depends on the D3DRENDERSTATE_SRCBLEND (value = 19) and 
D3DRENDERSTATE_DESTBLEND (value = 20) render states. Source and destination blend states 
are used in pairs. The following code fragment shows setting the source blend state set to 
D3DBLEND_SRCCOLOR and the destination blend state to D3DBLEND_INVSRCCOLOR.  

 
 // Code assumes that lpD3DDevice3 is a valid pointer to  
 // an IDirect3DDevice3 interface.  
 // Set the source blend state.  
 lpD3DDevice3->SetRenderState(D3DRENDERSTATE_SRCBLEND,   
 D3DBLEND_SRCCOLOR);  
   
 // Set the destination blend state.  
 lpD3DDevice3->SetRenderState(D3DRENDERSTATE_DESTBLEND,   
 D3DBLEND_INVSRCCOLOR);  
 

 

After these calls to SetRenderState() Direct3D is configured to perform a linear blend between 
the source color (the color existing at the blend location) and the destination color (the color in the 
frame buffer). Recall that Direct3D's designation of source and destination is rather 
unconventional. In this case, the result simulates tinted glass, that is, some of the color of the 
destination object seems to be transmitted through the source object. The rest of the color appears 
to be absorbed. Code can create many interesting and intriguing effects by altering the source and 
destination blend states. For example, transparency can be used to simulate a light-emitting object 
in a foggy atmosphere.  

 
 Light mapping  
 
Alpha blending is also used to control the lighting in a 3D scene. This is sometimes called light 
mapping. Setting the source blend state to D3DBLEND_ZERO and the destination blend state to 
D3DBLEND_SRCALPHA darkens a scene according to the value in the source's alpha channel. In 



this case the source is used as a light map that scales the contents of the frame buffer and 
darkens it when appropriate. The result is monochrome light mapping. Color light mapping can be 
achieved by setting the source alpha blending state to D3DBLEND_ZERO and the destination blend 
state to D3DBLEND_SRCCOLOR.  

 
 Alpha-testing  
 

 

Code can use alpha testing to control when pixels are written to the target surface. By selecting 
the D3DRENDERSTATE_ALPHATESTENABLE enumerated value, the application sets the current 
Direct3D device so that it tests each pixel according to an alpha test function. If the test succeeds, 
the pixel is written to the surface. If not, Direct3D ignores it. Code selects the alpha test function 
with the D3DRENDERSTATE_ALPHAFUNC enumerated value. You can set a reference alpha value 
for all pixels to be compared against by using the D3DRENDERSTATE_ALPHAREF render state.  

 

 
Alpha testing is most frequently used to improve performance when rendering objects that are 
nearly transparent. If the color data being rasterized is more opaque than the color already at a 
given pixel (D3DPCMPCAPS_GREATEREQUAL), then the pixel is written; otherwise the rasterizer 
ignores the pixel altogether, thus saving the processing required to blend the two colors.  

 
 Dithering  
 

 

Dithering is a process whereby a color that is not available in a surface is simulated by displaying 
alternate pixels of approximate colors. In Direct3D, dithering is used to improve color resolution 
and reduce artifacts in display modes of less than 24 bits per pixel. Because dithering is on by 
default, and it has no undesirable effects in modes that do not require it, most applications can 
safely ignore this matter. The IDirect3DDevice3 interface contains two functions related to 
dithering: one to set or reset the dither flag, named SetDither(), and another one to retrieve the 
dither flag, called GetDither(). The SetDither() function has the following general form:  

 
 HRESULT SetDither(  
 BOOL bDither // 1  
 );  
 
 The function's only parameter is the TRUE/FALSE state of the new dither flag. The default is 
TRUE. The function returns DD3DRM_OK if it succeeds, or an error otherwise.  

 
 The GetDither() function has the following general form:  
 
 BOOL GetDither();  
 
 The call returns TRUE if the dither flag is set, or FALSE otherwise.  
 



Obtaining Device Information  
 

 
Several functions in IDirect3DRMDevice3 provide information regarding the device state or 
internal settings. These functions relate to each other by the fact that they provide information to 
the caller.  

 
 Gaining immediate mode access  
 

 

The GetDirect3DDevice2() function of IDirect3DRMDevice3 retrieves a pointer to the 
immediate mode device. It is used sometimes in conjunction with the GetDirect3D() function of 
IDirect3DDevice to obtain a pointer to the current Direct3D immediate mode object. This is 
necessary for retained mode applications that wish to access immediate mode functionality. The 
GetDirect3DDevice2() function has the following general form.  

 
 HRESULT GetDirect3DDevice2(   
 LPDIRECT3DDEVICE2 *lplpD3DDevice // 1  
 );   
 

 
The function's only parameter is the address that is initialized with a pointer to an 
IDirect3DDevice2 immediate mode device object. The function returns D3DRM_OK if it 
succeeds, or an error otherwise.  

 
 Obtaining device specifications  
 

 
Some auxiliary functions in IDirect3DRMDevice3 return information regarding the specifications 
of the display device. The information includes the selected color model, the wireframing option, 
the viewports, and the number of triangles drawn to a device since its creation.  

 
 Obtaining the color model  
 

 

We have seen that Direct3D retained mode supports two color models: RGB and monochromatic 
or ramp. The RGB model treats color as a combination of red, green, and blue light. This model 
can have a depth of 8, 16, 24, and 32 bits. If the display depth is less than 24 bits, the display can 
show banding artifacts, which can be avoided by using optional dithering, as described earlier in 
this chapter.  

 

 
In the monochromatic model each light source is set to a gray intensity. This model can be used 
with 8-, 16-, 24-, and 32-bit displays, although only 8-bit textures are supported in this mode. One 
consideration for using the monochromatic model over the RGB model is its better rendering 
speed.  

 

 

Applications cannot change the color model of a Direct3D device. You can use the 
EnumDevices() or FindDevice() functions of IDirect3D to identify a driver that supports the 
desired color model. At the time of creating the device this driver can then be specified. The 
GetColorModel() function returns information regarding the color model used by the current 
device. The function has the following general form:  



 
 D3DCOLORMODEL GetColorModel( );  
 
 The return value is one of the constants in the D3DCOLORMODEL enumerated type. This 
enumeration is described as follows:  

 
 typedef enum _D3DCOLORMODEL  
 {  
 D3DCOLOR_MONO = 1,  
 D3DCOLOR_RGB = 2,   
 } D3DCOLORMODEL;  
 
 Obtaining the wireframing option  
 

 
Direct3DRM supports two wireframing options at the device level. The 
GetWireframe_Options() function, of the IDirect3DRMDevice3 interface, can be used to 
retrieve which of these two options is enabled in the current display device. The function has the 
following general form:  

 
 DWORD GetWireframeOptions( );  
 
 The function returns one or more of the values listed in Table 17-7.  
 
 Table 17-7: Wireframing Flags in Direct3D Retained Mode  
 
    
 
 Constant  

 
Bit  

  
Description  

 

 
    
 
 D3DRMWIREFRAME_CULL  

 
0   

 
Backfacing faces are not 
drawn.  

 

 
 D3DRMWIREFRAME_HIDDENLINE  

 
1   

 
Wire-frame-rendered lines are 
obscured by nearer objects.  

 

 
    
 
 Application code can AND with the corresponding bit mask to determine if either or both of the 
wireframing options are available in the current display device.  

 



 Obtaining viewport information  
 

 
In Chapter 16 you learned that applications can define multiple viewports on the same device in 
order to allow different aspects of the same scene to be viewed simultaneously. The 
GetViewports() function of IDirect3DRNDevice3 is used to obtain all the viewports 
associated with a display device. The function has the following general form:  

 
 HRESULT GetViewports(  
 LPDIRECT3DRMVIEWPORTARRAY *lplpViewports // 1  
 );  
 

 
The function's only parameter is the address of a pointer that is initialized with a valid 
Direct3DRMViewportArray object if the call succeeds. The call returns D3DRM_OK if it 
succeeds, or an error otherwise.  

 

 
The pointer returned by the GetViewports() function can be used to access the functions in the 
IDirect3DRMViewportArray interface mentioned in Chapter 16. This interface contains two 
functions:  

 

 
One named GetSize() returns the number of elements in the viewport object array. The other 
one, named GetElement(), retrieves a specified viewport object in the object array. The 
GetSize() function of IDirect3DRMViewport has the following general form:  

 
 DWORD GetSize( );  
 

 
The returned value is the number of elements in the viewport array. After this value is known, code 
can loop through the array and inspect each of the contained viewports. The GetElement() 
function of IDirect3DRMViewportArray can be used for this purpose. The function has the 
following general form:  

 
 HRESULT GetElement(  
 DWORD index, // 1  
 LPDIRECT3DRMVIEWPORT *lplpD3DRMViewport // 2  
 );  
 

 

The first parameter is the element's position in the array. The initial value for this parameter is 
usually based on the value returned by the call to the GetSize() function previously described. 
The second parameter is the address that will be filled with a pointer to the corresponding 
IDirect3DRMViewport interface. The function returns D3DRM_OK if it succeeds, or an error 
otherwise.  

 

 
The pointer of type LPDIRECT3DRMVIEWPORT can be used to access any of the methods in 
IDirect3DRMViewport2 interface. Retained mode viewport programming is discussed in 
Chapter 20.  

 
 Obtaining the drawn triangles 



 Obtaining the drawn triangles  
 

 

A convenience function in IDirect3DRMDevice3, named GetTrianglesDrawn(), returns the 
number of triangles drawn to a device since its creation. This method, of little practical use to 
applications, includes the triangles actually drawn plus those that were passed to the renderer but 
were not drawn because they were facing away from the camera. The value returned by this 
function does not include triangles that were rejected for lying outside of the viewing frustum. The 
function has the following general form:  

 
 DWORD GetTrianglesDrawn();  
 
 Obtaining device dimensions  
 

 
Two functions in the IDirect3DRMDevice3 interface allow retrieving the pixel size of the display 
device. The GetHeight() function returns the vertical dimensions and the GetWidth() function 
returns the horizontal dimension. The functions have the following general forms:  

 
 DWORD GetWidth();  
 DWORD GetHeight();  
 
 Both functions return a value in pixels.  
 



 Buffer Controls  
 

 
In Chapter 12 we explored the possibility of creating a flipping chain consisting of multiple back 
buffers to improve rendering performance. Direct3D retained mode applications that use multiple 
buffering must inform the system of the number of buffers in use. This is required so that Direct3D 
knows how much of the window to clear and update on each frame.  

 
 Setting the number of buffers  
 
 The SetBufferCount() function of IDirect3DRMDevice3 is used to set the number of buffers 
currently in use by an application. The function has the following general form:  

 
 HRESULT SetBufferCount( DWORD dwCount );  
 

 
The function's only parameter is the number of buffers to be used. Applications pass the value one 
for a single buffer, two for double buffering, and so on. The default value is one. The function 
returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 Obtaining the number of buffers  
 
 The GetBufferCount() function of the IDirect3DRMDevice3 interface is used to retrieve the 
number of buffers currently in use by an application. The function has the following general form:  

 
 DWORD GetBufferCount();  
 
 The return value is the number of buffers. One indicates single-buffering, two for double-buffering, 
and so on.  

 



Sample Program 3DRM InWin Demo2  
 

 

The 3DRM InWin Demo2 program in the book's CD-ROM demonstrates the most useful functions 
discussed in this chapter. The Rendering menu contains a command that enables you to set the 
rendering quality. The resulting dialog is shown in Figure 17-1. The Texture menu contains 
commands to set and retrieve the texture quality. Figure 17-5 shows the program's dialog box for 
setting the texture quality. The program's Information menu contains a command to obtain device 
information. Figure 17-7 shows the resulting message box that displays the color model, wireframe 
mode, number of triangles drawn, device width and height, and the number of buffers.  

 

 

  
 
 Figure 17-7: Device information box in the 3DRM InWin Demo2 program 

   
 



Summary  
 

 

We have now explored the Direct3D functions that are available at the device level. Device-level 
functions in Direct3D enable code to control the rendering quality, to set modes and retrieve 
information regarding shading, textures, transparency, and dithering, and to determine and retrieve 
the number of display buffers. Device-level functions also provide information regarding the device 
dimensions, the color model, the viewports associated with the device, and other data that may be 
useful to appli-cations. Although the device-level functions refer to initialization, mode setting, 
performance control, and information retrieval, they play an important role in defining and 
controlling rendering.  

 
 In the next chapter we continue our tour of Direct3D retained mode at progressively lower levels. 
Specifically, we explore programming at the viewport level.  

 



Chapter 18: Viewport-Level Operations  
 
 Overview  
 

 

The viewport defines a rectangular area of the display device into which objects are rendered. 
Therefore, the viewport sets the vantage point for the scene and determines what is visible and 
what is not visible. This, in turn, deter-mines how 3D objects are rendered into a 2D window. 
Viewport fundamentals were discussed in Chapter 14. In this chapter we are concerned with 
retained mode programming operations that relate to the viewport.  

 



Retained Mode Viewport Interface  
 

 
Viewport operations are part of Direct3D retained mode IDirect3DRMViewport2 interface. This 
version of IDirect_3DRMViewport was introduced in DirectX 6. The new interface version 
added a flag parameter to the Clear() function and introduced two multi-element transformation 
functions.  

 
 Functions in IDirect3DRMViewport2  
 

 

Applications use the methods of the IDirect3DRMViewport2 interface to determine how the 
objects of a 3D scene are mapped to a 2D surface. Through this interface application code can 
initialize the viewport, modify the clipping planes, and change the field of view, the viewport 
dimensions, projection type, scale, and offsets. In addition, the viewport interface provides 
functions for manipulating the camera, for performing transformations, and for rendering a scene. 
Table 18-1 lists the functions available in IDirect3DRMViewport2 interface.  

 
 Table 18-1: Methods of IDirect3DRMViewport2 Interface  
 
    
 
 Groups  

 
Methods  

 

 
    
 
 Configuration  

 
Init() 
 
Clear() 
 
Configure() 
 
ForceUpdate() 
 
GetDevice() 
 
GetDirect3DViewport()  

 

 
 Parameters  

 
  

 

 
 Dimensions  

 
GetHeight() 
 
GetWidth  

 

 
 Field of view  

 
GetField() 
 
SetField()  

 

   



 Offsets  GetX() 
 
GetY()  

 
 Projection types  

 
GetProjection() 
 
SetProjection()  

 

 
 Scaling  

 
GetUniformScaling() 
 
SetUniformScaling()  

 

 
 Clipping planes  

 
GetBack() 
 
GetFront() 
 
GetPlane() 
 
SetBack() 
 
SetFront() 
 
SetPlane()  

 

 
 Camera  

 
GetCamera() 
 
SetCamera()  

 

 
 Picking  

 
Pick()  

 

 
 Rendering  

 
*Render()  

 

 
 Transformations  

 
InverseTransform() 
 
InverseTransformVectors() 
 
Transform() 
 
TransformVectors()  

 

 
    
 
 The Render() function, marked with an asterisk in Table 18-1, was discussed in Chapter 15 and 
requires no further comment here.  

 
 Creating the viewport  
 



IDirect3DRM3 interface. The call creates a viewport on a specific device, describ-ing the position 
and direction of the camera frame, and determining the viewport's position and size within the 
display. The last function parameter is the address of a pointer that is filled with the 
IDirect3DRMViewport2 interface if the call succeeds. This pointer is used by code to access 
the functions in IDirect3DRMViewport2. In the sample programs 3DRM InWin Demo1 and 
3DRM InWin Demo2, the call for creating the viewport and retrieving the interface pointer is as 
follows:  

 
 // Global variables  
 struct _globVars  
 {  
 LPDIRECT3DRMDEVICE3 aDevice; // Retained mode aDevice   
 LPDIRECT3DRMVIEWPORT2 aViewport; // Direct3DRM viewport  
 LPDIRECT3DRMFRAME3 aScene; // Master frame   
 LPDIRECT3DRMFRAME3 aCamera; // Camera frame  
 BOOL isInitialized; // D3DRM objects are  
 // initialized.  
 } globVars;  
 . . .  
 // Local variables  
 HRESULT retval; // Return value   
 int width; // Device's width   
 int height; // Device's height  
 . . .  
 // Create the Direct3DRM viewport using the device, the  
 // camera frame, and the device's width and height.  
 width = globVars.aDevice->GetWidth();  
 height = globVars.aDevice->GetHeight();  
   
 retval = lpD3DRM->CreateViewport(globVars.aDevice,  
 globVars.aCamera,  
 0,  
 0,  
 width,  
 height,   
 &globVars.aViewport);  
 if (FAILED(retval))   
 {  
 // Viewport creation error handler goes here  
 }  



 
 If the call to CreateViewport() is successful, code can then use the pointer returned in the 
variable globVars.aViewport to access any of the methods in IDirect3DRMViewport2.  

 



Viewport Configuration  
 

 
Several functions in IDirect3DRMViewport2 perform viewport initialization, configuration, and 
update operations and serve to retrieve the device or the immediate mode viewport object 
associated with the retained mode viewport.  

 
 Viewport initialization  
 

 

The CreateViewport() function of the IDirect3DRM3 interface performs two simultaneous 
functions: it creates and initializes the viewport. In other words, CreateViewport() 
encapsulates the functionality of the CreateObject() function of IDirect3DRM3, and the 
Init() function of IDirect3DRMViewport2. Applications that use CreateViewport() need 
not call the Init() function. Init() is required when applications use CreateObject() of 
IDirect3DRM3. Init() has the following general form:  

 
 HRESULT Init(  
 LPDIRECT3DRMDEVICE3 lpD3DRMDevice, // 1  
 LPDIRECT3DRMFRAME3 lpD3DRMFrameCamera, // 2  
 DWORD xpos, // 3  
 DWORD ypos, // 4  
 DWORD width, // 5  
 DWORD height // 6  
 );  
 

 
The first parameter is the device on which the viewport is created. The second parameter is the 
camera frame that defines the position and direction of the viewport. Parameters 3 and 4 refer to 
the position of the viewport itself, and parameters 5 and 6 to its dimensions.  

 

 

The position of the viewport relative to the device frame is determined by the application's design 
and the proposed rendering operations. However, the size of the viewport must not be greater than 
that of the physical device, otherwise the Init() call fails. To make sure that the viewport is not 
larger than the physical device you can use the GetWidth() and GetHeight() functions of 
IDirect3DRM_Device to obtain the device dimensions. Note that the IDirect3DRMViewport2
interface also has GetWidth() and GetHeight() methods that retrieve the size of the viewport. 
However, at initialization time the viewport has not been created yet; therefore you must use the 
functions of IDirect3DRMDevice3. The function returns D3DRM_OK if it succeeds, or an error 
otherwise.  

 
 Clearing the viewport  
 

 

Applications need to clear the viewport to the current background color before rendering. Before 
DirectX 6 the Clear() function of IDirect3DRMViewport simply set the viewport to the current 
background color. Clearing included the z-buffer and the target rendering surface. DirectX 6 
introduced a flag parameter to the Clear() function which allows a finer degree of control on the 
viewport elements that are cleared by the call. The Clear() call has the following general form:  



 
 HRESULT Clear(  
 DWORD dwFlags // 1  
 );  
 
 The function's only parameter is one or more of the flags listed in Table 18-2.  
 
 Table 18-2: Viewport Clearing Flags  
 
    
 
 Name  

 
Action  

 

 
    
 
 D3DRMCLEAR_TARGET  

 
Clear the destination rendering surface.  

 

 
 D3DRMCLEAR_ZBUFFER  

 
Clear the z-buffer surface.  

 

 
 D3DRMCLEAR_DIRTYRECTS  

 
Clear the dirty rectangle list.  

 

 
 D3DRMCLEAR_ALL  

 
Clear the destination, z-buffer, and dirty 
rectangle list. This flag is equivalent to using 
the previous version of the Clear() function.  

 

 
    
 
 You can enable more than one of the flags in Table 18-2 by performing a logical OR. The call 
returns DD_OK if it succeeds, or one of the following error values:  

 
 DDERR_INVALIDOBJECT  
 
 DDERR_INVALIDPARAMS  
 
 Re-configuring the viewport  
 

 

When the viewport is initialized, either by the CreateViewport() function of IDirect3DRM3, or 
by the Init() function of IDirect3DRMViewport2, its position and dimensions are defined. 
Applications can reconfigure the viewport by changing its position and dimension. This is 
accomplished by calling the Configure() function of IDirect3DRMViewport2. The function 
has the following general form:  



 
 HRESULT Configure(   
 LONG lX, // 1  
 LONG lY, // 2  
 DWORD dwWidth, // 3  
 DWORD dwHeight // 4  
 );  
 

 
The first and second parameters define the new position of the viewport. The third and fourth 
parameters define the viewport's dimension, in terms of its width and height. Here again, the 
viewport dimensions cannot exceed those of the display device.  

 
 To make sure that this is not the case, code can call the GetWidth() and GetHeight() 
functions, of IDirect3DRMDevice, as previously described for the Init() function.  

 
 The call returns D3DRM_OK if it succeeds, or an error otherwise.  
 
 The value D3DRMERR_BADVALUE is returned if lX + dwWidth or lY + dwHeight are greater than 
the width or height of the device, or if any of lX, lY, dwWidth, or dwHeight is less than zero.  

 
 Forcing the image update   
 

 

In Chapter 15 we discussed the image rendering mechanism in Direct3D which consists of three 
steps: clearing the viewport, rendering the scene to the viewport, and updating the screen. The 
third step, which is the one that actually displays the image, is performed by calling the Update() 
function of IDirect3DRMDevice3. The ForceUpdate() function, of 
IDirect3DRMViewport2, serves to redefine the area of the viewport that is displayed. The 
function's name is misleading because it does not force a screen update, as it seems to imply. 
Rather, it redefines an update area which is copied to the screen at the next call to the Update() 
function of IDirect_3DRMDevice3. In this manner it is possible to display an area larger than 
the one defined in the viewport. The ForceUpdate() function has the following general form:  

 
 HRESULT ForceUpdate(   
 DWORD dwX1, // 1  
 DWORD dwY1, // 2  
 DWORD dwX2, // 3  
 DWORD dwY2  
 );  
 

 
The function's four parameters define a new rectangular area to be updated. Parameters 1 and 2 
defined the rectangle's upper-right corner and parameters 3 and 4 its lower-right corner. The 
function returns D3DRM_OK if it succeeds, or an error otherwise.  

 



 Retrieving the display device  
 

 

On certain occasions code needs to obtain a pointer to the IDirect3DRMDevice3 interface to 
access its services. Because viewports are associated with a particular device at the time they are 
created, it is reasonable to expect that the viewport interface will provide information regarding its 
parent device. The GetDevice() function of IDirect3DRMViewport2 returns the required 
pointer. Its general form is as follows:  

 
 HRESULT GetDevice(  
 LPDIRECT3DRMDEVICE3 *lpD3DRMDevice // 1  
 );  
 
 The function's only parameter is the address of a variable that represents the device interface. The 
function returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 Retrieving the immediate mode viewport  
 

 

Direct3D supports mixed-mode programming via user visuals. The user visual mechanism allows a 
retained application to gain immediate mode functionality by having execute buffers rendered into 
an immediate mode viewport. To accomplish this, retained mode code needs to obtain access to 
the immediate mode viewport interface, IDirect3DViewport. This is accomplished by means of 
the GetDirect_3DViewport() function of IDirect3DRMViewport2. The function has the 
following general form:  

 
 HRESULT GetDirect3DViewport(  
 LPDIRECT3DVIEWPORT *lplpD3DViewport // 1  
 );  
 

 
The function's only parameter is the address of a pointer that is initialized with the 
IDirect3DViewport interface. The function returns D3DRM_OK if it succeeds, or an error 
otherwise.  

 
 The following code fragment shows obtaining an immediate mode viewport from one in retained 
mode.  

 
 // Global variables  
 struct _globVars  
 {  
 . . .  
 LPDIRECT3DRMVIEWPORT2 aViewport; // Retained mode viewport  
 . . .  
 } globVars;  
   



 LPDIRECT3DVIEWPORT iMViewport; // Immediate mode viewport  
 . . .  
 // Obtaning the IDirect3DViewport interface using a retained  
 // mode viewport  
 retval = globVars.aViewport->GetDirect3DViewport(  
 &iMViewport);  
 if (FAILED(retval))   
 {  
 // Immediate mode viewport error handler goes here  
 }  
 



Setting and Acquiring Viewport Parameters  
 

 

A viewport is defined in terms of its dimensions, its offset from the device origin, its field of view, 
the type of projection that it implements, its scaling mode, and the position and dimensions of its 
clipping plane. These elements can be called the viewport parameters. The Direct3D viewport 
interface contains several functions that enable you to set and acquire the viewport parameters. 
Application code often manipulates these parameters to change the rendered image.  

 
 Obtaining viewport size and position  
 

 

The size of a viewport is defined by its width and height and its position by its x- and y-offsets. 
These four parameters are set at the time the viewport is created and can be changed only when 
the viewport is recreated or reconfigured, as discussed earlier in this chapter. Although there is no 
other way for changing the viewport size and position, code can retrieve these parameters by 
calling GetHeight(), GetWidth(), GetX(), and GetY() functions of 
IDirect3DRMViewport2. All four functions have a similar general form:  

 
 DWORD GetWidth();  
 DWORD GetHeight();  
 DWORD GetX();  
 DWORD GetY();  
 
 The returned value is the pixel width, height, x-offset, or y-offset of the viewport.  
 
 Viewport field of view  
 

 

In Chapter 14 we introduced the notion of the viewing frustum as the 3D volume that determines 
which objects are visible in the viewport. Figure 14-15 is a diagram of the viewing frustum and 
Figure 14-16 relates the frustum to the viewport. At that time we described the device's viewing 
area as a pyramid intersected by front and back clipping planes. In perspective viewing (discussed 
later in this chapter) the frustum is the volume between these planes. Objects located between the 
camera and the front clipping plane are not rendered. Neither are objects located behind the back 
clipping plane or outside the lateral limits of the frustum. Therefore the viewing frustum determines 
which objects are visible in the viewport.  

 

 
The viewing frustum is defined in terms of a field of view, sometimes called the fov, and the 
distance from the camera to the front and back clipping planes. Figure 18-1 shows the default 
values used in calculating the field of view.  

 



 

  
 
 Figure 18-1: The default field of view 

   
 
 In Figure 18-1 the angle A is called the viewing angle. The value, in radians, of the viewing angle is 
calculated by the following formula:  

 

 

  
 

 
The default value of h is half the fov, and d is the distance from the camera to the front clipping 
plane. Notice that the default value used by Direct3D retained mode in calculating the viewing 
angle is  

 
 

  
 

 
You can change the viewing angle by altering the value of h in the previous equation. For example, 
if you calculate h as 75 percent of the field of view, then the viewing angle changes, as shown in 
Figure 18-2.  

 

 

  
 
 Figure 18-2: Changing the default field of view 



 Figure 18-2: Changing the default field of view 

   
 
 The SetField() function of IDirect3DRMViewport2 enables you to set the field of view for a 
viewport, thus effectively changing the viewing angle. The function has the following general form: 

 
 HRESULT SetField(  
 D3DVALUE rvField // 1  
 );  
 

 

The function's only parameter is the value for the new field of view. It is expressed as a fraction of 
the viewing angle. This corresponds to two times the arctangent of the angle of the front clipping 
plane. If the value for the SetField() parameter is less than or equal to zero, the method returns 
the D3DRMERR_BADVALUE error. If the call is successful it returns D3DRM_OK, or an error 
otherwise.  

 

 

The parameter that determines the field of view can also be represented by the half-height of the 
front clipping plane. This value is labeled h in Figures 18-1 and Figure 18-2, and in the formula for 
the viewing angle A listed previously. A value larger than 0.5 enlarges the viewing angle, making 
objects appear smaller. A value smaller than 0.5 reduces the viewing angle, making objects 
appear larger. The visual result is similar to changing the magnification of a zoom lens, as shown 
in Figure 18-3.  

 

 

  
 
 Figure 18-3: Effect of changing the field of view 

   
 

 
The SetField() method is also used to add a field of view key to a 
Direct3D_RMViewportInterpolator object. Interpolators are discussed in the context of 
retained mode animation.  

 
 Viewport projections  



 

 

Projections were discussed in Chapter 4. Direct3D supports two projection types: perspective and 
orthographic. By far most applications use the perspective projection, which is the default. In 
perspective projection depth cues are used to enhance the relative position of objects, their 
distance to the camera, and their relative size. The orthographic projection, which is the simplest of 
the parallel projections, is used mostly in technical applications because of its scalability.  

 
 The SetProjection() function of IDirect3DRMViewport2 enables you to set the projection 
type. The function has the following general form:  

 
 HRESULT SetProjection(   
 D3DRMPROJECTIONTYPE rptType // 1  
 );  
 
 The function's only parameter is one of the members of the D3DRMPROJECTIONTYPE enumerated 
type, which is defined as follows:  

 
 typedef enum _D3DRMPROJECTIONTYPE{  
 D3DRMPROJECT_PERSPECTIVE,  
 D3DRMPROJECT_ORTHOGRAPHIC,  
 D3DRMPROJECT_RIGHTHANDPERSPECTIVE,  
 D3DRMPROJECT_RIGHTHANDORTHOGRAPHIC  
 } D3DRMPROJECTIONTYPE;.   
 

 

The first two constants of the D3DRMPROJECTIONTYPE enumeration refer to the perspective and 
orthographic projections just mentioned. The last two relate to right-handed coordinate system first 
implemented in DirectX 6 and discussed in Chapter 16 in relation to the SetOptions() function 
of IDirect3DRM3. The SetProjection() function returns D3DRM_OK if it succeeds, or an error 
otherwise.  

 
 The GetProjection() function is used to retrieve the current projection type. The function has 
the following general form:  

 
 D3DRMPROJECTIONTYPE GetProjection();  
 
 The call returns one of the members of the D3DRMPROJECTIONTYPE enumerated type previously 
described.   

 
 Figure 18-4 shows the effect of changing the projection between perspective projection, which is 
the default, to orthographic.  

 



 

  
 
 Figure 18-4: Effect of changing the projection type 

   
 
 Viewport scaling  
 

 

Normally, the viewport is scaled into the window using the same scaling factor for the horizontal as 
for the vertical dimension. In this case uniform scaling ensures the correct image proportions. In 
nonsquare viewports it may be occasionally desirable to disable uniform scaling so that the vertical 
and horizontal components are rendered proportionally to the viewport dimensions. The 
SetUniform_Scaling() function allows manipulating the uniform scaling property. The 
function's general form is as follows:  

 
 HRESULT SetUniformScaling(  
 BOOL bScale // 1  
 );  
 

 
The function's only parameter is a boolean value set to TRUE if you desire the same horizontal 
and vertical scaling factor in relation to the viewing volume. If the parameter is set to FALSE, then 
different scaling factors are used to scale the viewing volume exactly into the window. The default 
setting is TRUE. The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 The SetUniformScaling() function is often used in relation to the SetPlane() function, 
described later in this chapter.  

 
 The GetUniformScaling() function retrieves the scaling property. The function has the 
following general form:  

 
 BOOL GetUniformScaling();  
 
 The call returns TRUE if the viewport is set to uniform scaling, or FALSE otherwise.  
 
 Clipping controls  



 
Direct3D retained mode provides several functions that perform changes on the position and 
dimensions of the clipping planes, as well as other functions that retrieve the clipping plane's 
current position and dimensions.  

 

 
Two functions allow positioning and retrieving the front clipping plane and two others perform 
similarly in relation to the back clipping plane. These functions are named GetFront(), 
SetFront, GetBack(), and SetBack(). The ones that retrieve the clipping plane positions have 
the following general form:  

 
 D3DVALUE GetFront();  
 D3DVALUE GetBack();  
 
 In both cases the returned value is the distance from the corresponding clipping place to the 
camera.  

 
 Two other functions allow setting the distance of the front and the back clipping planes to the 
camera. These have the following general form:  

 
 HRESULT SetFront(D3DVALUE rvFront);  
 HRESULT SetBack(D3DVALUE rvBack);  
 

 
The distances to the clipping planes are based on the following default values: the front clipping 
plane is set at a distance of 1.0 units to the camera and the back clipping plane is set at a distance 
of 100 units. Here again, producing reasonable changes in the default settings of the clipping 
planes requires knowledge of the scene geometry and the resulting viewing frustum dimensions.  

 

 

Direct3D retained mode applications normally define the viewing frustum by means of the 
SetField() function previously described. This method ensures that the front clipping plane (see 
Figure 18-1) is proportionally dimensioned to the viewing angle. Applications can produce unusual 
effects by modifying the normal propor-tions of the viewing frustum. The SetPlane() and 
GetPlane functions change and retrieve the dimensions of the front clipping plane in relation to 
the camera's z-axis.  

 
 The SetField() function has the following general form:  
 
 HRESULT SetPlane(   
 D3DVALUE rvLeft, // 1  
 D3DVALUE rvRight, // 2  
 D3DVALUE rvBottom, // 3  
 D3DVALUE rvTop // 4  
 );  
 

 The function's first parameter determines the minimum x-coordinate of the left side of the front 
clipping plane rectangle, whereas the second parameter determines the maximum x-coordinate of 



the bottom of the front clipping plane rectangle, and the fourth parameter the maximum y-
coordinate of its top edge.  

 
 The GetPlane() function of IDirect3DRMViewport2 retrieves the current dimensions of the 
viewing plane. The function has the following general form:  

 
 HRESULT GetPlane(   
 D3DVALUE rvLeft, // 1  
 D3DVALUE rvRight, // 2  
 D3DVALUE rvBottom, // 3  
 D3DVALUE rvTop // 4  
 );  
 
 The parameters have the same values as for the SetPlane() function previously described. Both 
functions return D3DRM_OK if they succeed, and an error otherwise.  

 

 

The notion that the SetPlane() function changes the dimensions of the front clipping plane could 
lead us to think that these changes affect the objects that are visible in the viewport, and nothing 
more. In reality the SetPlane() function is capable of changing the proportion of the viewing 
frustum, which in turn can result in changes in the geometry of the image itself. For example, you 
can modify the x-coordinates of the front clipping plane to squeeze the image horizontally. The 
result of this manipulation is shown in Figure 18-5.  

 

 

  
 
 Figure 18-5: Image deformation by altering the viewing frustum 

   
 

 
To produce the deformation in Figure 18-5 we first obtained the viewport dimensions using 
GetPlane() and then modified the frustum by calculating 75 percent of x-coordinates. The 
following code fragment shows the processing.  

 
 // Variables for viewport dimensions  
 D3DVALUE left;  
 D3DVALUE right;  



 D3DVALUE top;  
 D3DVALUE bottom;   
 . . .  
 // Obtain viewport dimensions   
 retval = globVars.aViewport->GetPlane(  
 &left, &right, &top, &bottom);  
 if(FAILED(retval))  
 }  
 // Obtaining viewport dimensions error handler  
 // goes here  
 }  
 // Redimension front clipping plane x-coordinates to 75 percent  
 // of normal values  
 retval = globVars.aViewport->SetPlane(  
 left*0.75, right*0.75, top, bottom);  
 if(FAILED(retval))  
 {  
 // Viewport dimensions setting error handler goes here  
 }   
 

 

Viewport dimensioning via the SetPlane() function and via the SetField() function cancel 
each other out. This means that code can change the viewing frustum by calling either the 
SetPlane() or SetField() functions, but not both. In fact, the SetField() function is but a 
compact way of setting all viewport dimensions to the same value. By the same token, if the 
SetPlane() function is called with the same value for all four parameters, the result is equivalent 
to a call to the SetField() function.  

 

 
Although altering the dimensions of the viewing frustum can produce interesting and sometimes 
powerful effects, using these controls in a reasonable manner requires detailed knowledge of the 
geometry of the image being manipulated.  

 



Camera Operations  
 

 

In Chapter 15 you learned that the camera is a Direct3D retained mode object that defines the 
viewing position and direction. In that sense the camera defines the viewport because the renderer 
displays only what is visible along the positive z-axis of the camera frame. The actual sequence of 
operations in a typical retained mode application consists, first, of creating the camera frame by 
calling the CreateFrame() function of IDirect3DRM3, and then creating the viewport by calling 
the CreateViewport() function passing the frame that represents the camera as one of the 
parameters. In conclusion: the camera, represented by a frame that positions it, defines the 
viewing position and direction.  

 

 

Two functions of IDirect3DRMViewport2 relate to the camera: SetCamera() and 
GetCamera(). SetCamera() sets a viewport's position, direction, and orientation to that of the 
given camera frame. The view is oriented along the positive z-axis of the camera frame, with the 
up direction being in the direction of the positive y-axis. The SetCamera() function has the 
following general form:  

 
 HRESULT SetCamera(  
 LPDIRECT3DRMFRAME3 lpCamera // 1  
 );  
 

 
The function's only parameter is the address of a variable that contains a Direct3DRMFrame 
object that represents the camera. The function returns D3DRM_OK if it succeeds, or an error 
otherwise.  

 
 The GetCamera() function retrieves the frame object that represents the camera in the viewport. 
The function has the following general form:  

 
 HRESULT GetCamera(  
 LPDIRECT3DRMFRAME3 *lpCamera // 1  
 );  
 
 The function's only parameter is the address of a variable that contains the Direct3DRMFrame 
object that represents the camera.  

 
 The call returns D3DRM_OK if it succeeds, or an error otherwise.  
 
 Camera manipulations are discussed in the context of frame programming, in Chapter 19.  
 



Picking Viewport Objects  
 

 
In Chapter 14 we discussed the fundamentals of Direct3D object selection by picking. Objects are 
picked using the viewport interface because picking consists of selecting objects in a 3D scene 
based on the their x- and y-coordinates of a 2D surface, in this case the viewport. Typically, 
picking is based on the position of the mouse cursor at the time of the pick.  

 

 
The Pick() function of IDirect3DRMViewport2 finds a depth-sorted list of objects. This path 
includes the complete hierarchy, from the root, down to the frame that contains the object. Its 
general form is as follows:  

 
 HRESULT Pick(   
 LONG lX, // 1  
 LONG lY, // 2  
 LPDIRECT3DRMPICKEDARRAY *lplpVisuals // 3  
 );  
 

 
The first and second parameters are the screen coordinates of the object or objects to be picked. 
The third parameter is the address that is initialized with a pointer to the 
IDirect3DRMPickedArray interface if the call succeeds. The call returns D3DRM_OK if it 
succeeds, or an error otherwise.  

 

 

The pointer returned by the Pick() function allows access to the IDirect3DRM_PickedArray 
interface. This interface contains two functions: GetPick(), which retrieves the visuals and objects 
intersected in the pick, and GetSize() which returns the number of elements contained in the 
picked array. The elements in the array of frames are organized in a hierarchy in which the first 
element is the topmost element.  

 



Viewport Transformations  
 

 

3D applications deal with two different environments: the 3D environment of the modeled objects 
and the 2D environment of the rendering surface. Code often needs to convert from one 
coordinate system into the other one. Direct3D retained mode provides several methods that 
perform these coordinate system transforma-tions. To understand these methods you must 
understand image transformations and coordinate systems, in particular homogeneous 
coordinates. Chapter 3, which is entirely devoted to these topics, serves as background for the 
present discussion.  

 

 

Image transformations at the viewport level were introduced in Chapter 14. At that time we referred 
to the fact that, in the context of Direct3D viewports, transformations are used to convert between 
screen and world coordinates. Screen coordinates, which are defined in relation to the root frame, 
are represented as the four-element homogenous coordinate matrix [x y z w]. World coordinates 
refer to the two-dimensional viewport. Direct3D retained mode uses the D3DRMVECTOR4D 
structure for encoding screen coordinates and the D3DVECTOR structure for world coordinates. The 
structures are defined as follows:  

 
 typedef struct _D3DRMVECTOR4D {  
 D3DVALUE x;  
 D3DVALUE y;  
 D3DVALUE z;  
 D3DVALUE w;  
 }D3DRMVECTOR4D;  
 typedef D3DRMVECTOR4D, *LPD3DRMVECTOR4D;  
 
 The members x, y, z, and w are the homogenous coordinates. They are encoded in the 
D3DVALUE type.  

 
 typedef struct _D3DVECTOR  
 {   
 union {  
 D3DVALUE x;  
 D3DVALUE dvX;  
 };  
 union {  
 D3DVALUE y;   
 D3DVALUE dvY;  
 };  
 union {  
 D3DVALUE z;  
 D3DVALUE dvZ;  
 };  



 } D3DVECTOR, *LPD3DVECTOR;  
 
 World-to-screen transformation  
 

 
The Transform() function of IDirect3DRMViewport2 converts world coordinates, encoded in 
a D3DRMVECTOR4D structure variable, into screen coordinates, encoded in a D3DVECTOR structure 
variable. The function has the following general form:  

 
 HRESULT Transform(   
 D3DRMVECTOR4D *lprvDest, // 1  
 D3DVECTOR *lprvSrc // 2   
 );  
 

 
The first parameter is the address of a D3DRMVECTOR4D structure variable that is the destination 
for the transformation. The second parameter is the address of a D3DVECTOR structure variable 
that is the source for the transformation. The function returns D3DRM_OK if it succeeds, or an error 
otherwise.  

 
 The result of the transformation is a four-element homogeneous matrix. The point represented by 
the resulting vector is visible if the following equations are true:  

 

 

  
 
 where  
 

 

  
 
 Screen-to-world transformation  
 
 The InverseTransform() function of IDirect3DRMViewport2 converts screen coordinates 
into world coordinates. The function has the following general form:  

 



 HRESULT InverseTransform(   
 D3DVECTOR *lprvDest, // 1  
 D3DRMVECTOR4D *lprvSrc // 2  
 );  
 

 
The first parameter is the address of a D3DVECTOR structure variable that serves as the 
destination for the transformation. The second parameter is the address of a D3DRMVECTOR4D 
structure variable that represents the source of the operation. The function returns D3DRM_OK if it 
succeeds, or an error otherwise.  

 
 Vector array transformations  
 

 

DirectX 6 introduced two new functions that allow screen-to-world and world-to-screen 
transformations on multiple elements. These functions, which have the word vectors in their 
names, perform the same transformations as their single-element counterparts discussed 
previously. The TransformVectors() function is the multiple-element version of the 
Transform() function. Its general form is as follows:  

 
 HRESULT TransformVectors(  
 DWORD dwNumVectors, // 1  
 LPD3DRMVECTOR4D lpDstVectors, // 2  
 LPD3DVECTOR lpSrcVectors // 3  
 );  
 

 
The first parameter encodes the number of vectors to be transformed. The second parameter is an 
array of D3DRMVECTOR4D structures variables representing the vectors transformed to screen 
coordinates. The third parameter is the array of vectors to transform. The function returns DD_OK if 
it succeeds, or one of the following error codes:  

 
 DDERR_INVALIDOBJECT  
 
 DDERR_INVALIDPARAMS  
 
 The InverseTransformVectors() function is the multiple-element counterpart to 
TransformVectors(). Its general form is as follows:  

 
 HRESULT InverseTransformVectors(  
 DWORD dwNumVectors, // 1  
 LPD3DVECTOR lpDstVectors, // 2  
 LPD3DRMVECTOR4D lpSrcVectors // 3  
 );  



 
The first parameter encodes the number of vectors for which coordinates are to be transformed. 
The second parameter is the array of vectors that serves as a desti-nation of the transformation. 
The third parameter is the array of D3DRMVECTOR4D structure variables representing the vectors 
to transform. The function returns DD_OK if it succeeds, or one of the following error codes:  

 
 DDERR_INVALIDOBJECT  
 
 DDERR_INVALIDPARAMS  
 



Sample Program 3DRM InWin Demo3  
 

 

The 3DRM InWin Demo2 program in the book's CD-ROM demonstrates the most useful functions 
discussed in this chapter. The Rendering menu contains a command that enables you to set the 
rendering quality. In addition, there is a Viewport commands menu that enables you to experiment 
with the field-of-view, perspective and orthographic geometry, viewport proportions, and uniform 
and nonuniform scaling. The screen snapshots for the illustrations used in this chapter were 
obtained with this sample program.  

 



Summary  
 

 

We have now explored viewport-level programming in retained mode and learned how to configure 
the viewport, set and acquire viewport parameters, manipulate the camera, pick objects, and 
perform screen-to-world and world-to-screen coordinates transformations. The viewport defines the 
display device and sets the vantage point for the scene, thus determining what is visible and what is 
not visible in the scene. In the following chapter we continue our exploration of Direct3D retained 
mode at the frame level.  

 



 Chapter 19: Local Frame Operations  
 
 Overview  
 

 

In Chapter 14 we described a retained mode scene as a collection of frames, and indicated that, in 
this context, the term frame means a frame of reference. In retained mode the frame of reference 
serves as a container for the 3D objects that form the scene. Objects such as meshes, visuals, 
lights, and cameras cannot be rendered until they are given a frame of reference relative to the 
scene and to each other. In this chapter, we start discussing retained mode frame-level operations, 
as they are implemented in the IDirect3D_RMFrame3 interface.  

 

 

Frame-level operations are one of the richest and most powerful in the retained mode API. To 
better structure the material, we divided it into two chapters. In this one we concentrate on the basic 
rendering operations performed at the frame level. We call these the local frame operations. They 
include five categories: frame movements, frame transforma-tions, vector-level manipulations, 
frame traversals, and frame move callback functions.  

 



Retained Mode Frame Interface  
 

 

The scene is a tree-like structure in which a root, or master frame, has any number of child frames, 
each of which can have other children in turn. In retained mode the scene object consists of a 
frame that has no parent. This root frame is the highest level component of a 3D scene. In this 
sense the terms scene, root frame, and master frame are usually considered synonyms. Child 
frames inherit their characteristics from the parent frames and are physically attached to it. When a 
frame is moved, all the child frames move with it. Figure 14-5 shows a frame hierarchy used to 
depict a helicopter.  

 

 

Frame hierarchies are flexible. The IDirect3DFrame3 interface contains a rich set of functions 
for manipulating frames and frame elements. Some of the functions in the interface refer to the 
scene itself because the scene is defined as the root frame. Local operations on frames serve to 
position, move, load, and transform frames. In addition, the interface contains functions to 
manipulate child and parent frames, and to set and retrieve the frame sorting mode and the 
frame's visual attributes. Finally there are functions to add and remove frame attributes, to create 
visuals, and to perform ray picking. Figure 19-1 is a diagram of the retained mode frame interface. 

 

 

  
 
 Figure 19-1: Elements of the retained mode frame interface 

   
 

 
There are over seventy functions in IDirect3DFrame3. In Table 19-1 we classified these 
functions into the groups defined in Figure 19-1. This classification, although imperfect, provides 
us with a grouping on which to base the discussion of an extremely complex and lengthy topic.  

 
 Table 19-1: IDirect3DRMFrame3 Interface Functions  
 
    
 
 Local Frame Operations  

 
Functions  

 

 



    
 
 Frame movements  

 
SetAxes() 
 
SetInheritAxes() 
 
AddRotation() 
 
AddScale() 
 
AddTranslation() 
 
GetOrientation() 
 
GetPosition() 
 
GetRotation() 
 
GetVelocity() 
 
LookAt() 
 
Move() 
 
SetOrientation() 
 
SetPosition() 
 
SetQuaternion() 
 
SetRotation() 
 
SetVelocity() 
 
Load()  

 

 
 Matrix transformation  

 
AddTransform() 
 
GetTransform()  

 

 
 Vector-level manipulations  

 
InverseTransform() 
 
InverseTransformVectors() 
 
Transform() 
 
TransformVectors()  

 

 
 Traversal options  

 
GetTraversalOptions() 
 
SetTraversalOptions()  

 

 
 Frame move callbacks 

 



 Frame move callbacks  AddMoveCallback() 
 
DeleteMoveCallback()  

 
 Frame hierarchies  

 
AddChild() 
 
DeleteChild() 
 
GetChildren() 
 
GetParent() 
 
GetScene()  

 

 
 Scene settings  

 
GetSceneBackground() 
 
GetSceneBackgroundDepth() 
 
SetSceneBackground() 
 
SetSceneBackgroundDepth()  
 
SetSceneBackgroundImage()(obsolete)  
 
SetSceneBackgroundRGB() 
 
GetSceneFogColor() 
 
GetSceneFogEnable() 
 
SetSceneFogMethod() 
 
GetSceneFogMode() 
 
GetSceneFogParams() 
 
SetSceneFogColor() 
 
SetSceneFogEnable() 
 
SetSceneFogMethod() 
 
SetSceneFogMode() 
 
SetSceneFogParams()  

 

 
 Ray picking  

 
RayPick()  

 

 
 Sorting  

 
GetSortMode()  



 
SetZbufferMode()  

 
 Frame Attributes  

 
  

 

 
 Bounding box  

 
GetBox() 
 
GetBoxEnable() 
 
GetHierarchyBox() 
 
SetBox() 
 
SetBoxEnable()  

 

 
 Color  

 
GetColor() 
 
SetColor() 
 
SetColorRGB()  

 

 
 Lighting  

 
AddLight() 
 
DeleteLight() 
 
GetLights()  

 

 
 Material  

 
GetMaterial() 
 
GetMaterialOverride() 
 
SetMaterial() 
 
SetMaterialOverride()  

 

 
 Material modes  

 
GetMaterialMode() 
 
SetMaterialMode  

 

 
 Textures  

 
GetTexture() 
 
SetTexture()  

 

 
 Visuals  

 
AddVisual() 
 
DeleteVisual() 
 
GetVisuals()  

 

 
    



 
 In the discussions that follow we describe the most useful functions in the local frame operations 
group. The remaining functions of the IDirect3DFrame3 interface are the topic of Chapter 20.  

 



Frame Movement and Control Operations  
 
 One of the most extensive groups of frame-related functions are those that perform local 
operations and transformations. The functions in this group can be further classified as follows:  

 
   1.Operations that affect the position, axes, and orientation of the frame.  
 
   2.Operations that define and execute frame movements. These include functions to move, rotate, 

translate, and scale frames and to define the frame's velocity.  
 
   3.Operations that transform the frame coordinate systems.  
 
   4.Operation to load a frame from a file, resource, or memory area.  
 
 Orientation and position controls  
 
 The functions in this subgroup refer to the frame's orientation, axes, and position. We start with the 
frame's orientation controls.  

 

 

The frame's orientation refers to two vectors that define its z-direction and y-direction respectively. 
The default orientation of a frame has a z-direction vector of [0, 0, 1] and a y-direction vector of [0, 
1, 0]. The SetOrientation() function of IDirect3DRMFrame3 sets the orientation of a frame 
with respect to some other frame object. This reference frame can also be the scene itself. The 
function has the following general form:  

 
 HRESULT SetOrientation(  
 LPDIRECT3DRMFRAME3 lpRef, // 1  
 D3DVALUE rvDx, // 2  
 D3DVALUE rvDy, // 3  
 D3DVALUE rvDz, // 4  
 D3DVALUE rvUx, // 5  
 D3DVALUE rvUy, // 6  
 D3DVALUE rvUz // 7  
 );  
 

 

The first parameter is the address of a variable that represents the frame to be used as the 
reference. If this parameter is NULL the function uses the scene frame as a reference. The 
second, third, and fourth parameters specify the new z-axis for the frame. Each component vector 
must be in the range -1.0 to 1.0. The fifth, sixth, and seventh parameters specify the new y-axis for 
the frame. Here again, each compo-nent must be in the range -1.0 to 1.0. The function returns 
D3DRM_OK if it succeeds, or an error otherwise.  

 
 The following code fragment shows a call to set the default orientation of a camera frame within 
the scene.  



 
 LPDIRECT3DRMFRAME3 aCamera;  
 LPDIRECT3DRMFRAME3 aScene;  
   
 if (FAILED(aCamera->SetOrientation(aScene, // reference frame  
 D3DVAL(0), // |  
 D3DVAL(0), // | z-axis values  
 D3DVAL(1), // |  
 D3DVAL(0), // |  
 D3DVAL(1), // | y-axis values  
 D3DVAL(0))) // |  
 {  
 // Frame orientation error handler goes here  
 }  
 

 
The GetOrientation() function is used to retrieve the orientation of a frame in relation to 
another one. The function parameters include the reference frames and two vector structures that 
are filled with the z-axis and y-axis values that define the frame's orientation.  

 

 

DirectX 6 added several axes-related functions to the frame-level API. The SetAxes() function is 
used to set the vectors that defined a coordinate space by which the SetOrientation() vectors 
are transformed. The method is used mainly to support left- and right-handed coordinate systems, 
and to specify that the front of an object is represented on the negative z-axis. A related method 
named GetAxes() retrieves the current frame axes. A pair of methods, named 
SetInheritAxes() and GetInheritAxes() respectively, allow setting and retrieving a 
boolean value that is TRUE if a frame inherits its axes from its parent frame, and FALSE 
otherwise.  

 

 
A frame's position is the location of its origin in relation to the origin of another frame. When a child 
frame is created, its origin is placed at the origin of the parent frame. The SetPosition() 
function of IDirect3DRMFrame3 enables you to change the relative position of a frame. The 
function has the following general form:  

 
 HRESULT SetPosition(  
 LPDIRECT3DRMFRAME3 lpRef, // 1  
 D3DVALUE rvX, // 2  
 D3DVALUE rvY, // 3  
 D3DVALUE rvZ // 4  
 );  
 

 

The function's first parameter is the address of a variable that represents the Direct3DRMFrame 
object to be used as the reference. If this parameter is NULL, the method uses the scene frame as 
a reference. The second, third, and fourth parameters define the new position for the frame within 
the coordinate system of the frame of reference specified in the first parameter. The function 



returns D3DRM_OK if it succeeds, or an error otherwise.  
 
 The following code fragment calls the SetPosition() function to move the position of the frame 
-5 units along the z-axis of the scene.  

 
 LPDIRECT3DRMFRAME3 aCamera;  
 LPDIRECT3DRMFRAME3 aScene;  
   
 if (FAILED(camera->SetPosition(scene,  
 D3DVAL(0), // x  
 D3DVAL(0), // y  
 -D3DVAL(5))) // z  
 {  
 // Frame repositioning error handler goes here  
 }  
 

 
A related function called LookAt() is used to orient a frame so that its positive z-axis points in the 
direction of another frame. This function is often used to orient a light or viewport to point in the 
direction of another frame. The function's general form is as follows:  

 
 HRESULT LookAt(  
 LPDIRECT3DRMFRAME3 lpTarget, // 1  
 LPDIRECT3DRMFRAME3 lpRef, // 2  
 D3DRMFRAMECONSTRAINT rfcConstraint // 3  
 );  
 

 

The function's first parameter is the address of the variable that represents the Direct3DRMFrame 
object to be used as the target. This is the object that the func-tion looks at. The second parameter 
is the address of the variable that represents the Direct3DRMFrame object to be used as the 
reference. If this object is NULL, then the scene is used. The third parameter specifies a member 
of the D3DRMFRAME_CONSTRAINT enumerated type that defined one axis of rotation to constrain. 
The enumaration is defined as follows:  

 
 typedef enum _D3DRMFRAMECONSTRAINT {  
 D3DRMCONSTRAIN_Z, // Do not use z-rotations  
 D3DRMCONSTRAIN_Y, // Do not use y-rotations  
 D3DRMCONSTRAIN_X // Do not use x-rotations  
 } D3DRMFRAMECONSTRAINT;  
 
 The LookAt() function returns D3DRM_OK if it succeeds, or an error otherwise.  
 
 Frame movement controls  



 
 Retained mode provides a rather elaborate set of related functions that are used to scale, rotate, 
and translate frames.  

 

 
The functions can be roughly classified into two groups: those that produce a single modification 
on the frame's matrix, and those that produce a continuous series of modifications. The functions 
in the second group are often used in producing simple animations at the frame level.  

 

 

Frame-level animations are easy to set up and are often of sufficient quality to produce satisfactory 
results when implementing simple movements. You can use two functions of the 
IDirect3DRMFrame3 interface to provide simple rotation and translation of a frame: 
SetRotation() and SetVelocity(). In either case the movement is produced by a call to the 
Move() function, of IDirect3DRMFrame3, or the Tick() function, of IDirect3DRM3. Tick() 
was discussed in Chapter 16. The actions of the SetRotation() and SetVelocity() functions 
can be combined to produce interesting effects.  

 
 The AddRotation() function is used to set a frame rotating along one or more of its axes, by a 
given angle. The function has the following general form:  

 
 HRESULT SetRotation(   
 LPDIRECT3DRMFRAME3 lpRef, // 1  
 D3DVALUE rvX, // 2  
 D3DVALUE rvY, // 3  
 D3DVALUE rvZ, // 4  
 D3DVALUE rvTheta // 5  
 );  
 

 

The first parameter is the address of a variable that represents the Direct3DRM-Frame object to be 
rotated. If this parameter is NULL, then the function uses the scene's frame. The second, third, and 
fourth parameters define the axis or axes along which the rotation is to take place. Valid values are 
documented to be in the range -1.0 to 1.0. It appears that any nonzero value selects the 
corresponding axis, and a zero value deselects it. Positive values produce a clockwise rotation and 
negative values rotate the frame in a counterclockwise direction. Numeric varia-tions appear to 
have no effect in this function because the angle and speed of rotation are determined elsewhere. 
The fifth parameter is the rotation angle, in radians, for each iteration of the Tick() or Move() 
function previously mentioned. Both Tick() and Move() scale the rotation angle according to a 
local parameter in these functions. SetRotation() returns D3DRM_OK if it is successful, or an 
error otherwise.  

 

 

In our experiments with the SetRotate() function we detected some unexpected results. One of 
them is that if a zero value is entered for all three axes and a nonzero value for the angle of 
rotation, the frame is set to rotate along the x-axis anyway. The only way in which we have been 
able to call the SetRotate() function so that the frame remains stationary is by entering a zero 
value for the angle of rotation. In this case the value entered for the axes is meaningless.  

 

 
The SetVelocity() function selects the axis to which a linear movement is applied, determines 
the velocity of the linear movement for each axis, and deter-mines if the object's rotational velocity 



is taken into account when applying the linear movement.  
 

 
Notice that SetVelocity() refers to a linear translation along the axes. Also notice that it allows 
defining the velocity independently for each axes, whereas the SetRotation() function, 
described previously, does not. In the case of the SetVelocity() function the linear movement 
refers to a given frame relative to a reference frame. The function has the following general form:  

 
 HRESULT SetVelocity(  
 LPDIRECT3DRMFRAME3 lpRef, // 1  
 D3DVALUE rvX, // 2  
 D3DVALUE rvY, // 3  
 D3DVALUE rvZ, // 4  
 BOOL fRotVel // 5  
 );  
 

 

The function's first parameter is the address of a variable that represents the Direct3DRMFrame 
object to be used as the reference. If this parameter is NULL, then the scene's frame is used. The 
second, third, and fourth parameters define the axis or axes along which the linear movement 
takes place. No range or units are defined for this function. Positive and negative values determine 
the direction of the movement along the axis. The numeric value determines the speed of the 
movement applied to each axis. Higher values make the frame move faster.  

 

 
The Move() function of IDirect3DRMFrame3 and the Tick() function of Direct_3DRM3 scale 
the value defined in these parameters. The fifth parameter is a flag that specifies whether the 
rotational velocity of the object is taken into account when setting the linear velocity. If TRUE, the 
object's rotational velocity is included in the calculation.  

 
 3DRM Move Demo project  
 

 
The project named 3DRM Move Demo, in the book's CD-ROM, animates the frame containing a 
3D image of a teapot by means of the SetRotation() and SetVelocity() functions. The 
program's Movement menu contains commands to control rotation and velocity values. Figure 19-2 
is a screen snapshot of these dialog boxes.  



 

  
 
 Figure 19-2: Rotation and velocity control dialog boxes in 3DRM Move Demo 

   
 

 

The Rotation Setup dialog box provides three check boxes for selecting each of the rotation axes. 
The slider control enables the user to change the angular speed of rotation as defined by the fifth 
parameter of the SetRotation() function. The Velocity Setup dialog box also contains a check 
box for each axis. In this case there is a slider for controlling the speed of each axis independently, 
which is consistent with the SetVelocity() function. An additional check box enables the user 
to take into account the rotational component when performing the velocity calculations, as 
controlled by the fifth parameter of the SetVelocity() function.  

 

 
The program makes successive calls to the Move() function of IDirect3DRM_Frame3 to 
produce the animation. This requires modifying the message loop so that calls to the 
RenderScene() function are made whenever the application is maximized and Direct3D has 
been correctly initialized. The code is as follows:  

 
 while (TRUE)   
 {   
 // Process messages using PeekMessage()   
 // Terminate execution when WM_QUIT is received  
 if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))   
 {  
 if (msg.message == WM_QUIT)   
 break;  
 TranslateMessage(&msg);  
 DispatchMessage(&msg);  
 }  
   
 // Render object if the application is not minimized and  



 // if Direct3D is initialized  
 if (!globVars.isMinimized && globVars.isInitialized)   
 {  
 // Render one frame  
 if (!RenderScene())   
 {  
 D3DError("Rendering failed. Ending execution.");  
 PostMessage(NULL, WM_DESTROY, 0, 0);  
 break;  
 }  
 // Yield control to other threads  
 } else   
 WaitMessage();   
 

 
Rendering is performed by the RenderScene() function. The function sets the rendering and the 
texture qualities, calls Move(), clears the viewport, renders the frame, and updates the window. 
Code is as follows:  

 
 //*************************************************************  
 // Name: RenderScene()  
 // Description: Set the rendering and texture qualities, move  
 // the scene, clear the viewport, render the frame,  
 // and update the window  
 //*************************************************************  
 static BOOL RenderScene()  
 {  
   
 HRESULT retval;  
   
 //**************************************  
 // Set Rendering Quality  
 //**************************************  
 retval = globVars.aDevice->SetQuality(D3DRMRENDER_GOURAUD);  
 if(FAILED(retval))  
 {  
 D3DError("Device quality set failed.");  
 return FALSE;  
 }  
 //**************************************  



 // Set Texture Quality  
 //**************************************  
 retval = globVars.aDevvce\  
 ->SetTextureQuality(activeTexture);  
 if(FAILED(retval))  
 {  
 D3DError("Texture quality set set failed.");  
 return FALSE;  
 }  
   
 //**********************************  
 // Move the scene  
 //**********************************  
 retval = globVars.aScene->Move(D3DVAL(1.0));  
 if (FAILED(retval))   
 {  
 D3DError("Moving scene failed");  
 return FALSE;  
 }  
   
 //******************************   
 // Clear the viewport  
 //******************************  
 retval = globVars.aViewport->Clear(D3DRMCLEAR_ALL);  
 if (FAILED(retval))   
 {  
 D3DError("Clearing viewport failed");  
 return FALSE;  
 }  
   
 //*******************************  
 // render  
 //*******************************  
 retval = globVars.aViewport->Render(globVars.aScene);  
 if (FAILED(retval))   
 {  
 D3DError("Rendering scene failed");  
 return FALSE;  



 }  
   
 //*******************************  
 // update the window  
 //*******************************  
 retval = globVars.aDevice->Update();  
 if (FAILED(retval))   
 {  
 D3DError("Updating device failed");  
 return FALSE;  
 }  
 return TRUE;  
 }  
 

 
The parameters that define the movements are entered during processing the BuildScene() 
function. The values, which are defined in global variables, are modified while the user interacts 
with the corresponding dialog boxes. The code is as follows:  

 
 // Rotation vectors  
 float xRot = 0.0; // x axis rotation vector  
 float yRot = 0.0; // y axis  
 float zRot = 0.0; // z axis   
 float theta = 0.02f; // angular velocity of rotation  
   
 // Velocity vectors  
 float xVel = 0.0f; // x axis velocity vector  
 float yVel = 0.0f; // y-axis  
 float zVel = 0.0f; // z-axis  
 BOOL rotTF = FALSE; // Include rotation flag  
 . . .  
   
 // Rotate the child frame  
 // If velocity controls are zero then use zero for rotational  
 // angle and set one axis. This makes it possible to use linear  
 // movements with no rotation  
 if(xRot + yRot + zRot == 0)  
 {  
 theta = 0.0;  
 xRot = 1;  



 }  
 if (FAILED(childframe->SetRotation(NULL,   
 D3DVAL(xRot),  
 D3DVAL(yRot),  
 D3DVAL(zRot),   
 D3DVAL(theta)))) // angle   
 goto ERROR_EXIT;  
   
 // Set velocity  
 if(xRot + yRot + zRot != 0)  
 {  
 if (FAILED(childframe->SetVelocity(NULL,   
 D3DVAL(xVel),  
 D3DVAL(yVel),  
 D3DVAL(zVel),   
 rotTF))) // Include rotational  
 // velocity   
 goto ERROR_EXIT;  
 }  
 

 

When the 3DRM Move Demo program first executes, the teapot object is static. The user can 
animate the object by manipulating the controls in the program's dialog boxes, shown in Figure 19-
2. The result can be a simultaneous movement along one or more of the object's rotation or 
translation axes. Figure 19-3 shows three consecutive screen snapshots of the 3DRM Move Demo 
program. In this case three simultaneous rotations and translations have been enabled. As a 
result, the teapot appears to progressively fade into the background as it rotates on its axes.  

 

 

  
 
 Figure 19-3: Screen snapshots of the 3DRM Move Demo program 

   
 
 Changing the frame matrix  
 
Another set of functions of IDirect3DRMFrame3 provides ways for making one-time changes on 
the frame's matrix. These functions differ from SetRotation() and SetVelocity(), described 
previously, in that they operate once on the frame's parameters, whereas the matrix changes 
produced by SetRotation() and SetVelocity() continue to take place at every iteration of 



the Move() or Tick() functions. The functions that perform one-time changes in the frame matrix 
discussed in this section are named AddRotation(), AddTranslation(), and AddScale(). 
A related function, named AddTransform(), is discussed in the context of frame-level 
transformations later in this chapter.  

 

 
A common element in these three functions is that their first parameter is a constant of the 
D3DRMCOMBINETYPE enumeration, which determines how two matrices are combined. The 
enumeration is defined as follows:  

 
 typedef enum _D3DRMCOMBINETYPE{  
 D3DRMCOMBINE_REPLACE,  
 D3DRMCOMBINE_BEFORE,  
 D3DRMCOMBINE_AFTER  
 } D3DRMCOMBINETYPE;  
 

 

The constant D3DRMCOMBINE_REPLACE determines that the supplied matrix replaces the frame's 
current matrix. The constant D3DRMCOMBINE_BEFORE deter-mines that the supplied matrix is 
multiplied with the frame's current matrix and precedes the current matrix in the calculation. On the 
other hand, the constant D3DRMCOMBINE_AFTER determines that the supplied matrix is multiplied 
with the frame's current matrix and follows the current matrix in the calculation. The order of the 
matrices is important because, as you know from Chapter 3, matrix multiplication is not 
commutative.  

 
 The AddRotation() function of IDirect3DRMFrame3 adds one or more rotation vectors to the 
matrix of the frame object making the call. The function has the following general form.  

 
 HRESULT AddRotation(  
 D3DRMCOMBINETYPE rctCombine, // 1  
 D3DVALUE rvX, // 2  
 D3DVALUE rvY, // 3  
 D3DVALUE rvZ, // 4  
 D3DVALUE rvTheta // 5  
 );  
 

 

The first parameter is one of the members of the D3DRMCOMBINETYPE enumerated type. This 
constant specifies the new rotation is combined with any current frame transformation. The 
second, third, and fourth parameters specify the axes about which the rotation is applied. Any 
nonzero value selects the axis and zero deselects it. The fifth parameter is the angle or rotation, in 
radians. The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 

 

Notice that the AddRotation() function, like its SetRotation() counterpart, allows selecting 
more than one axis of rotation but applies the same angular rotation to all the selected axes. 
However, in the case of AddRotation() it is possible to apply different rotations to two or more 
axes by selecting the D3DRMCOMBINE_AFTER mode. The AddRotation() function is then called 
independently for each axis, in each case with the desired value for the angle of rotation.  



 
 The AddTranslation() function of IDirect3DRMFrame3 adds one or more translation vectors 
to the matrix of the frame object making the call. The function has the following general form:  

 
 HRESULT AddTranslation(  
 D3DRMCOMBINETYPE rctCombine, // 1  
 D3DVALUE rvX, // 2  
 D3DVALUE rvY, // 3  
 D3DVALUE rvZ // 4  
 );  
 

 

The first parameter is a member of the D3DRMCOMBINETYPE enumerated type. This constant 
specifies how to combine the new translation with any existing transfor-mation. The second, third, 
and fourth parameters define the axis or axes along which the translation to takes place. Positive 
and negative values determine the direction of the movement along the axis. The numeric value 
determines the amount of translation applied to each axis. By entering different values for separate 
axes it is possible to generate a nonuniform translation in a single call. The function returns 
D3DRM_OK if it succeeds, or an error otherwise.  

 
 The AddScale() function of IDirect3DRMFrame3 adds one or more scaling vectors to the 
matrix of the frame object making the call. The function has the following general form:  

 
 HRESULT AddScale(  
 D3DRMCOMBINETYPE rctCombine, // 1  
 D3DVALUE rvX, // 2  
 D3DVALUE rvY, // 3  
 D3DVALUE rvZ // 4  
 );  
 

 

The first parameter is a member of the D3DRMCOMBINETYPE enumerated type. This constant 
specifies how to combine the new translation with any existing transfor-mation. The second, third, 
and fourth parameters define the axis or axes along which the scaling is to take place. Integer 
values determine a positive scaling and fractional values a negative scaling. A scaling value of 1 
leaves the axis unchanged. The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 Figure 19-4 shows the result of applying the AddScale() function.  
 

 

  
 
 Figure 19-4: Scaling transformation using AddScale() function 



   
 
 Loading objects into frames  
 

 
Retained mode provides a function named Load(), which is part of IDirect3DRM_Frame3, 
which allows loading an object into a frame. The function is sometimes used to load textures and 
animation sets, although other, more suitable, functions are also available for these purposes. The 
function's general form is as follows:  

 
 HRESULT Load(  
 LPVOID lpvObjSource, // 1  
 LPVOID lpvObjID, // 2  
 D3DRMLOADOPTIONS d3drmLOFlags, // 3  
 D3DRMLOADTEXTURE3CALLBACK d3drmLoadTextureProc, // 4  
 LPVOID lpArgLTP // 5  
 );  
 

 

The function's first parameter is a pointer to the source for the object to be loaded. This can be a 
file, a resource, a memory block, or a stream, according to the setting of the source flags specified 
in the third parameter. The second parameter is the object's name or the position in which it is to 
be loaded. This parameter also depends on the flag passed in the third parameter. The third 
parameter is a flag that determines the load options. The load options are defined in a structure of 
type D3DRMLOADOPTIONS, as follows:  

 
 typedef DWORD D3DRMLOADOPTIONS;  
 #define D3DRMLOAD_FROMFILE 0x00L  
 #define D3DRMLOAD_FROMRESOURCE 0x01L  
 #define D3DRMLOAD_FROMMEMORY 0x02L  
 #define D3DRMLOAD_FROMURL 0x08L  
 #define D3DRMLOAD_BYNAME 0x10L  
 #define D3DRMLOAD_BYPOSITION 0x20L  
 #define D3DRMLOAD_BYGUID 0x30L  
 #define D3DRMLOAD_FIRST 0x40L  
 #define D3DRMLOAD_INSTANCEBYREFERENCE 0x100L  
 #define D3DRMLOAD_INSTANCEBYCOPYING 0x200L  
 #define D3DRMLOAD_ASYNCHRONOUS 0x400L  
 
 Table 19-2 describes the load option flags.  
 
 Table 19-2: Option Flags Used in the D3DRMLOADOPTIONS Structure  



    
 
 Flag  

 
Description  

 

 
    
 
 Source flags  

 
  

 

 
 D3DRMLOAD_FROMFILE  

 
Load from a file. This is the default setting.  

 

 
 D3DRMLOAD_FROMRESOURCE  

 
Load from a resource. If this flag is specified, 
the lpvObjSource parameter of the calling 
Load function must point to a 
D3DRMLOADRESOURCE structure.  

 

 
 D3DRMLOAD_FROMMEMORY  

 
Load from memory. If this flag is specified, the 
lpvObjSource parameter of the calling 
Load() function must point to a 
D3DRMLOADMEMORY structure.  

 

 
 D3DRMLOAD_FROMURL  

 
Load from an URL.  

 

 
 Identifier flags  

 
  

 

 
 D3DRMLOAD_BYNAME  

 
Load any object by using a specified name.  

 

 
 D3DRMLOAD_BYPOSITION  

 
Load a stand-alone object based on a given 
zero-based position within the file. Stand-alone 
objects can contain other objects, but are not 
contained by any other objects.  

 

 
 D3DRMLOAD_BYGUID  

 
Load any object by using a specified globally 
unique identifier (GUID).  

 

 
 D3DRMLOAD_FIRST  

 
The default setting. Load the first stand-alone 
object of the given type.  

 

 
 Instance flags  

 
  

 

 
 D3DRMLOAD_INSTANCEBYREFERENCE  

 
Check whether an object already exists with the 
same name as specified and, if so, use an 
instance of that object instead of creating a new 
one.  

 

 
 D3DRMLOAD_INSTANCEBYCOPYING 

 



 D3DRMLOAD_INSTANCEBYCOPYING  Check whether an object already exists with the 
same name as specified. If so, copy that object. 

 
 Source flags  

 
  

 

 
 D3DRMLOAD_ASYNCHRONOUS  

 
The Load call will return immediately. It is up to 
the application to use events to find out how the 
load is progressing. By default, loading is 
asynchronous.  

 

 
    
 

 
The fourth parameter to the Load() function is a D3DRMLOADTEXTURE3CALLBACK callback 
function used to load any textures used by the object. This parameter can be NULL. The fifth 
parameter is a pointer to application-defined data passed to the D3DRMLOADTEXTURE3CALLBACK 
callback function. The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 



Frame Transformations  
 

 

Chapter 3 is entirely devoted to matrix transformations as they are used in computer graphics. 
Here we discuss matrix transformations in the light of actual 3D retained mode programming 
practice. At this point in the text we assume that the reader has basic familiarity with the elements 
of matrix arithmetic, homogen-eous coordinates, and matrix multiplication as presented in Chapter 
3.  

 

 

Most of the work of 3D graphics is based on translation, rotation, and scaling transformations. In 
addition, matrices and transformations are used to define the location of graphics objects and to 
change viewing positions, viewing direction, and in perspective rendering. Previously in this 
chapter you used functions to position and move frames. The AddTranslation(), 
AddRotation(), and AddScale() functions of the IDirect3DFrame3 interface are used to 
rotate, translate, and scale frames without accessing the frame's matrix directly. By means of 
these functions you can perform matrix transformations without dealing with the frame matrix itself. 
These frame-level local APIs provide a useful, elementary functionality. However, much greater 
power and control, as well as a simpler interface, is achieved by performing transformations by 
manipulating the frame matrices directly.  

 
 Review of basic notions  
 
 Briefly reviewing the fundamental concepts, we recall that we store the x-, y-, and z-coordinates of 
a point in 3D space as follows:  

 

 
  

 

 
You can perform a translation, scaling, or rotation transformation on the coordi-nates of the point 
by multiplying the row vector by a corresponding homogeneous matrix. The matrices for the 
primitive transformations are as follows:  

 
 Translation:  
 

 

  
 
 Scaling:  
 



 

  
 
 Rotation (x-axis):  
 

 

  
 
 Rotation (y-axis):  
 

 

  
 
 Rotation (z-axis):  
 

 

  
 

 
In addition to the primitive transformations matrices, there is another matrix of interest. This matrix, 
called the identity matrix, has a similar property as the number 1 in scalar multiplication. That is, 
the product of multiplying any matrix by the identity matrix is the original matrix. The corresponding 
identity matrix for 3D operations is as follows:  



 

  
 

 

The preceding matrices can be applied to the coordinates matrix of a point in 3D space to perform 
the transformation that it contains. The product of any arbitrary sequence of translation, scaling, 
and rotation transformations using these matrices have the property of preserving the parallelism, 
although not the line lengths or angles, of the original figure. For this reason they are described as 
affine transfor-mations. Notice that the last column of all of the primitive transformations matrices 
listed previously have the following pattern:  

 

 

  
 
 It is this pattern in the matrices last column that ensures that the affine property is preserved.  
 
 The following matrix multiplication translates a point expressed in a row vector, with coordinates 
(x,y,z), according to the value contained in the translation matrix for each axis.  

 

 

  
 
 In this case Tx, Ty, and Tz represent the amount of translation performed in each axis. 



 In this case Tx, Ty, and Tz represent the amount of translation performed in each axis.  
 
 Matrices in Direct3D  
 

 
In C++ code, a matrix can be represented by an array of the corresponding dimen-sions. 
Conventionally, matrices are specified in row-major order. This means that a 2 X 4 matrix contains 
2 rows and 4 columns. In this sense, a row vector that stores the coordinates of a point in 3D 
space can be represented in a one-dimensional array of four elements. For example:  

 
 D3DVALUE pointsArray[4];  
 

 
The 4 X 4 matrix representing a 3D transformation can be stored in a two-dimensional array of 4 
rows and 4 columns. In retained mode the D3DRMMATRIX4D data type is a 4 X 4, two-dimensional 
array that expresses a matrix-coded transformation. The array is defined as follows:  

 
 typedef D3DVALUE D3DRMMATRIX4D[4][4];  
 

 
The first dimension corresponds to the matrix rows and the second one to the columns. The 
elements in the matrix array are of type D3DVALUE, which corre-sponds to a float data type. The 
D3DVAL macro is defined in the d3dtypes.h file as follows:  

 
 #define D3DVAL(val) ((float)(val))  
 

 
The macro can be used, instead of typecasting, to create values of type D3DVALUE. The following 
code fragment shows a function that inserts values for an identity matrix in the matrix passed as a 
parameter by the caller.  

 
 //************************************************  
 // name: MakeIdentityMatrix()  
 // desc: Fills the values for an identity matrix,  
 // that is, a matrix with 1's in the main  
 // diagonal and 0's everywhere else  
 //************************************************  
 void MakeIdentityMatrix(D3DRMMATRIX4D aMatrix)  
 {  
   
 aMatrix[0][0] = (D3DVALUE) 1.0;  
 aMatrix[0][1] = (D3DVALUE) 0.0;  
 aMatrix[0][2] = (D3DVALUE) 0.0;  
 aMatrix[0][3] = (D3DVALUE) 0.0;  
   
 aMatrix[1][0] = (D3DVALUE) 0.0;  



 aMatrix[1][1] = (D3DVALUE) 1.0;  
 aMatrix[1][2] = (D3DVALUE) 0.0;  
 aMatrix[1][3] = (D3DVALUE) 0.0;  
   
 aMatrix[2][0] = (D3DVALUE) 0.0;  
 aMatrix[2][1] = (D3DVALUE) 0.0;  
 aMatrix[2][2] = (D3DVALUE) 1.0;  
 aMatrix[2][3] = (D3DVALUE) 0.0;  
   
 aMatrix[3][0] = (D3DVALUE) 0.0;  
 aMatrix[3][1] = (D3DVALUE) 0.0;  
 aMatrix[3][2] = (D3DVALUE) 0.0;  
 aMatrix[3][3] = (D3DVALUE) 1.0;  
   
 return;  
 }  
 
 The local transform  
 

 

A retained mode frame is located and oriented by a 4 X 4 matrix located in the frame object itself. 
In this sense the terms local or model coordinates refer to the points in 3D space that define the 
modeled object. Consistently, the matrix associated with each frame is sometimes called the local 
transform. The default state of the local transform for a frame is the identity matrix. Applications 
can obtain the 4 X 4 affine matrix that is the local transform matrix for a frame by means of the 
GetTransform() function of IDirect3DRMFrame3. The function has the following general 
form:  

 
 HRESULT GetTransform(  
 LPDIRECT3DRMFRAME lpRefFrame, // 1  
 D3DRMMATRIX4D rmMatrix // 2  
 );  
 

 
The first parameter designates the frame that serves as the root of the scene. If this argument is 
NULL, the current root frame is used. The second parameter is an array of type D3DRMMATRIX4D 
that receives the frame's local transform. The function returns DD_OK if it succeeds.  

 
 Applying frame-level transformations  
 

 
Several retained mode functions serve to simplify and implement matrix transfor-mations. The 
most general one is named AddTransform(). The AddTransform() function applies the 
frame's local transform matrix to the coordinates of each point of the object contained in the frame. 
The result is a general transformation. The function's general form is as follows:  



 
 HRESULT AddTransform(  
 D3DRMCOMBINETYPE rctCombine, // 1  
 D3DRMMATRIX4D rmMatrix // 2  
 );  
 

 

The first parameter is one of the members of the D3DRMCOMBINETYPE enumeration described 
previously in this chapter. This determines how to combine the new transformation with any 
previously existing one. The second parameter is an array of type D3DRMMATRIX4D that defines 
the transformation matrix to be combined. The function returns D3DRM_OK if it succeeds, or an 
error otherwise.  

 
 Note that for the transformation to preserve its affine property the last column of the matrix passed 
in the call must contain the values:  

 

 

  
 

 
Application code should carefully preserve this matrix column. Transformation can be applied to 
the frame at any point in the code, although the results are not visible until the frame is rendered. 
The following code fragment shows the processing operations required for performing an x- and y-
axis translation using the AddTranslate() function.  

 
 // Translation matrix for x- and y-axis  
 D3DRMMATRIX4D transXY =   
 { D3DVAL(1), 0, 0, 0,  
 0, D3DVAL(1), 0, 0,  
 0, 0, D3DVAL(1), 0,  
 D3DVAL(0.5), D3DVAL(0.5), 0, D3DVAL(1)  
 };  
 . . .  



 FrameTransform(transXY);  
 . . .  
 //***************************************************  
 // name: FrameTransform()  
 // desc: Applies a transformation matrix to the  
 // frame   
 //***************************************************  
 BOOL FrameTransform()  
 {  
 // Add translation  
 if(xTrans + yTrans + zTrans != 0)  
 {  
 retval = childframe->AddTranslation(CTTrans,  
 D3DVAL(xTrans), // Axes  
 D3DVAL(yTrans),  
 D3DVAL(zTrans));   
 if(FAILED(retval))  
 {  
 RMError(retval);  
 return FALSE;  
 }  
 }  
 return TRUE;  
 }  
 
 3DRM Matrix Ops Demo project  
 

 

The project named 3DRM Matrix Ops Demo, in the book's CD-ROM, shows the action of the 
AddRotation(), AddTranslation(), and AddScale() functions and also illustrates matrix 
transformations. The program is intended as a minimal laboratory for experimenting with frame-
level movements and matrix-based transformations. All transformations are applied to the scene 
frame. As the program executes it displays a modeless dialog box that contains the patterns for 
the matrices used in translation, scaling, and rotation transformations listed previously in this 
chapter. In addition, code reads and displays the current local transform. Figure 19-5 is a screen 
snapshot of the initial program display.  

 



 

  
 
 Figure 19-5: Initial screen of the 3DRM Matrix Ops Demo program 

   
 

 

Notice in Figure 19-5 that the initial value for the local transform is the identity matrix. For this 
reason no change takes place in the frame object if the unmodified local transform is applied. 
Figure 19-5 also shows the program's main menu, which contains commands to execute some of 
the movements and transformation functions discussed in this chapter. The first three menu 
commands allow executing the AddRotation(), AddTranslation(), and AddScaling() 
functions of IDirect3D_RMFrame3. Figure 19-6 shows the dialog boxes for each of these menu 
commands.  

 

 

  
 
 Figure 19-6: Dialog boxes for the first three commands in the 3DRM Matrix Ops Demo program 

   
 

 All three dialogs contain check boxes for selecting the axes on which the transformations are 
performed. They also contain radio buttons for selecting the combine type to be applied in the 
transformation. Consistently with the functions themselves, the Add Rotation Setup dialog box 



scaling transformations enable the user to select a positive or negative value for each axis. This 
value determines the amount of transformations applied in each case. As the transformations are 
applied, the resulting local transform is shown in the program's Matrix Tranformations window.  

 
 The Add Transform command in the program's Operations menu allows applying an arbitrary 
transformation defined by the user. The command displays the dialog box shown in Figure 19-7.  

 

 

  
 
 Figure 19-7: Add Transform dialog in the 3DRM Matrix Ops Demo program 

   
 

 

When the Add Transform command executes the dialog box displays the values in the current 
local transform. The edit boxes allow entering new values in the matrix. The entries for the 
rightmost matrix columns are grayed to ensure that the result-ing transformation preserves the 
affine characteristic. The button labeled Make Identity Matrix is used to change the matrix to the 
identity form, that is, with 1s in the main diagonal and 0s everywhere else. The button labled Apply 
closes the dialog box and produces the transformation. The one labeled Cancel closes the dialog 
box restoring the previous local transform. Here again, the user can select the combine type used 
in the call to the AddTransform() function.  

 

 
The Apply All command in the Operations menu applies all transformations enabled with the Add 
Rotation, Add Translation, Add Scale, and Add Transform commands. The transformations are 
applied in the same order as they appear in the menu and according to the selected combine types. 

 



Support Operations at the Frame Level  
 

 
Three groups of frame-level operations serve mainly to support the major functions already 
discussed. These support operations consist of vector-level manipulations, frame traversal options, 
and the implementation of callback functions. Because of their simple nature they are discussed 
briefly in the following sections.  

 
 Vector-level manipulations  
 

 
Four functions of IDirect3DRMFrame3 perform operations at the vector level. Although these 
functions are not as versatile or useful as those that perform matrix-level transformations, they do 
add a functionality that is occasionally necessary.  

 
 The functions and their operations are listed in Table 19-3.  
 
 Table 19-3: Vector-Level Functions in IDirect3DRMFrame3  
 
    
 
 Function  

 
Action  

 

 
    
 
 Transform()  

 
Transforms a vector in model coordinates to 
world coordinates  

 

 
 TransformVectors()  

 
Transforms an array of vectors in model 
coordinates to world coordinates  

 

 
 InverseTransform()  

 
Transforms a vector in world coordinates to 
model coordinates  

 

 
 InverseTransformVectors()  

 
Transforms an array of vectors in world 
coordinates to model coordinates  

 

 
    
 

 
The functions in Table 19-3 perform transformations to and from model-space and world-space. In 
retained mode documentation, world coordinates are relative to the root frame and model 
coordinates relative to the child frame.  

 
 Frame traversal controls  
 



 

Frame traversal options were first implemented in DirectX 6. The two new func-tions, named 
SetTraversalOptions() and GetTraversalOptions() enable you to control the render 
and the pick status of a frame. This status determines if a child frame is included in the frame 
hierarchy traversed during rendering and picking. The SetTraversalOptions() function has 
the following general form:  

 
 HRESULT SetTraversalOptions(  
 DWORD dwFlags // 1  
 );  
 
 The function's only parameter consists of two flags that enable rendering and picking traversal for 
the frame. They are defined as follows:  

 
   •D3DRMFRAME_RENDERENABLE indicates to the function to render this frame or any children of 

this frame  
 
   •D3DRMFRAME_PICKENABLE indicates to the function to pick any visuals in this frame or any 

children of this frame  
 

 
The default state of both flags is enabled. Code can disable one or another traversal option by 
setting the other one. Both traversal options are disabled by passing a value of zero for the 
function's parameter, as in the following statement:  

 
 childframe->SetTraversalOptions(0);  
 

 
Thereafter, the child frame referenced in the call to SetTraversalOptions() is not visited 
during rendering or picking operations. The function returns DD_OK if it succeeds, or an error code 
otherwise.  

 
 The GetTraversalOptions() function returns the traversal option currently enabled.  
 
 Frame-level callback functions  
 

 

Frames support a callback function that you can use to implement complex animations and other 
special manipulations at rendering time. After the callback function is registered, retained mode 
calls this function before the motion attri-butes are applied. When there is a hierarchy containing 
multiple frames, each frame can be associated with its own callback function. In this case the 
parent frames are called before the child frames. Callback functions are used to provide objects 
with new positions and orientations based on a preprogrammed animation sequence, or to 
implement dynamic motion in which the activities of visuals depend upon the positions of other 
objects in the scene.  

 

 

DirectX retained mode currently provides nine different types of callback functions. One of them, 
named D3DRMFRAME3MOVECALLBACK, enables an application to receive control whenever a 
frame is moved or updated. The intercept can be used to pro-duce powerful and sophisticated 
animation effects or other render-time operations. The use of the callback function in animation is 
discussed in Chapter 25. The callback function is defined as follows:  



 
 void (*D3DRMFRAME3MOVECALLBACK)(  
 LPDIRECT3DRMFRAME3 lpD3DRMFrame, // 1  
 LPVOID lpArg, // 2  
 D3DVALUE delta // 3  
 );  
 

 

The first parameter is the address of a pointer to the Direct3DRMFrame object that is being 
moved. The second parameter is the address of a pointer to application-defined data passed to 
this callback function. The third parameter encodes the amount of change that is to be applied to 
the frame movement. Two components are individually controllable: linear and rotational. The 
change in each component is equal to velocityofcomponent X delta. Either or both of these 
velocities can be set relative to any frame; however, the system automatically converts them to 
velocities relative to the parent frame. The function has no return value.  

 

 

The frame-level callback function enables code to control the acceleration of a frame relative to its 
parent frame. To accomplish this, you can reset the velocity of the child frame in relation to the 
parent frame during each tick. If a is the required acceleration, then each intercept code should set 
the velocity of the child frame relative to itself to (a units per tick) X 1 tick. This is equal to a X delta 
units per tick. Retained mode internally converts a X delta units per tick relative to the child frame 
to (v+(a X delta)) units per tick relative to the parent frame, where v is the current velocity of the 
child relative to the parent.  

 

 
Two other functions of IDirect3DRMFrame3 are related to frame move callbacks: 
AddMoveCallback() and DeleteMoveCallback(). The first one is used to create a move 
callback intercept, as previously described. The function's general form is as follows:  

 
 HRESULT AddMoveCallback(  
 D3DRMFRAME3MOVECALLBACK d3drmFMC, // 1  
 VOID *lpArg, // 2  
 DWORD dwFlags // 3  
 );  
 
 The first parameter is the application-defined D3DRMFRAME3MOVECALLBACK callback function 
previously discussed.  

 
 The second parameter is a pointer to an application-defined data structure passed to the callback 
function. The third parameter is one of the following flags:  

 
   •D3DRMCALLBACK_PREORDER. This is the default value. When the Move() function traverses the 

frame hierarchy, callbacks for a frame are used before any child frames are traversed.  
 
   •D3DRMCALLBACK_POSTORDER. When the Move() function traverses the hierarchy, callbacks for 

a frame are used after the child frames are traversed.  
 



 If multiple callbacks are implemented on the same frame, they are called in the order that they 
were created. The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 The DeleteMoveCallback() function of IDirect3DRMFrame3 removes a callback function 
created with AddMoveCallback(). The function has the following general form:  

 
 HRESULT DeleteMoveCallback( 
 D3DRMFRAME3MOVECALLBACK d3drmFMC, // 1
 VOID *lpArg // 2 
 ); 

 

 
The first parameter is the D3DRMFRAME3MOVECALLBACK callback function to be removed. The 
second parameter is a pointer to the application-defined data that was passed to the callback 
function. The function returns D3DRM_OK if it succeeds, or an error otherwise. 

 



Summary  
 

 

We have now concluded the first phase of our tour through frame-level program-ming in retained 
mode. In addition to an overview of the IDirect3DRMFrame3 interface, we explored frame 
movements and controls, matrix-based transfor-mations, vector manipulations, frame traversal 
options, and the use of application-defined callback functions. In this process we learned how to 
apply, in practical programming, the mathematical structures discussed in earlier chapters. This 
enabled us to perform frame-level transformations both indirectly and by manipulating primitive 
transformation matrices. In addition, we developed software that will enable us to experiment with 
these transformations.  

 
 In the next chapter we continue exploring frame-level programming in retained mode.  
 



Chapter 20: Frame Attributes and Scene-Level 
Controls  
 
 Overview  
 

 

In Chapter 19 we began our discussion of frame programming. At that time we mentioned that 
frame-level operations are one of the richest and most powerful in retained mode. Consequently, 
we divided the material into two chapters; this is the second one. The frame-related functions 
discussed here refer to the manipulation of frame attributes, scene-level operations and 
programming, frame hierarchies, sorting modes, z-buffer controls, and visuals. Table 19-1, in the 
preceding chapter, lists all the functions of IDirect3DRMFrame3. There are close to fifty functions 
in this second part of the frame interface. We have only excluded a few functions that have very 
limited use, or that do not merit any explanation because of their simplicity or their similarity to other 
functions.  

 



Manipulating Frame Components and Attributes  
 
 A rather broad group of frame-level functions refer to the manipulation of frame attributes or 
components. These include the following categories:  

 
   •Operations related to the frame's bounding box  
 
   •Operations that set and retrieve the frame's color  
 
   •Operations that add, delete, and retrieve lights  
 
   •Operations that set and retrieve materials, material modes, and material overrides  
 
   •Operations that set and retrieve textures  
 
 Bounding box operations  
 

 

Bounding boxes for frames were first introduced in the IDirect3DRMFrame2 interface which is 
part of DirectX version 5. Bounding box–based testing is performed at render-time, as follows: the 
frame's bounding box is transformed into model space and checked for intersection with the 
viewing frustum. If the entire box is outside of the viewing frustum, none of the visuals in the frame, 
or in any child frame, are rendered. Otherwise, rendering takes place as normal. Bounding box 
operations at the frame level are useful in implementing hierarchical culling algorithms, but are not 
of much use in conventional application development.  

 
 The bounding box is delimited by a structure of type D3DRMBOX, which is defined as follows:  
 
 typedef struct _D3DRMBOX {  
 D3DVECTOR min, max;  
 }D3DRMBOX;  
 typedef D3DRMBOX *LPD3DRMBOX;  
 
 The structure members min and max define the bounds of the box. These are D3DVECTOR 
structures.  

 
 Setting and retrieving the bounding box  
 

 
Bounding box testing at the frame level must be explicitly enabled before it takes place. But, before 
bounding box testing is enabled, a valid bounding box must have been defined for the frame. The 
SetBox() function of IDirect3DRMFrame3 sets the bounding box for a frame. A valid bounding 
box must be equal to or smaller than the frame itself. The function has the following general form:  

 
 HRESULT SetBox(  



 D3DRMBOX *lpD3DRMBox // 1  
 );  
 

 
The function's only parameter is the address of a structure of type D3DRMBOX structure that 
contains the bounding box coordinates. The function returns D3DRM_OK if it succeeds, or an error 
otherwise.  

 
 The GetBox() function of IDirect3DRMFrame3 allows the retrieval of the bounding box for a 
frame object. The function has the following general form:  

 
 HRESULT GetBox(  
 D3DRMBOX *lpD3DRMBox // 1  
 );  
 

 
The function's only parameter is the address of a D3DRMBOX structure that is filled with the 
bounding box coordinates. The function returns D3DRM_OK if it succeeds, or an error otherwise. If 
a valid bounding box has not been previously defined for the frame, the call returns 
D3DRMERR_BOXNOTSET.  

 

 
The GetHierarchyBox() function calculates and returns the bounding box required for holding 
all the objects in the hierarchy rooted in the calling frame. The function has the following general 
form:  

 
 HRESULT GetHierarchyBox(  
 D3DRMBOX *lpD3DRMBox // 1  
 );  
 
 The function's only parameter is the address of a D3DRMBOX structure that is filled with the 
bounding box coordinates. The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 Controlling bounding box testing  
 

 
Bounding box testing at the frame level is off by default. Applications that intend to use this 
function must enable it by calling the SetBoxEnable() function of IDirect3DRMFrame3. This 
function can also be used to disable bounding box testing after it has been enabled. The function 
has the following general form:  

 
 HRESULT SetBoxEnable(  
 BOOL bEnableFlag // 1  
 );  
 

 
The function's only parameter is a boolean that enables or disables bounding box checking for the 
frame making the call. The default value is FALSE, which corresponds to bounding box checking 
disabled. Enabling bounding box testing with a box of {0,0,0,0} completely prevents a frame from 



being rendered. The function returns D3DRM_OK if it succeeds, or an error otherwise.  
 
 The GetBoxEnable() function returns the state of the bounding box testing enabled flag. The 
function has the following general form:  

 
 BOOL GetBoxEnable();  
 
 The return value is TRUE if bounding box checking is enabled and FALSE otherwise.  
 
 Controlling frame color  
 

 

Code can control the color of meshes in a frame by means of frame-level functions. This is 
possible only if the D3DRMMATERIALMODE enumerated type is D3DRMMATERIAL_FROMFRAME. 
Materials in frames are discussed later in this chapter. The color-related functions at the frame 
level are GetColor(), SetColor(), and SetColorRGB(). The SetColor() function has the 
following general form:  

 
 HRESULT SetColor(  
 D3DCOLOR rcColor // 1  
 );  
 

 
The function's only parameter is the address of a structure variable of type D3DCOLOR that 
contains the new color for the frame. The D3DCOLOR type is defined as a DWORD in the current 
implementation of DirectX. Because the alpha component of the color is not ignored, a typical 
application uses the RGBA_MAKE macro to specify the color value. The macro is defined as follows: 

 
 RGBA_MAKE(r, g, b, a) \   
 ((D3DCOLOR) (((a) << 24) | ((r) << 16) | ((g) << 8) | (b)))  
 
 The function returns D3DRM_OK if it succeeds, or an error otherwise.  
 
 A more direct way and easier way to set the frame color is by means of the SetColorRGB() 
function. The function has the following general form:  

 
 HRESULT SetColorRGB(   
 D3DVALUE rvRed, // 1  
 D3DVALUE rvGreen, // 2  
 D3DVALUE rvBlue // 3  
 );  

All three parameters define the red, green, and blue color components for the frame. Because 



frame color.  
 
 retval = childframe->SetMaterialMode(D3DRMMATERIAL_FROMFRAME);  
 retval = childframe->SetColorRGB(D3DVAL(0.0), // red   
 D3DVAL(0.0), // green   
 D3DVAL(0.9)); // blue  
 
 The GetColor() function of IDirect3DRMFrame3 retrieves the color of a frame. The function's 
general form is as follows:  

 
 D3DCOLOR GetColor();  
 
 The returned value is a D3DCOLOR type, which is equivalent to a DWORD integer. Figure 20-1 
shows the D3DCOLOR bitmap.  

 

 
  

 
 Figure 20-1: RGBA mapping in the D3DCOLOR data type 

   
 

 

Application code can do some bitwise masking and shifting to isolate the individual color 
components into integer data types. Alternatively, code can use the nonmember functions 
discussed in Chapter 16 to obtain the individual color components in a D3DCOLOR variable. The 
functions are named D3DRMColorGetAlpha(), D3DRMColor_GetBlue(), 
D3DRMColorGetGreen(), and D3DRMColorGetRed(). The return value for all four functions is 
of D3DVALUE type.  

 
 Controlling lights  
 

 

In Chapter 14 we discussed lights in retained mode programming, and in Chapter 15 we 
developed code to create and position a light frame and to create and attach lights to this frame. At 
that time you learned that an unlighted scene is invisible and that lights can be used to increase 
the visual quality of a scene. You also learned that retained mode lights are attached to frames, 
which are used to position and orient the lights within the scene. The light is placed at the origin of 
the frame it is attached to. By moving and reorienting the frame code, you can redirect a light 
source.  

 

 

Lights are discussed in detail in Chapter 24, in relation to the IDirect3DRMLight interface. Here 
we are concerned with the organization and management of lights at the frame level. Frame-level 
functions that relate to lights serve to add and remove lights from a frame and to obtain a list of the 
lights currently installed in the frame. Before you add a light to a frame you must create the light 
frame and position it within the scene. In the retained mode demo programs developed thus far in 
the book we have proceeded as shown in the following code fragment:  

 
 // Global variables 



 // Global variables  
 LPDIRECT3DRMFRAME3 lightsframe = NULL;  
 LPDIRECT3DRMLIGHT light1 = NULL;  
 LPDIRECT3DRMLIGHT light2 = NULL;  
 . . .  
   
 // Create a light frame as a child of the scene frame  
 retval = lpD3DRM->CreateFrame(aScene, &lightsframe);  
 if(FAILED(retval))  
 goto ERROR_EXIT;  
   
 // Position the light frame within the scene  
 retval = lightsframe->SetPosition(aScene,  
 D3DVAL(5), // x  
 D3DVAL(0), // y  
 -D3DVAL(7)); // z  
 if(FAILED(retval))  
 goto ERROR_EXIT;  
   
 // Create a bright, parallel point light  
 // Color values are as follows:  
 // 0.0 = totally dim and 1.0 = totally bright  
 retval = lpD3DRM->CreateLightRGB(D3DRMLIGHT_PARALLELPOINT,  
 D3DVAL(0.8), // Red intensity  
 D3DVAL(0.8), // Green intensity  
 D3DVAL(1.0), // Blue intensity  
 &light1);  
 if(FAILED(retval)){  
 goto ERROR_EXIT;  
   
 // Attach first light to lights frame  
 retval = lightsframe->AddLight(light1);  
 if(FAILED(retval))  
 goto ERROR_EXIT;  
   
 // Create a strong ambient light   
 retval = lpD3DRM->CreateLightRGB(D3DRMLIGHT_AMBIENT,   
 D3DVAL(0.4), // red  



 D3DVAL(0.4), // green  
 D3DVAL(0.4), // blue  
 &light2);  
 if(FAILED(retval))  
 goto ERROR_EXIT;  
 // Attach second light to lights frame  
 retval = lightsframe->AddLight(light2);  
 if(FAILED(retval))  
 goto ERROR_EXIT;  
 . . .  
 
 The AddLight() function of IDirect3DRMFrame3 is used in the preceding code to attach each 
of the lights to the lights frame.  

 
 The function has the following general form:  
 
 HRESULT AddLight(  
 LPDIRECT3DRMLIGHT lpD3DRMLight // 1  
 );  
 
 The function's only parameter is the address of a variable that represents the Direct3DRMLight 
object to be added to the frame.  

 
 The function returns D3DRM_OK if it succeeds, or an error otherwise.  
 

 

As lights are added to the light frame, retained mode places each one at the end of an array of 
type Direct3DRMLightArray. Code accesses and manipulates the lights array through the 
functions in the IDirect3DRMLightArray interface. The first step in this process is to call the 
GetLights() function of IDirect3DRMFrame3 to obtain the address of the lights array. 
GetLights() has the following general form:  

 
 HRESULT GetLights(   
 LPDIRECT3DRMLIGHTARRAY *lplpLights // 1  
 );  
 

 
The function's only parameter is the address of a pointer that is initialized with the address of a 
valid Direct3DRMLightArray variable. The function returns D3DRM_OK if it succeeds, or an 
error otherwise.  

 

 

The pointer returned by the GetLights() function can be used to access the two functions of 
IDirect3DRMLightArray. The GetSize() function returns the number of elements in the 
lights array and the GetElement() function returns a pointer to the IDirect3DRMLight 
interface for the specific light. Through this pointer, application code can access the nineteen 



functions of IDirect3DRMLight, which enable you to control the light and retrieve its 
characteristics. The GetSize() function of IDirect3DRMLightArray has the following general 
form:  

 
 DWORD GetSize( );  
 
 The function returns the number of elements in the lights array.  
 
 The GetElement() function retrieves a pointer to the specific light element in the lights array. 
The function has the following general form:  

 
 HRESULT GetElement(  
 DWORD index, // 1  
 LPDIRECT3DRMLIGHT *lplpD3DRMLight // 2  
 );  
 

 
The first parameter is the element's position in the array. The second parameter is a pointer that is 
filled with the address of the IDirect3DRMLight interface. The function returns D3DRM_OK if it 
succeeds, or an error otherwise.  

 

 
The DeleteLight() function of IDirect3DRMFrame3 removes a light from a frame, effectively 
destroying the light. The light in question must have been previously created with the AddLight()
function. DeleteLight() has the following general form:  

 
 HRESULT DeleteLight(  
 LPDIRECT3DRMLIGHT lpD3DRMLight // 1  
 );  
 
 The function's only parameter is the address of a variable that represents the Direct3DRMLight 
object to be removed. The call returns D3DRM_OK if it succeeds, or an error otherwise.  

 

 
When you use the functions described previously, it is possible to control lights at run time. 
Individual lights can be dimmed or augmented to change the scene's appearance, or they can be 
changed progressively to create very convincing fade-in and fade-out effects. Processing usually 
involves the following steps:  

 
   1.Retrieve the lights array and make sure that its size is as expected.  
 
   2.Obtain a pointer to the desired light using its offset in the array. This pointer, of type 
LPDIRECT3DRMLIGHT, provides access to the corresponding interface.  

 

   
3.Use the pointer obtained in Step 2 to call the desired function in IDirect3D_RMLight for the 
selected light. For example, code can call the SetColorRGB() function to reduce or augment the 
light or to change its color.  



 

 

In the following example we assume that two lights were created in the scene. The first light is a 
strong parallel light and the second one is a softer, ambient light. The code fragment listed 
previously in this section creates these lights. Because lights are placed in the lights array in the 
order in which they were created, we know that the first one in the array (the one at offset zero) is 
the parallel light, and the second one is the ambient light. The following code fragment shows how 
you can retrieve the lights array and turn off the first light.  

 
 // Light-related variables  
 LPDIRECT3DRMLIGHTARRAY lightsArray;  
 DWORD arraySize;  
 LPDIRECT3DRMLIGHT aLight;  
 BOOL parallelIsOn = TRUE;  
 . . .  
 // Retrieve lights array  
 retval = lightsframe->GetLights(&lightsArray);  
 // Check to see that there are two lights in the lights array  
 arraySize = lightsArray->GetSize();  
 if(arraySize < 2)  
 {  
 // Lights array size error handler here  
 }  
   
 // Check to see if parallel light is ON  
 if(parallelIsOn)  
 {  
 retval = lightsArray->GetElement_(0, // Offset in array &aLight);  
 if (FAILED(retval))  
 {  
 // Failed GetElement() call error handler here   
 }   
 // Turn off first light  
 retval = aLight->SetColorRGB(D3DVAL(0.0), // red  
 D3DVAL(0.0), // green  
 D3DVAL(0.0)); // blue  
 if (FAILED(retval))  
 {  
 // Failed SetColorRGB() call error handler here  
 }  
 



 
The sample program 3DRM Frame Ops Demo contained in the book's CD-ROM includes a menu 
command to turn on or off either one of the two lights used in the scene. Figure 20-2 shows the 
results.  

 

 

  
 
 Figure 20-2: Manipulating scene lights in the 3DRM Frame Ops Demo program 

   
 
 Operating on materials  
 

 
The material property of a retained mode object determines how its surface emits and reflects 
light. Material properties are normally applied to meshes and to faces, not as commonly to frames. 
Materials were mentioned in Chapter 14 and materials programming is discussed in Chapter 22.  

 

 

In the context of frame-level programming there are six functions that relate to materials. Two of 
them, named GetMaterialMode() and SetMaterialMode(), are used to set and retrieve the 
source of material information for the object. These sources can be the mesh, the frame, or the 
object's parent frame. Two other functions, named SetMaterial() and GetMaterial(), set 
and retrieve the material for a frame object. These two functions were first implemented in 
IDirect3DRMFrame2, released with DirectX version 5. Finally, there are two functions introduced 
in DirectX version 6 named SetMaterialOverride() and GetMaterialOverride(), which 
enable applications to override the emissive properties of a material for the entire frame hierarchy. 

 
 Material modes  
 
 The material mode determines the source of material information for the visuals rendered with a 
frame. The SetMaterialMode() function has the following general form:  

 
 HRESULT SetMaterialMode(  
 D3DRMMATERIALMODE rmmMode // 1  
 );  



 The function's only parameter is one of the members of the D3DRMMATERIALMODE enumerated 
type. The enumeration is defined as follows:  

 
 typedef enum _D3DRMMATERIALMODE{  
 D3DRMMATERIAL_FROMMESH,  
 D3DRMMATERIAL_FROMPARENT,  
 D3DRMMATERIAL_FROMFRAME  
 } D3DRMMATERIALMODE;  
 
 Table 20-1 lists the retained mode material modes.  
 
 Table 20-1: Material Mode Constants in D3DRMMATERIALMODE  
 
    
 
 Constant  

 
Description  

 

 
    
 
 D3DRMMATERIAL_FROMMESH  

 
Material information is retrieved from the mesh. 
This is the default setting.  

 

 
 D3DRMMATERIAL_FROMPARENT  

 
Material information is inherited from the parent 
frame.  

 

 
 D3DRMMATERIAL_FROMFRAME  

 
Material information is retrieved from the frame, 
overriding any previous material information 
that the object may have possessed.  

 

 
    
 
 The SetMaterialMode() function returns D3DRM_OK if it succeeds, or an error otherwise.  
 
 The GetMaterialMode() function retrieves the material mode for a frame. The function has the 
following general form:  

 
 D3DRMMATERIALMODE GetMaterialMode();  
 
 The function returns one of the members of the D3DRMMATERIALMODE enumerated type listed in 
Table 20-1. The default mode is D3DRMMATERIAL_FROMMESH.  

 
 Frame-level materials control  



 

 

Code interacts with materials by means of the IDirect3DRMMaterial2 interface, discussed in 
Chapter 22. This interface contains functions to set and retrieve the ambient, emissive, and 
specular properties of materials and to set and retrieve the specular exponent. Two functions at 
the frame level allow access to this interface. The SetMaterial() function sets the material of a 
Direct3DRMFrame3 object. The function has the following general form:  

 
 HRESULT SetMaterial(   
 LPDIRECT3DRMMATERIAL2 *lplpMaterial // 1  
 );  
 
 The function's only parameter is the address of the Direct3DRMMaterial object that is applied 
to the frame. The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 The GetMaterial() function of IDirect3DRMFrame3 retrieves the material of a frame object. 
The function has the following general form:  

 
 HRESULT GetMaterial(  
 LPDIRECT3DRMMATERIAL2 *lplpMaterial // 1  
 );  
 

 
The function's only parameter is the address of a variable that is filled with a pointer to the 
Direct3DRMMaterial object that is applied to the frame. By default, the material is NULL. The 
function returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 Material override functions  
 

 
Two functions introduced in DirectX version 6, named SetMaterialOverride() and 
GetMaterialOverride(), enable you to override the emissive properties of a material for the 
entire frame hierarchy. The functions have the following general forms:  

 
 HRESULT GetMaterialOverride)  
 LPD3DRMMATERIALOVERRIDE lpdmOverride // 1  
 );  
   
 HRESULT SetMaterialOverride(  
 LPD3DRMMATERIALOVERRIDE lpdmOverride // 1  
 );  
 
 In both functions the only parameter is a pointer to a D3DRMMATERIALOVERRIDE structure that 
describes the properties to be overridden. The structure is defined as follows:  

 
 typedef struct _D3DRMMATERIALOVERRIDE  



 {  
 DWORD dwSize; // size in bytes   
 DWORD dwFlags; // Flags  
 D3DCOLORVALUE dcDiffuse; // Diffuse property setting  
 D3DCOLORVALUE dcAmbient; // Ambient property setting  
 D3DCOLORVALUE dcEmissive; // Emissive property setting  
 D3DCOLORVALUE dcSpecular; // Specular property setting  
 D3DVALUE dvPower; // Power setting  
 LPUNKNOWN lpD3DRMTex;  
 } D3DRMMATERIALOVERRIDE, *LPD3DRMMATERIALOVERRIDE;  
 
 The dwFlags structure member can be one or more flags indicating which fields in this structure 
are valid. The following values are possible:  

 
 D3DRMMATERIALOVERRIDE_DIFFUSE_ALPHAONLY   
 D3DRMMATERIALOVERRIDE_DIFFUSE_RGBONLY   
 D3DRMMATERIALOVERRIDE_DIFFUSE   
 D3DRMMATERIALOVERRIDE_AMBIENT   
 D3DRMMATERIALOVERRIDE_EMISSIVE   
 D3DRMMATERIALOVERRIDE_SPECULAR   
 D3DRMMATERIALOVERRIDE_POWER   
 D3DRMMATERIALOVERRIDE_TEXTURE   
 D3DRMMATERIALOVERRIDE_ALL   
 
 The dcDiffuse structure member defines the RGBA color setting for the diffuse property of the 
material. The value is of type D3DCOLORVALUE.  

 
 The dcAmbient structure member defines the RGB color for the ambient property of the material. 
The value is of type D3DCOLORVALUE.  

 
 The dcEmissive structure member defines the RGB color for the emissive color setting of the 
material. The value is of type D3DCOLORVALUE.  

 
 The dcSpecular structure member defines the RGB color of the specular property of the 
material. The value is of type D3DCOLORVALUE.  

 
 The dvPower structure member defines the power setting. The value is of type D3DVALUE.  
 
 The lpD3DRMTex structure member is a pointer to the texture interface.  
 
 The function returns DD_OK if it succeeds, or one of the following error codes:  



 
 DDERR_INVALIDOBJECT  
 
 DDERR_INVALIDPARAMS  
 

 

Material property overrides always affect all elements lower in the hierarchy. When code overrides 
the emissive property in one frame, any attempts to override the same property farther down the 
hierarchy are ignored. This override also takes precedence over standard frame overrides, as well 
as material properties on specific meshes. Overrides that result from calls to SetMaterial() and 
SetTexture() functions have no effect on the action of the SetMaterialOverride() 
function.  

 
 Operating on textures  
 

 
A texture, in retained mode programming, is a 2D bitmap image that is applied to the surface of an 
object to modify its visual qualities. Textures were mentioned in Chapter 14 and texture 
programming is discussed in Chapter 22.  

 

 

In this section we are concerned with texture-related functions that are available at the frame level. 
It is interesting to note that, up to the IDirectXFrame2 interface, there were two methods that 
related to texture topologies. They are named GetTextureTopology() and 
SetTextureTopology(). However, in the Microsoft documentation for IDirect3DRMFrame3 
(DirectX version 7) these methods are no longer described, with no explanation given for their 
disappearance. In any case, we do not discuss them in this section because these functions have 
limited usefulness at the frame level. Other texture topology functions at the mesh and face level 
are discussed later in this book.  

 

 

Texture can be accessed at the frame level when the material mode is set to 
D3DRMMATERIAL_FROMFRAME. Setting material modes was discussed earlier in this chapter, and 
the material mode constants are listed in Table 20-1. The two texture-related functions described 
in IDirect3DRMFrame3 are named SetTexture() and GetTexture(). The GetTexture() 
function has the following general form:  

 
 HRESULT GetTexture(  
 LPDIRECT3DRMTEXTURE3 *lplpTexture // 1  
 );  
 

 
The function's only parameter is a pointer variable that is filled with the address of the 
Direct3DRMTexture object representing the frame's texture. By default, the texture is NULL. 
The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 After code obtains the pointer to IDirect3DRMTexture3 interface, it can use it to modify the 
frame's texture. The SetTexture() function has the following general form:  

 
 HRESULT SetTexture(  
 LPDIRECT3DRMTEXTURE3 lpD3DRMTexture // 1  



 );  
 

 
The function's only parameter is the address of a pointer that represents the Direct3DRMTexture
object to be used. This object opens access to the IDirect3DRMTexture3 interface, which 
contains 20 texture manipulation functions. The function returns D3DRM_OK if it succeeds, or an 
error otherwise.  

 



Scene-Level Attributes  
 

 
In Chapter 14 we saw that a scene can be conceptually described as a hierarchy of individual 
frames that are organized in a tree-like structure. In actual programming the scene is defined by a 
root frame, also called the master frame, that anchors and serves as a reference for all the other 
visual objects. Two frame attributes are controlled at the scene-level: background and fog.  

 
 Scene background controls  
 

 

Currently two background attributes are accessible at the frame level: color and depth. Up until 
DirectX 5 a function was available to use a texture to set the scene's background image. Current 
DirectX documentation states that the SetScene_BackgroundImage() function is obsolete and 
should not be used. Now, it is recommended that applications that require a background image 
use a bit blit to display it on the screen.  

 
 Background color controls  
 

 
Three functions in IDirect3DRMFrame3 relate to background color control. One function, named 
GetSceneBackground(), is used to obtain the current background color. The other functions, 
SetSceneBackground() and SetSceneBackgroundRGB(), are used to set a new background 
color. The GetSceneBackground() function has the following general form:  

 
 D3DCOLOR GetSceneBackground();  
 
 The function returns the scene's background color in a variable of type D3DCOLOR.  
 
 The SetSceneBackground() function is used to change the scene's background color. It has 
the following general form:  

 
 HRESULT SetSceneBackground(   
 D3DCOLOR rcColor // 1  
 );  
 
 The function's only parameter is a variable of type D3DCOLOR that defines the new background 
color for the scene. The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 Alternatively, the SetSceneBackgroundRGB() provides a way of setting the scene's background 
color by specifying each of the RGB components. The function has the following general form:  

 
 HRESULT SetSceneBackgroundRGB(  
 D3DVALUE rvRed, // 1  
 D3DVALUE rvGreen, // 2  
 D3DVALUE rvBlue // 3  



 );  
 

 
The function's three parameters are the red, green, and blue components for the new background 
color. Each color component must be in the range 0.0 to 1.0. The function returns D3DRM_OK if it 
succeeds, or an error otherwise.  

 
 The following code fragment shows setting the scene background color to red.  
 
 // Global variables  
 struct _globVars  
 {  
 . . .  
 LPDIRECT3DRMFRAME3 aScene; // Master frame   
 . . .   
 } globVars;  
 . . .  
 retval = globVars.aScene->SetSceneBackgroundRGB(  
 D3DVAL(0.8), // red  
 D3DVAL(0.0), // green  
 D3DVAL(0.0)); // blue  
 
 Background depth  
 

 

Although immediate mode contains several functions for manipulating the background depth at the 
viewport level, the ones in retained mode appear in the IDirect3DRMFrame3 interface. The 
background depth is defined as a buffer that is used to initialize the z-buffer before rendering a 
scene. Two functions are provided at the scene level that relate to the background depth: 
GetSceneBackgroundDepth() and SetSceneBackgroundDepth(). We do not discuss these 
functions because direct z-buffer control is rarely used in retained mode programming.  

 
 Fog controls  
 

 

Fog is a depth cueing technique that you can use to render a scene in order to enhance its 
realism, to provide a supernatural or mysterious mood, or to soften it. Fog control in retained mode 
is powerful, detailed, and effective. Fog effects are produced by blending the color of the objects in 
a scene with a chosen fog color. The blending is based on the depth of the object and on its 
distance from the viewpoint. More distant objects blend more into the chosen fog color, creating 
the illusion that the object is being increasingly obscured by tiny fog particles floating in the scene. 

 
 In retained mode, fog control relates to the following elements:  
 
   1.The fog enable state. Scene fog can be enabled or disabled.  
 



   2.The fog color.  
 
   3.The fogging method. Vertex- and table-based fog are available options. Another option is to 

base fogging effects in whatever capabilities are present in the device.  
 
   4.The fog mode. Retained mode documents three fogging formulas based on linear, exponential, 

and exponentially squared interpolations. Currently the linear mode is the only one supported.  
 
   5.The fog parameters refer to the distance to the point where the fog starts, where it ends, and its 

relative density in the exponential mode, for whenever it is implemented.  
 
 Functions in IDirect3DRMFrame3enable you to set and retrieve all five fog control elements 
listed previously.  

 
 Fog enable state controls  
 

 
Two functions in IDirect3DRMFrame3 enable you to set and retrieve the fog enabled state. The 
default state is that fog is disabled. The SetSceneFogEnable() function has the following 
general form:  

 
 HRESULT SetSceneFogEnable(  
 BOOL bEnable // 1  
 );  
 
 The function's only parameter is a flag that sets the fog enable state. If TRUE, fog effects are 
produced. The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 The GetSceneFogEnable() function retrieves that fog enable state. The function has the 
following general form:  

 
 BOOL GetSceneFogEnable();  
 
 The function returns TRUE if fog is enabled, and FALSE otherwise. The default state is FALSE.  
 
 Fog color controls  
 

 

The fog color defines the color attribute used in producing the depth cueing. Sometimes the fog 
color is chosen to match the predominant color of the scene background. For other effects, white 
or shades of gray can be selected for the fog color. Two functions in IDirect3DRMFrame3 refer 
to the fog color, one to set it and another one to retrieve it. SetSceneFogColor() has the 
following general form:  

 
 HRESULT SetSceneFogColor(  
 D3DCOLOR rcColor // 1  



 );  
 

 
The function's only parameter is the new color for the fog contained in a variable of type 
D3DCOLOR. Applications can use the D3DRMCreateColorRGB() nonmember function of 
Direct3DRM to set an RGB triplet for the color value easily. The coding is shown later in this 
section. The call returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 The GetSceneFogColor() function of IDirect3DRMFrame3 is used to retrieve the current fog 
color. The function has the following general form:  

 
 D3DCOLOR GetSceneFogColor();  
 
 The function returns the fog color, which is white by default. Code can use one of the following 
nonmember functions to get each of the RGB components of the fog color:  

 
 D3DRMColorGetBlue()  
 D3DRMColorGetGreen()  
 D3DRMColorGetRed()  
 
 Selecting the fogging method  
 

 

Two methods, which were introduced in DirectX 6 for implementing fogging, are available in 
retained mode: vertex and table fog. Table fog is sometimes called pixel fog because it is 
calculated on a per-pixel base in the device driver. In vertex fog, Direct3D computes fog effects 
when it performs transformation and lighting, and interpolates the result to each vertex of the 
polygon during rendering. Some drivers implement table fog by means of a precalculated look-up 
table that is used to determine the fog factor for each pixel.  

 

 
Two methods in IDirect3DRMFrame3 relate to the fogging method: GetSceneFog_Method() 
and SetSceneFogMethod(). The SetSceneFogMethod() function has the following general 
form:  

 
 HRESULT SetSceneFogMethod(  
 DWORD dwFlags // 1  
 );  
 
 The function's only parameter is one of the three flags described in Table 20-2.  
 
 Table 20-2: Fogging Method Flags in IDirect3DRMFrame3  
 
    
 
 Flag  

 
Description  

 



 
    
 
 D3DRMFOGMETHOD_ANY  

 
Direct3D retained mode should choose one of 
the applicable methods  

 

 
 D3DRMFOGMETHOD_VERTEX  

 
Use vertex fog  

 

 
 D3DRMFOGMETHOD_TABLE  

 
Use table (pixel) fog  

 

 
    
 

 
The default behavior is D3DRMFOGMETHOD_ANY. Fogging methods are chosen according to the 
capabilities of the device. If the device supports both vertex- and table-based fog, then vertex 
fogging will be used. If code requests table fog but it is not available in the hardware, then vertex 
fog is used. The function returns DD_OK if it succeeds, or one of the following errors:  

 
 D3DRMERR_BADVALUE  
 
 DDERR_INVALIDOBJECT  
 
 DDERR_INVALIDPARAMS  
 
 The GetSceneFogMethod() function retrieves the current fogging method. The function has the 
following general form:  

 
 HRESULT GetSceneFogMethod(  
 LPDWORD lpdwFlags // 1  
 );  
 
 The function's only parameter and return values are the same as for the SetSceneFogMethod() 
function previously described.  

 
 Selecting the fogging mode  
 

 
There are three fogging modes described in the retained mode documentation. They are named 
linear, exponential, and exponential-square. The SetSceneFogMode() and 
GetSceneFogMode() functions allow setting and retrieving the fogging mode. The 
SetSceneFogMode() function has the following general form:  

 
 HRESULT SetSceneFogMode(   
 D3DRMFOGMODE rfMode // 1  



 );  
 
 The function's only parameter is one of the members of the D3DRMFOGMODE enumerated type. The 
enumeration is defined as follows:  

 
 typedef enum _D3DRMFOGMODE{  
 D3DRMFOG_LINEAR,  
 D3DRMFOG_EXPONENTIAL,  
 D3DRMFOG_EXPONENTIALSQUARED  
 } D3DRMFOGMODE;  
 

 
The linear fogging mode determines in what way the fog effect is calculated as the distance from 
the camera increases. Because the linear mode is the only one currently supported, code must 
always select the D3DRMFOG_LINEAR flag. The function returns D3DRM_OK if it succeeds, or an 
error otherwise.  

 
 The GetSceneFogMode() function returns the current scene mode, which currently must be 
D3DRMFOG_LINEAR for the reason explained in the previous paragraph.  

 
 Determining fog parameters  
 

 

Fog parameters refer to the distance to the point where the fog starts and where it ends. There is a 
third parameter that determines the relative density in the exponential mode. Because this mode is 
not currently available, the value of this parameter is meaningless. Two functions are available in 
IDirect3DRMFrame3 that relate to fog parameters: one to set and one to retrieve the 
corresponding values. The SetSceneFogParams() function has the following general form:  

 
 HRESULT SetSceneFogParams(  
 D3DVALUE rvStart, // 1  
 D3DVALUE rvEnd, // 2  
 D3DVALUE rvDensity // 3  
 );  
 

 
The first parameter refers to the distance from the camera at which the fog effect first becomes 
visible. The second parameter sets the distance from the camera at which the fog reaches its 
maximum density. The third parameter sets the fog density in the exponential modes, and 
currently is ignored.  

 
 The GetSceneFogParams() function returns the current fog parameters for the scene. The 
function has the same parameters and returns type as the SetSceneFogParams() function.  

 



Manipulating Frame Hierarchies  
 

 

The frames in a scene are arranged in a tree-like structure. This structure is called the frame 
hierarchy. Frames can have parent and child frames. A frame with no parent is called the root 
frame and is referred to as the scene. Child frames have positions and orientations relative to their 
parent frames. This association between parent and child frames determines that if the parent 
frame moves, the child frames must also move.  

 

 

Code can set the position and orientation of a frame relative to any other frame in the scene. 
Frame positions and orientations relative to the root frame are referred to as absolute. Frames can 
be detached from a parent and added as a child to another frame by means of the AddChild() 
function of IDirect3DRMFrame3. A frame can be deleted as a child frame by means of the 
DeleteChild() function. Other functions allow obtaining the parent of a frame, the children 
frames, and the root frame or scene.  

 

 

In the context of frame hierarchies the term instance refers to the reuse of a frame hierarchy 
throughout the scene. When the parent frame is added as a visual to another frame all the child 
frames in the hierarchy are also added. This new hierarchy is an instance of the old one. However, 
retained mode documentation does not recommend instancing a parent frame into its children, 
thus creating a cyclic hierarchy. Cyclic hierarchies degrade performance and should be avoided.  

 
 Adding a child frame  
 

 
Code can add a child to a parent frame by means of the AddChild() function of 
IDirect3DRMFrame3. If the frame being added as a child is attached to another parent, the 
existing connection is broken automatically before the frame is attached to the new parent. The 
new frame is added at the end of the frame array. The function has the following general form:  

 
 HRESULT AddChild(  
 LPDIRECT3DRMFRAME3 lpD3DRMFrameChild // 1  
 );  
 
 The only parameter is the address of the Direct3DRMFrame object that is to be added as a child. 
The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 

 

At the time that the child frame is added to the parent frame its local transformation matrix is 
destroyed automatically. To preserve the child's local transform, code must call the 
GetTransform() function of IDirect3DRMFrame3 and store it in a variable. Then the 
transformation can be reapplied to the child frame by means of the AddTransform() function, 
after the AddChild() method has executed.  

 
 Deleting a child frame  
 
 A child frame can be removed from a frame hierarchy along with any of its children or attached 
lights and meshes. The DeleteChild() function has the following general form:  

 



 HRESULT DeleteChild(  
 LPDIRECT3DRMFRAME3 lpChild // 1  
 );  
 
 The function's only parameter is the address of the frame object to be used as the child. The 
function returns D3DRM_OK if it succeeds, or an error otherwise.  

 

 
As the function name implies, the child frame is deleted, not simply detached, from the parent. This 
means that the deleted frame will no longer be rendered. To break the frame's association with its 
parent, while preserving the child frame as a visual, code must call DeleteChild() followed by a 
call to reattach the frame to another frame or to the scene itself.  

 
 Retrieving frame hierarchies  
 

 
Several functions in IDirect3DRMFrame3 are used for retrieving frame associations. The 
GetChildren() function is used to retrieve a frame array containing all the child frames in the 
hierarchy. The function has the following general form:  

 
 HRESULT GetChildren(  
 LPDIRECT3DRMFRAMEARRAY *lplpChildren // 1  
 );  
 

 
The function's only parameter is the address of a pointer that is initialized with the address of a 
valid Direct3DRMLightArray variable. The function returns D3DRM_OK if it succeeds, or an 
error otherwise.  

 

 

The pointer returned by the GetChildren() function can be used to access the two functions of 
IDirect3DRMFrameArray. The GetSize() function returns the number of elements in the 
frame array, and the GetElement() function returns a pointer to the IDirect3DRMFrame 
interface for the specific light. Through this pointer application code can access all the functions of 
IDirect3DRMFrame3. The GetSize() function of IDirect3DRMFrameArray has the following 
general form:  

 
 DWORD GetSize( );  
 
 The function returns the number of elements in the frame array.  
 
 The GetElement() function retrieves a pointer to the specific element in the frame array. The 
function has the following general form:  

 
 HRESULT GetElement(  
 DWORD index, // 1  
 LPDIRECT3DRMFRAME3 *lplpD3DRMFrame // 2  
 );  



 

 
The first parameter is the element's position in the array. The second parameter is a pointer that is 
filled with the address of the IDirect3DRMFrame3 interface. The function returns D3DRM_OK if it 
succeeds, or an error otherwise.  

 
 The GetParent() function of IDirect3DRMFrame3 returns the parent of the frame making the 
call. The function has the following general form:  

 
 HRESULT GetParent(  
 LPDIRECT3DRMRAME3 *lplpParent // 1  
 );  
 

 
The function's only parameter is the address of a pointer that is filled with the pointer to the 
Direct3DRMFrame object representing the frame's parent. The pointer is NULL if the current 
frame is the root. The call returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 The GetScene() function returns the root frame of the hierarchy. The function has the following 
general form:  

 
 HRESULT GetScene(  
 LPDIRECT3DRMFRAME3 lplpRoot // 1  
 );  
 

 
The function's only parameter is the address of the pointer that will be filled with the pointer to the 
Direct3DRMFrame object representing the scene's root frame. The call returns D3DRM_OK if it 
succeeds, or an error otherwise.  

 
 3DRM Frame Hierarchy Demo program  
 

 
The 3DRM Frame Hierarchy Demo program demonstrates some of the frame hierarchy functions 
described in the preceding sections. The program loads two meshes, one of them in the shape of 
a torus and the other one a sphere. The torus is green and the sphere is red. Figure 20-3 shows 
two screen snapshots of the 3DRM Frame Hierarchy Demo program.  

 

 

  
 
 Figure 20-3: Manipulating frame hierarchies in the 3DRM Frame Hierarchy Demo program 



   
 

 
In the initial state, the torus and the sphere frames are attached to the scene. In this case the 
rotation of the torus does not affect the sphere. By means of the dialog box the user can attach the 
sphere frame to the torus frame. In this case the sphere rotates with the torus.  

 
 The code for making and breaking the frame attachments is as follows:  
 
 // Global variables  
 LPDIRECT3DRMFRAME3 torusFrame = NULL;  
 LPDIRECT3DRMFRAME3 sphereFrame = NULL;  
 D3DRMMATRIX4D sphereMatrix;  
 . . .  
 // Add sphere frame to torusFrame hierarchy  
 retval = torusFrame->AddChild(sphereFrame);  
 if(FAILED(retval))  
 // Frame attachment error handler goes here  
 . . .  
 // Add sphere frame to scene  
 // First obtain and save the local transform  
 retval = sphereFrame->GetTransform(NULL, sphereMatrix);  
 if(FAILED(retval))  
 // Transform error handler goes here  
 // Remove sphereFrame from torusFrame hierarchy  
 retval = torusFrame->DeleteChild(sphereFrame);  
 if(FAILED(retval))  
 // Sphere frame removal error handler goes here  
 // Restore transform to sphere frame  
 retval = sphereFrame->AddTransform(D3DRMCOMBINE_REPLACE,  
 sphereMatrix);  
 if(FAILED(retval))  
 // Transform operation error handler goes here  
 // Add sphere frame to scene frame  
 retval = globVars.aScene->AddChild(sphereFrame);  
 if(FAILED(retval))  
 // Sphere frame attachment error handler goes here  
 



Sorting Modes and Z-buffer Control  
 

 
Several functions of the IDirect3DRMFrame3 interface relate to the algorithms used by the 
rasterizer module. Although these controls are more applicable to immediate mode programming 
than to retained mode, we briefly mention them here.  

 
 Sort mode controls  
 

 
Sorting modes determine the operation of hidden-surface removal algorithms by establishing the 
order in which child frames are processed. In immediate mode the sorting modes are defined in 
the D3DRMSORTMODE structure, as follows:  

 
 typedef enum _D3DRMSORTMODE {  
 D3DRMSORT_FROMPARENT,  
 D3DRMSORT_NONE,  
 D3DRMSORT_FRONTTOBACK,  
 D3DRMSORT_BACKTOFRONT  
 } D3DRMSORTMODE;  
 
 Table 20-3 describes the sorting mode constants in the enumeration.  
 
 Table 20-3: D3DRMSORTMODE Constants  
 
    
 
 Constant  

 
Description  

 

 
    
 
 D3DRMSORT_FROMPARENT  

 
Child frames inherit the sorting order of their 
parents. This is the default setting.  

 

 
 D3DRMSORT_NONE  

 
Child frames are not sorted.  

 

 
 D3DRMSORT_FRONTTOBACK  

 
Child frames are sorted front-to-back.  

 

 
 D3DRMSORT_BACKTOFRONT  

 
Child frames are sorted back-to-front.  

 

 
    
 
The GetSortMode() function of IDirect3DRMFrame3 retrieves the current sorting mode used 



to process child frames. The function's general form is as follows:  
 
 D3DRMSORTMODE GetSortMode();  
 
 The function returns one of the constants defined in the D3DRMSORTMODE enumerated type. The 
default value is D3DRMSORT_FROMPARENT.  

 
 Sort modes are set with the SetSortMode() function. Its general form is as follows:  
 
 HRESULT SetSortMode(  
 D3DRMSORTMODE d3drmSM // 1  
 );  
 
 The function's only parameter is one of the members of the D3DRMSORTMODE enumeration 
previously described. The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 Z-buffer controls  
 

 

The use of z-buffers is ubiquitous in modern-day video hardware, and they are the most common 
way of implementing depth buffer algorithms. However, z-buffer processing sometimes results in 
surface artifacts in distance objects, especially in applications that manage exterior scenes. 
Retained mode provides two functions that relate to z-buffer modes, one to set it and another one 
to retrieve it. Z-buffer states are defined in the D3DRMZBUFFERMODE enumeration, as follows:  

 
 typedef enum _D3DRMZBUFFERMODE {  
 D3DRMZBUFFER_FROMPARENT,  
 D3DRMZBUFFER_ENABLE,  
 D3DRMZBUFFER_DISABLE  
 } D3DRMZBUFFERMODE;  
 
 Table 20-4 describes the constants in D3DRMZBUFFERMODE.  
 
 Table 20-4: Constants in D3DRMZBUFFERMODE  
 
    
 
 Constant  

 
Description  

 

 
    
 
 D3DRMZBUFFER_FROMPARENT  

 
The frame inherits the z-buffer setting from its 
parent frame. This is the default mode.  

 



 
 D3DRMZBUFFER_ENABLE  

 
Z-buffering is enabled.  

 

 
 D3DRMZBUFFER_DISABLE  

 
Z-buffering is disabled.  

 

 
    
 
 The SetZbufferMode() function is used to set one of the z-buffer modes. The function's general 
form is as follows:  

 
 HRESULT SetZbufferMode(  
 D3DRMZBUFFERMODE d3drmZBM // 1  
 );  
 

 
The function's only parameter is one of the members of the D3DRMZBUFFERMODE enumerated 
type. The default value is D3DRMZBUFFER_FROMPARENT. The call returns D3DRM_OK if it 
succeeds, or an error otherwise.  

 
 The GetZbufferMode() function retrieves the z-buffer mode. The function has the following 
general form:  

 
 D3DRMZBUFFERMODE GetZbufferMode( );  
 
 The return value is one of the members of the D3DRMZBUFFERMODE enumerated type. The default 
value is D3DRMZBUFFER_FROMPARENT.  

 



Operating on Visuals  
 

 
The notion of a visual, or visual object, is one of the most difficult to grasp in retained mode 
architecture. The first difficulty is that visual objects are not components; instead, they are 
instances in the IDirect3DRMVisual interface. This interface has no methods per se, but from it 
the following retained mode interfaces are derived:  

 
 IDirect3DRMFrame3   
 IDirect3DRMMesh   
 IDirect3DRMMeshBuilder3   
 IDirect3DRMProgressiveMesh   
 IDirect3DRMShadow2   
 IDirect3DRMTexture3   
 IDirect3DRMUserVisual   
 

 

Visuals are objects that can be rendered in a scene, but they only become visible when added to a 
frame in the scene by means of the AddVisual() function of IDirect3DRMFrame3. It is the 
frame that provides a position and orientation for rendering the visual object. In other words, it 
references the visual object. Visual objects include meshes, progressive meshes, meshbuilders, 
textures, shadows, and user visuals.  

 
 Adding and deleting visuals  
 
 A visual object is added to a frame by means of the AddVisual() function of 
IDirect3DRMFrame3. The function has the following general form:  

 
 HRESULT AddVisual(  
 LPUNKNOWN lpD3DRMVisual // 1  
 );  
 
 The function's only parameter is a pointer to a variable that represents the visual object to be 
added to the frame. The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 

 
A visual object is deleted from a frame by means of the DeleteVisual() function. If the object 
has no other reference in the code it is effectively destroyed because the DeleteVisual() call 
cannot be reversed. The function has the following general form:  

 
 HRESULT DeleteVisual(  
 LPUNKNOWN lpD3DRMVisual // 1  
 );  
 
 The function's only parameter is a pointer to a variable that represents the visual object to be 
deleted from the frame. The function returns D3DRM_OK if it succeeds, or an error otherwise.  



 
 Retrieving visuals  
 
 The GetVisual() function is used for retrieving visuals in IDirect3DRMFrame3. The function 
has the following general form:  

 
 HRESULT GetVisuals(  
 LPDWORD pdwNumVisuals, // 1  
 LPUNKNOWN *ppUnk // 2  
 );  
 

 
The function's first parameter is a pointer to a DWORD type variable of which its contents depend on 
the second parameter. If the second parameter is NULL, then the first parameter returns the 
number of visuals contained by the frame. If the second parameter is not NULL, then the first 
parameter returns the number of visuals actually retrieved by the call.  

 

 

The second parameter is a pointer to a Direct3DRMVisualArray object containing the array of 
visuals that is initialized by the call. Setting this second parameter to NULL causes 
GetVisuals() to return the number of visuals contained by the frame. If this second parameter is 
not NULL, then it represents a user-allocated array with sufficient space for the number of visuals 
in the first parameter.  

 

 

This mode of operation determines that code often needs to make more than one call to the 
GetVisuals() function. For example, the first call to GetVisuals() can be made passing 
NULL as the second parameter in order to determine the number of visuals contained in the frame. 
When this value is known, code can allocate an array of visuals large enough to contain all the 
visuals in the frame and make a second call to GetVisuals() in order to retrieve the individual 
visual objects in the frame. In this second call to GetVisuals() we pass a pointer to an array of 
visuals in the second parameter and the total number of visuals in the first one. In this case the call 
returns an array of pointers to the IDirect3DRMVisualArray interface, one for each visual 
object in the frame.  

 

 

IDirect3DRMVisualArray contains two functions: one named GetElement() and another 
one named GetSize(). The GetSize() function returns the number of elements in the visual 
array and the GetElement() function returns a pointer to the IDirect3DRMVisual interface for 
a specific visual element. IDirect3DRM_Visual does not provide any retained mode functions 
but serves to derive other interfaces. The GetSize() function of IDirect3DRMVisualArray 
has the following general form:  

 
 DWORD GetSize();  
 
 The function returns the number of elements in the visual array.  
 
 The GetElement() function retrieves a pointer to the specific element in the visual array. The 
function has the following general form:  

 



 HRESULT GetElement(  
 DWORD index, // 1  
 LPDIRECT3DRMVISUAL *lplpD3DRMVisual // 2  
 );  
 

 
The first parameter is the element's position in the array. The second parameter is a pointer that is 
filled with the address of the IDirect3DRMVisual interface. The function returns D3DRM_OK if it 
succeeds, or an error otherwise.  

 



Summary  
 

 

In this chapter we covered a smorgasbord of functions that are available at the frame level. We 
learned how to set and retrieve components and attributes of frame objects, manipulate 
backgrounds and fog, handle frame hierarchies, select sorting modes, enable and disable z-buffer 
rendering, and deal with visuals. The sample programs for this chapter contain code that show the 
implementation of the most used of these functions.  

 

 
In the following chapters we continue our excursion into progressively lower levels of retained mode 
programming. The topic of Chapter 21 is meshes and meshbuilders. It is through mesh 
programming that we create the basic 3D objects for our programs.  

 



Chapter 21: Mesh-Level Operations  
 
 Overview  
 

 

Up to this point we discussed the higher-level interfaces of DirectX retained mode. In the 
preceding chapters of Part III we examined almost every function of these interfaces because most 
of them have been of interest to the graphics application programmer. For this reason the 
interfaces have been presented function-by-function. But as we descend into the lower-levels of 
retained mode programming, this ceases to be true because we begin to encounter functions that 
are less interesting to the application programmer.  

 

 

This fact is particularly true in mesh-level programming, which is based on 
IDirect3DRMMeshBuilder3 and IDirect3DRMMesh interfaces. Typically, the graphics 
application developer relies on imagery or on image data created with a 3D modeling program. 
However, many of the methods in the mesh-related interfaces are directed towards low-level mesh 
component manipulations and controls.  

 

 

Consequently, we discuss the topic of mesh programming topically, bypassing the functions that 
are likely to be of limited interest in the context of typical retained mode programming. Although the 
chapter includes some discussion on the hard-coding of meshes by defining their elementary 
components, we do bypass most of the functions that relate to mesh components programming. In 
fact, it is difficult to imagine why these low- level functions are present in retained mode. Retained 
mode is intended as a high-level interface to Direct3D, while the control of the individual 
components of graphics objects, such as vertices, faces, and normals, is in the domain of 
immediate mode programming. Very few retained mode applications require these low-level 
controls.  

 



 Meshes in Retained Mode  
 

 
The visual elements of our Direct3D retained mode programs are based on meshes. The mesh is 
the way Direct3D represents visual objects. A mesh consists of a group of polygonal faces, each 
one defined in terms of its vertices and normals. The mesh is a low-level construct, and each of its 
components, faces, vertices, and normals can be manipulated individually.  

 

 

Building meshes by hard-coding their individual components is a time-consuming and laborious 
task. Most often the 3D applications use 3D modeling tools to create the meshes needed by their 
applications. However, Direct3D retained mode provides no way of manipulating proprietary 
graphics file formats directly. This means that before an application can load a mesh file into 
program code, it must convert it into Microsoft's DirectX (.x) format, described in Chapter 14.  

 

 

Unfortunately, 3D file conversion utilities are presently in short supply. Microsoft's DirectX includes 
a DOS-mode application, named Conv3ds, that converts from the .3ds proprietary format, used by 
the 3D Studio program, into the DirectX format. Because DirectX cannot manipulate any format 
different than X, and because few other reliable conversion utilities are available, the application 
developer usually must create meshes using an application that saves into DirectX format directly, 
or into a file in .3ds format that can later be converted into X format by means of the Conv3ds 
program. The entire process often involves the following steps:  

 
   1.Create 3D objects using a modeling program that can save the objects into DirectX or .3ds 

formats.  
 

   
2.If the mesh file is in .3ds format, convert it into X format by means of the Conv3ds program 
supplied with DirectX. The Conv3ds switches and options determine how the mesh or meshes 
must be loaded into the application.  

 
   3.Load the meshes, stored in one or more X files, into application code.  
 
   4.Manipulate the meshes and cast them into frames, where they can be changed further by code 

and visually rendered in the scene.  
 
 We discuss 3D image file manipulations at length later in this chapter.  
 
 Modeling the program imagery  
 

 
This book is about programming; consequently the image creation phase is mentioned but 
incidentally. However, this does not mean that creating the program imagery is a trivial task. On 
the contrary, the quality of a 3D application depends on its design and the quality of its imagery. 
No amount of programming can fix a badly thought-out and poorly imaged application.  

 

 

Designing and producing the digital imagery are art forms in themselves. When a programmer 
encroaches into the art of image creation the results usually leave much to be desired. It takes 
special talents and considerable skills to design and create the 3D imagery: it is much better to 
leave this part to the art professionals. However, often the programmer needs to create images to 
experiment with new techniques or implement algorithms in code. In this case it is useful to have at 
least minimal skills in using a 3D modeling program.  



 

 
Many 3D modeling programs are available on the market, ranging in price from free to $50,000 or 
more. The CD-ROM furnished with this book contains examination copies of several 3D modeling 
applications. However, they are of little use to the programmer because file saving is disabled in 
most of these demos.  

 
 Hard-coding faces and meshes  
 

 

In addition to using a 3D modeling program to generate imagery, Direct3D retained mode also 
supports building 3D objects, such as faces and meshes, directly in code. This means hard-coding 
the data that represents the faces, vertices, and normals to the mesh, and using the primitive 
function of IDirect3DRMMeshBuilder3 and IDirect3DRMMesh interfaces to construct the 
objects.  

 

 

The usefulness of these hard-coding methods, in the context of this book, is limited to solving 
special processing and rendering problems and to the simplest of objects. For example, it is 
conceivable that an application developer could hard-code a flat, rectangular face to serve as a 
base or a background. Or, a developer can even create in code a simple, flat-faced, 3D object 
such as a cube or a pyramid. On the other hand, it is difficult to imagine a programmer spending 
time in hard-coding objects and imagery that is much more easily produced by using a 3D 
modeling tool.  

 

 

There is one case in which manipulating hard-coded imagery may be a practical option. This is 
when you use a 3D modeling program to create one or more objects, export these objects into a 
text file, and then retrieve the object data from the text file so that it can be hard-coded into the 
application. In other words, you let the 3D modeler do the hard work of determining faces, vertices, 
and normals, and then move the data from the image file into your own code for faster rendering or 
for direct data manipulations.  

 
 Because there are cases, although not many, in which the programmer could conceivably find 
some use of hard-coding 3D imagery, in the following sections we briefly touch on this topic.  

 



Creating Faces and Meshes  
 
 Several functions of IDirect3DRMMesh3 relate to the creation of faces and meshes directly in 
code. The functions can be classified into four groups:  

 
   1.Mesh and submesh operations  
 
   2.Face operations  
 
   3.Operations on normals  
 
   4.Vertex operations  
 
 Table 21-1 lists the functions of IDirect3DRMMeshBuilder3 that relate to the manipulation of 
meshes and mesh components.  

 
 Table 21-1: IDirect3DRMMeshBuilder3 Functions to Manipulate Meshes and Mesh 
Components  

 
    
 
 Group  

 
Function  

 

 
    
 
 Meshes and Submeshes  

 
AddMesh()  
 
CreateMesh() 
 
CreateSubMesh() 
 
DeleteSubMesh() 
 
GetParentMesh() 
 
GetSubMeshes()  

 

 
 Faces  

 
AddFace() 
 
AddFaces() 
 
AddFacesIndexed() 
 
CreateFace() 
 
DeleteFace() 

 



GetFaceCount() 
 
GetFace() 
 
GetFaces()  

 
 Normals  

 
AddNormal() 
 
DeleteNormals() 
 
GenerateNormals() 
 
GetNormal() 
 
GetNormals() 
 
GetNormalCount() 
 
SetNormal() 
 
SetNormals()  

 

 
 Vertices  

 
AddVertex() 
 
DeleteVertices() 
 
GetGeometry() 
 
GetVertex() 
 
GetVertexColor() 
 
GetVertexCount() 
 
GetVertices() 
 
SetVertex() 
 
SetVertices() 
 
SetVertexColor() 
 
SetVertexColorRGB()  

 

 
    
 
 The retained mode programmer, typically working at developing applications, finds use but for a 
few of these functions.  

 
 Face and vertex normals  



 

The rendering operation requires that each face contain a vector, perpendicular to its surface, 
which points outward from the face. This vector is called the face normal vector. In Direct3D, code 
does not have to specify face normals because they are calculated automatically as needed. Flat 
shading is implemented by means of these face normal vectors, which is to say, with no more 
information than the vertices that define the objects.  

 

 

Gouraud shading (and Phong shading, whenever it becomes available) cannot be performed with 
face normals alone. In these cases figure data must include a vector that is normal to each vertex 
that defined the figure. These so-called vertex normals are used by the renderer in producing 
lighting and texturing effects. Because a vertex normal is anchored at the corresponding vertex 
point, its definition is made in terms of a single point in 3D space. Figure 21-1 shows flat shading 
of a plane using its face normal and Gouraud shading based on vertex normals.  

 

 

  
 
 Figure 21-1: Shading using face normal and vertex normals 

   
 

 
Direct3D retained mode applications typically use the D3DVECTOR structure type to define 
vertices. Because a vertex normal requires but one additional point in 3D space, it is also defined 
by means of a structure member of type D3DVECTOR. The D3DVECTOR structure consists of 
three D3DVALUE types, as follows:  

 
 typedef struct _D3DVECTOR  
 {  
 D3DVALUE x;   
 D3DVALUE y;  
 D3DVALUE z;  
 } D3DVECTOR;  
 

 
In Gouraud shading Direct3D uses the vertex normals to calculate the angle between the light 
source and the surface. It calculates the color and intensity values for the vertices and interpolates 
them for every point across all of the surfaces. The light intensity is calculated based on the angle 
of each vector. The greater the angle, the less light that shines on the surface.  

 

 

In a flat object the vertex normals should be perpendicular to the vertex points, as shown in Figure 
21-1. If an object is not flat, as is often the case in 3D modeling, then the vertex normals are set at 
an angle with each of the vertices. If the vertex normal leans toward a surface, it causes the light 
intensity to increase or decrease for points on that surface, depending on the angle it makes with 
the light source.   



 
 Creating a face  
 

 
The IDirect3DRMFace2 interface contains a host of functions for operating on faces. A face 
represents a single polygon in a mesh. An application can set the color, texture, and material of 
the face by using the functions in IDirect3DRMFace2. A face can be constructed from vertices 
or from vertices and their corresponding vertex normals.  

 

 
Although there are several ways in which a face can be built using retained mode functions, the 
simplest and most direct one is by means of AddFaces() function of 
IDirect3DRMMeshBuilder3. The function adds one or more faces to a 
Direct3DRMMeshBuilder3 object. It has the following general form:  

 
 HRESULT AddFaces(  
 DWORD dwVertexCount, // 1  
 D3DVECTOR *lpD3DVertices, // 2  
 DWORD normalCount, // 3  
 D3DVECTOR *lpNormals, // 4  
 DWORD *lpFaceData, // 5  
 LPDIRECT3DRMFACEARRAY *lplpD3DRMFaceArray // 6  
 );  
 

 

The first parameter is a count of the number of vertices in the frame. The second parameter is the 
address of an array of D3DVECTOR structures that store the vertices. The third parameter is a 
count of the number of normals. This parameter is zero if no normals are defined for the face. The 
fourth parameter is the base address of an array of D3DVECTOR structures that store the normals. 
If the third parameter is zero, the fourth one is NULL. If the normals count is not zero, the fifth 
parameter contains a vertex count followed by pairs of indexes, with the first index of each pair 
indexing into the array of vertices, and the second indexing into the array of normals. If the third 
parameter (normals count) is zero, then the fifth parameter is a vertex count followed by the 
indexes into the array of vertices. In either case, the list of indexes terminates in zero. The sixth 
parameter is the address of a pointer to an IDirect3DRMFaceArray interface that is filled with a 
pointer to the newly created faces. This parameter can be NULL. The function returns D3DRM_OK if 
it succeeds, or an error otherwise.  

 
 Face with no vertex normals  
 

 

We can use the AddFaces() function to define a face with no vertex normals. In this case the 
third parameter passed to the AddFaces() call is zero and the fourth one is NULL. In this case 
the array holding the face data consists of three elements: the number of vertices, the offset of 
each vertex, and the zero terminator. The resulting face can be shaded flat by the renderer only. 
For example, the following code fragment defines a set of vertices for a rectangular plane using 
the AddFaces() function of IDirect3DRMMeshBuilder3.  

 
 // Variables  
 LPDIRECT3DRMMESHBUILDER3 pMeshBuilder;   



 . . .  
 // Vertex definition for a plane. Direct3D uses by default   
 // a left-handed coordinate system in which the z axis  
 // points away from the viewer  
 // x y z  
 D3DVECTOR vertices[4] = { -1.0f, -0.5f, -1.0f,  
 -1.0f, 0.5f, 1.0f,  
 1.0f, 0.5f, 1.0f,  
 1.0f, -0.5f, -1.0f };  
   
 DWORD faceData[] = { 4, 0, 1, 2, 3, 0 };  
 // | | | | | |  
 // | | | | | |__ terminator  
 // | |__|__|__|_____ offset in arrays  
 // |_________________ number of vertices  
   
 pMeshBuilder->AddFaces(4, // Number of vertices  
 vertices, // Vertex array  
 0, // No normals  
 NULL, // No normals array   
 faceData, // Face data  
 NULL);  
 
 Face with vertex normals  
 

 
If the face is to be rendered using Gouraud or Phong modes, then the face data must include the 
normal vectors to each vertex. In this case the third parameter to AddFaces() is nonzero and the 
fourth one is a pointer to an array of type D3DVECTOR containing the end coordinate of the normal 
for each vector. The following code fragments build the face in this case.  

 
 // Variables  
 LPDIRECT3DRMMESHBUILDER3 pMeshBuilder;   
 . . .  
 // Vertex definition for a plane  
 // x y z  
 D3DVECTOR vertices[4] = { -1.0f, -0.5f, -1.0f,  
 -1.0f, 0.5f, 1.0f,  
 1.0f, 0.5f, 1.0f,  
 1.0f, -0.5f, -1.0f };  



   
 // Array containing vertex normals.  
 // x y z  
 D3DVECTOR normals[4] = { -1.0f, -0.25f, -1.0f,  
 -1.0f, 0.25f, 1.0f,  
 1.0f, 0.25f, 1.0f,  
 1.0f, -0.25f, -1.0f };  
   
 DWORD faceData[] = {4, 0, 0, 1, 1, 2, 2, 3, 3, 0};  
 // | ---- ---- ---- ---- |  
 // | | | | | |__ terminator  
 // | |_____|_____|_____|__ index pairs  
 // |_________________________ number of vertices  
   
 pMeshBuilder->AddFaces( 4, // Number of vertices  
 vertices, // Vertex array  
 4, // Number of normals  
 normals, // Normals array  
 faceData, // Face data  
 NULL );  
 

 

In the preceding code fragment the vertex normals are defined for each vertex. The call to 
AddFaces() contains the number of normals and their corresponding indices into the data. The 
array holding the face data now contains ten elements: the number of vertices, two offsets for each 
vertex point, and the zero terminator. The resulting face can be rendered using the Gouraud mode. 
Because the vertex normals are perpendicular to the vertices, the shading depicts a surface with 
no curvature, as shown in Figure 21-1.  

 

 
We can make the rendered surface appear curved by changing the angle of the vertex normals. If 
the vertex normals converge toward the center of the figure, then the rendered image appears 
convex. If the vertex normals converge away from the figure then the image appears concave. 
These effects are shown in Figure 21-2.  

 

 

  
 
 Figure 21-2: Convex and concave effects that result from vertex normal angles 



   
 
 Creating a cube  
 

 

In hard-coding vertex and vertex normals for a cube you must deal with some additional 
complexity. A cube is defined by six faces, which share some of the same vertices. On the other 
hand, each face must be illuminated individually, so you must provide four vertex normals for each 
cube face. This means that data for a cube contains eight vertices and twenty-four vertex normals. 
It also means that the cube's face data must refer to each of the six faces. Figure 21-3 shows the 
faces, vertices, and vertex normals for a cube.  

 

 

  
 
 Figure 21-3: Faces, vertices, and vertex normals for a cube 

   
 

 
In Figure 21-3 you see the eight vertices, labeled v0 to v7. Arbitrary face 3 is formed by vertices 
v2, v3, v7, and v6. The short arrows indicate the four vertex normals for face 3. The following code 
fragment shows the definition and creation of a hard-coded cube.  

 
 // Variables  
 LPDIRECT3DRMMESHBUILDER3 pMeshBuilder;   
 . . .  
   
 // A cube has six planar faces, defined by 8 vertices  
 D3DVECTOR vertices[] = { -0.5f, -0.5f, -0.5f, // first vertex  
 -0.5f, -0.5f, 0.5f,  
 -0.5f, 0.5f, -0.5f,  
 -0.5f, 0.5f, 0.5f,  
 0.5f, -0.5f, -0.5f,  
 0.5f, -0.5f, 0.5f,  



 0.5f, 0.5f, -0.5f,  
 0.5f, 0.5f, 0.5f }; // last vertex  
   
 // Each of the cube's six faces has four vertex normals, for a  
 // total of 24  
 D3DVECTOR normals[] = { 0.0f, 0.0f, 1.0f, // First normal  
 0.0f, 0.0f, 1.0f,  
 0.0f, 0.0f, 1.0f,  
 0.0f, 0.0f, 1.0f,  
 0.0f, 1.0f, 0.0f,  
 0.0f, 1.0f, 0.0f,  
 0.0f, 1.0f, 0.0f,  
 0.0f, 1.0f, 0.0f,  
 1.0f, 0.0f, 0.0f,  
 1.0f, 0.0f, 0.0f,  
 1.0f, 0.0f, 0.0f,  
 1.0f, 0.0f, 0.0f,  
 0.0f, 0.0f, -1.0f,  
 0.0f, 0.0f, -1.0f,  
 0.0f, 0.0f, -1.0f,  
 0.0f, 0.0f, -1.0f,  
 0.0f, -1.0f, 0.0f,  
 0.0f, -1.0f, 0.0f,  
 0.0f, -1.0f, 0.0f,  
 0.0f, -1.0f, 0.0f,  
 -1.0f, 0.0f, 0.0f,  
 -1.0f, 0.0f, 0.0f,  
 -1.0f, 0.0f, 0.0f,  
 -1.0f, 0.0f, 0.0f }; // Last normal  
   
 // Face data refers to each face of the cube  
 DWORD faceData[] = { 4, 1, 0, 5, 1, 7, 2, 3, 3,   
 4, 2, 4, 3, 5, 7, 6, 6, 7,  
 4, 5, 8, 4, 9, 6, 10, 7, 11,  
 4, 0, 12, 2, 13, 6, 14, 4, 15,  
 4, 0, 16, 4, 17, 5, 18, 1, 19,  
 4, 0, 20, 1, 21, 3, 22, 2, 23, 0 };  
   



 pMeshBuilder->AddFaces( 8, // Number of vertices   
 vertices, // Vertex array  
 24, // Number of normals  
 normals, // Normals array  
 faceData, // Data for each face  
 NULL);  
 
 Sample program 3DRM Mesh Create Demo  
 

 
The sample program 3DRM Mesh Create Demo in the book's CD-ROM illustrates the hard-coding 
of meshes and cubes, as discussed in the preceding sections. Figure 21-4 shows screen 
snapshots of the different commands in the program's menu.  

 

 

  
 
 Figure 21-4: Screen snapshots of the 3DRM Mesh Create Demo program 

   
 



Loading Frames and Meshes from Files  
 

 

We have mentioned that graphics applications that use, but do not manipulate 3D image data 
directly, often rely on imagery created by means of modeling programs. Retained mode requires 
that images are in Microsoft X format. Included in the DirectX SDK is a DOS-mode file conversion 
utility named Conv3ds that can be used to convert image data in 3D Studio's .3ds format into the X 
format. This determines that the imagery created in the 3D modeling program must be either in X 
or in .3ds formats. If in .3ds, the data can be converted into X format by means of Conv3ds.  

 

 

Although there are several functions for loading images in retained mode, the ones most 
commonly used are in the IDirect3DRMFrame3 and IDirect3DRMMeshBuilder3 interfaces. 
In the first case the image is loaded as a frame and in the second one it is loaded by a 
meshbuilder object. Which method is used depends on the internal structure of the X file. If the 
image data is contained in a frame, then the mesh is loaded using the Load() function of 
IDirect3DRMFrame3. If the image data is defined as a mesh, then we must use the Load() 
function of IDirect3DRMMeshBuilder3. In the following sections we first discuss the Convs3ds 
utility and then examine loading image data as frames and as mesh objects.  

 
 The Conv3ds utility  
 

 

The Conv3ds utility program furnished with the DirectX SDK converts three-dimensional models in 
Autodesk .3ds format into Microsoft's X file format. The Conv3ds utility is a DOS program and must 
be run from the command line. The program option switches, described in the next section, 
determine how the data is stored in the DirectX file and, therefore, how the contained meshes and 
frames must be loaded into the application. In the following discussion we use the name afile to 
indicate the filename of a file in .3ds format.  

 
 Default behavior  
 

 
By default, Conv3ds produces binary X files with no templates. If the program is executed without 
specifying any of the optional switches, it produces an X file containing a frame hierarchy. For 
example, the command  

 
 conv3ds afile.3ds  
 
 produces the file afileX containing a hierarchy of frames. The frames can be loaded into an 
application by means of the Load() function of IDirect3DRMFrame3.  

 
 -A switch  
 
 The -A option produces an animation set. The command  
 
 conv3ds -A afile.3ds  
 
 produces a file in X format that can be loaded into the application using the Load() function of 
Direct3DRMAnimationSet2. Animating files in X format is discussed in Chapter 25.  



 
 -m switch  
 
 This option produces an X file that contains a single mesh made from all the objects in the .3ds 
source. The command  

 
 conv3ds -m afile.3ds  
 
 produces a file that can be loaded into the application using the Load() function of 
IDirect3DRMMeshBuilder3.  

 
 -T switch  
 

 
This option is used to wrap all the objects and frame hierarchies in a single top-level frame. The 
first top-level frame hierarchy that results from using this option can be loaded with a single call to 
the Load() function of IDirect3DRMFrame3. The -T option has no effect if it is used with the -m 
option.  

 
 -s switch  
 
 This option allows entering a scale factor for all the objects in the .3ds file. The operand is an 
integer to make objects bigger and a decimal fraction to make them smaller. For example,  

 
 conv3ds -s5 afile.3ds  
 
 makes the objects in the file five times bigger. Whereas the command  
 
 conv3ds -s0.1 afile.3ds  
 
 makes the objects ten times smaller.  
 
 -r switch  
 
 The -r switch reverses the winding order of the faces when the .3ds file is converted. The switch 
should be used when the objects are inverted in the converted file.  

 
 -v switch  
 
 This switch turns on the verbose output mode. Table 21-2 lists the verbose modes supported by 
Conv3ds.  

 
 Table 21-2: Conv3ds Utility Verbose Switches  
 



    
 
 Switch   

 
Action  

 

 
    
 
 -v0   

 
Default. Verbose mode off.  

 

 
 -v1   

 
Prints warnings about bad objects and general information about 
what converter action.  

 

 
 -v2   

 
Prints basic key frame information. Lists the objects being 
converted, and information about the objects being saved.  

 

 
 -v3   

 
Very verbose. Mostly used for debugging.  

 

 
    
 
 -e switch  
 
 The -e option is used to change the extension of texture map files. For example, if the command  
 
 conv3ds -e"ppm" afile.3ds  
   
 

 
is used for a .3ds file that references the texture map file Brick.gif, the X file references are 
changed to the texture map file Brick.ppm. The converter does not convert the texture map file. 
The texture map files must be in the D3DPATH when the resulting X file is loaded. D3DPATH 
D3DPath is a DOS-mode environment variable that sets the default search path.  

 
 -x switch  
 
 The default action of Conv3ds is to generate a binary file. The -x option forces the utility to produce 
a text X file. Text files are larger but they can be interpreted and modified.  

 
 -X switch  
 
 The -X option forces the inclusion of Direct3D retained mode X file templates in the output file. 
Templates are not included by default.  

 
 -t switch  
 
 This option specifies that the X file produced will not contain texture information. 



 This option specifies that the X file produced will not contain texture information.  
 
 -N switch  
 

 
The -N option specifies that the X file produced will not contain vector normals. All Load() 
functions in Direct3D retained mode automatically generate vector normals for objects with no 
vector normals in the X file. Therefore, the action of this switch is to force the generation of vector 
normals at load time.  

 
 -c switch  
 

 
The -c option specifies that the X file produced should not contain texture coordi-nates. By default, 
if you use the -m option, the mesh that is output will contain (0,0) uv texture coordinates if the .3ds 
object had no texture coordinates.  

 
 -f switch  
 

 
The -f option specifies that the X file produced should not contain a frame trans-formation matrix. 
The frame transformation matrix encodes the position and scale of objects according to their 
appearance in the 3D modeling application.  

 
 - z and -Z switches  
 

 
The -z and -Z options are used to adjust the alpha face color value of all the materials referenced 
by objects in the X file. The following command causes Conv3ds.exe to add 0.1 to all alpha values 
under 0.2  

 
 conv3ds -z0.1 -Z0.2 afile.3ds  
 
 The following command causes Conv3ds.exe to subtract 0.2 from the alpha values for all alphas:  
 
 conv3ds -z"-0.2" -z1 afile.3ds  
 
 -o switch  
 
 The -o option enables you to specify the filename for the X file produced. For example, to produce 
a file named newfile.x you can enter the command  

 
 conv3ds -o"newfile.x" afile.3ds  
 
 Notice that the X filename extension must be included in the quoted string.  
 
 -h switch  



 

 
The -h option tells the converter not to try to resolve any hierarchy information in the .3ds file, 
which is produced by default. Instead, all the objects are output in top-level frames. The -h option 
is ignored if -m is used.  

 
 Loading images onto frames  
 

 
Retained mode offers several possible ways of loading meshes onto a frame. To explore these 
possibilities we start by creating a 3D model using 3D Studio MAX. In this case the model is one of 
the built-in objects that is furnished with the modeling program. The 3D Studio MAX perspective 
window is shown in Figure 21-5.  

 

 

  
 
 Figure 21-5: Original model in 3D Studio MAX perspective window 

   
 

 

Figure 21-5 shows the teapot model split into its four components. The image was exported into a 
file named tparts.3ds. This file can be found in the 3DRM Frame Load Demo folder in the book's 
CD-ROM. The four objects that form the teapot in Figure 21-5 were named Body, Handle, Spout, 
and Lid in 3D Studio MAX. The objects were created in that order. We can now use the Conv3ds 
utility furnished with DirectX to convert the file in .3ds format into a file in DirectX format which can 
be manipulated in retained mode. In the sections that follow we explore several of the most useful 
options.  

 
 Loading a frame hierarchy  
 

 
When the .3ds file is converted into a DirectX format file without specifying the -m or -T switches 
discussed previously, the result is a file containing a frame hierarchy. For example, if we convert 
the file named tparts.3ds with the command  

 
 conv3ds -x -o"teapot0.x" tparts.3ds  
 
 the result is a text file named "teapot0.x". The file contains a frame hierarchy, as follows:  
 
 xof 0302txt 0064  
 Header {  



 1;  
 0;  
 1;  
 }  
   
 Frame x3ds_Body {  
 FrameTransformMatrix {  
 1.000000, 0.000000, 0.000000, 0.000000,  
 0.000000, 1.000000, 0.000000, 0.000000,  
 0.000000, 0.000000, 1.000000, 0.000000,  
 1.037232, -20.376945, -0.377255, 1.000000;;  
 }  
 Mesh Body {  
   
 257;  
 24.500000; 42.000000; 0.000000;,  
 24.158203; 43.291992; 0.000000;  
 ,  
 . . . (additional data for Body mesh)  
   
 Frame x3ds_Handle {  
 FrameTransformMatrix {  
 1.000000, 0.000000, 0.000000, 0.000000,  
 0.000000, 1.000000, 0.000000, 0.000000,  
 0.000000, 0.000000, 1.000000, 0.000000,  
 -13.010463, -24.609686, 0.665987, 1.000000;;  
 }  
 Mesh Handle {  
   
 72;  
 -28.000000; 35.437500; 0.000000;,  
 -36.175781; 35.375977; 0.000000;,  
   
 . . . (additional data for Handle mesh)  
   
 Frame x3ds_Spout {  
 FrameTransformMatrix {  
 1.000000, 0.000000, 0.000000, 0.000000,  



 0.000000, 1.000000, 0.000000, 0.000000,  
 0.000000, 0.000000, 1.000000, 0.000000,  
 14.765121, -19.316219, -0.326592, 1.000000;;  
 }  
 Mesh Spout {  
   
 72;  
 29.750000; 24.937500; 0.000000;,  
 38.144531; 26.865234; 0.000000;,  
   
 . . . (additional data for Spout mesh)  
   
 Frame x3ds_Lid {  
 FrameTransformMatrix {  
 1.000000, 0.000000, 0.000000, 0.000000,  
 0.000000, 1.000000, 0.000000, 0.000000,  
 0.000000, 0.000000, 1.000000, 0.000000,  
 -0.357211, -9.733930, -0.040901, 1.000000;;  
 }  
 Mesh Lid {  
   
 129;  
 0.000000; 55.125000; 0.000000;,  
 5.960938; 54.263672; 0.000000;,  
   
 . . . (additional data for Lid mesh)  
 }   
 }  
 }  
 

 
Notice that the X format file that results from this conversion contains the four meshes that were 
defined in 3D Studio MAX. The names assigned to the individual meshes in the modeling program 
are preserved in the X file.  

 

 
Because the file was created without the formatting switches (-T or -m) the objects contained in the 
X may be loaded into a frame, using the Load() function of IDirect3DRMFrame3. The following 
code fragment shows the processing.  

 
 // Program data  
 LPDIRECT3DRMFRAME3 teapartsFrame = NULL;  



 char szXfile0[] = "teapot0.x";   
 . . .  
 retval = lpD3DRM->CreateFrame(globVars.aScene,  
 &teapartsFrame);  
 if(FAILED(retval))  
 // Frame creation error handler goes here  
 // Load image into frame  
 retval = teapartsFrame->Load(szXfile1, // Source  
 NULL,  
 D3DRMLOAD_FROMFILE, // Options  
 NULL, NULL);   
 if(FAILED(retval))  
 // Frame load error handler goes here  
 

 
Because the file contains a frame hierarchy, an attempt to load the entire file into a frame results in 
loading the first frame in the hierarchy. In this case the first frame is the one named Body in the 
preceding listing of the resulting X file. Figure 21-6 shows the results in this case.  

 

 

  
 
 Figure 21-6: Screen snapshot of the 3DRM Frame Demo program after loading the first frame in a 
frame hierarchy 

   
 
 Loading a single frame  
 

 
When the .3ds file is converted into a DirectX format by means of the -T switch, discussed 
previously, the result is a file in which all meshes are contained in a single frame. For example, if 
we convert the file named tparts.3ds with the command  

 
 conv3ds -x -o"teapot1.x" -T tparts.3ds  
 
 the result is a text file named "teapot1.x". The file contains a single frame, as follows:  
 
 xof 0302txt 0064  



 Header {  
 1;  
 0;  
 1;  
 }  
   
 Frame x3ds_Teapot {  
   
 Frame x3ds_Body {  
 FrameTransformMatrix {  
 1.000000, 0.000000, 0.000000, 0.000000,  
 0.000000, 1.000000, 0.000000, 0.000000,  
 0.000000, 0.000000, 1.000000, 0.000000,  
 0.020745, -0.407539, -0.007545, 1.000000;;  
 }  
 Mesh Body {  
   
 257;  
 0.490000; 0.840000; 0.000000;,  
 0.483164; 0.865840; 0.000000;,  
 . . . (rest of file follows)  
 

 

The principal difference between this file and the one created without the -T switch is the presence 
of a higher-level frame, in this case named x3dsTeapot, which contains all others in the file. This 
first frame is the one accessed by the Load() function of IDirect3DRMFrame3. The result is 
that all meshes contained in the frame are loaded in a single call. The following code fragment 
shows the processing.  

 
 // Program data  
 LPDIRECT3DRMFRAME3 teapartsFrame = NULL;  
 char szXfile0[] = "teapot0.x";   
 . . .  
 retval = lpD3DRM->CreateFrame(globVars.aScene,  
 &teapartsFrame);  
 if(FAILED(retval))  
 // Frame creation error handler goes here  
 // Load image into frame  
 retval = teapartsFrame->Load(szXfile1, // Source  
 NULL,  
 D3DRMLOAD_FROMFILE, // Options  



 NULL, NULL);   
 if(FAILED(retval))  
 // Frame load error handler goes here  
 
 Figure 21-7 shows the results in this case.  
 

 

  
 
 Figure 21-7: Screen snapshot of the 3DRM Frame Demo program after loading an X file created 
with the -T option 

   
 
 Loading frames by name  
 

 
Notice that in an X file created with or without the -T switch each frame is assigned a unique name. 
The name consists of the x3ds prefix, the underscore symbol, and the name of the object as 
defined in the file. For example, the X file created by means of the -T switch, described in the 
previous section, contains the frames named  

 
 x3ds_Teapot  
 x3ds_Body  
 x3ds_Handle  
 x3ds_Spout  
 x3ds_Lid  
 
 The first of these named frames, x3dsTeapot, does not appear in an X file created without the -T 
switch, but the other four frames are also present.  

 
 Applications can load any frame from an X file by using the D3DRMLOADBYNAME option and 
referencing the specific frame name.  

 
 The following code fragment shows loading the frame for the teapot handle.  
 
 // Program data  
 LPDIRECT3DRMFRAME3 teapartsFrame = NULL;  



 char szXfile1[] = "teapot1.x" ; // Frame file to load  
 char meshName[] = "x3ds_Handle"; // Frame name in file  
 . . .  
 retval = lpD3DRM->CreateFrame(globVars.aScene,  
 &teapartsFrame);  
 if(FAILED(retval))  
 // Failed frame creation error handler goes here  
   
 // Load frame by name  
 retval = teapartsFrame->Load(szXfile2, // Source  
 &meshName,  
 D3DRMLOAD_BYNAME, // Options  
 NULL, NULL);  
 if(FAILED(retval))  
 // Failed frame load error handler goes here  
 . . .  
 
 Figure 21-8 shows the results of loading a specific named frame.  
 

 

  
 
 Figure 21-8: Screen snapshot of the 3DRM Frame Demo program after loading a named frame 
from an X file 

   
 
 Loading frames by position  
 

 
Any one frame in an X format file created without the -T switch can be loaded by specifying its 
position in the file. In files created with the -T switch only the frame at offset zero can be loaded by 
position. An attempt to load any other frame results in an error.  

 

 
The position of a frame can be obtained by examining its zero-based order in the file. For example, 
in the teapot0.x file, discussed in the section on loading a frame hierarchy, there are four individual 
frames. The frames appear in the file in the following order:  



 
 0 Body  
 1 Handle  
 2 Spout  
 3 Lid  
 
 The following code fragment shows loading the frame at offset 2, which is the one corresponding 
to the Spout object.  

 
 // Program data  
 LPDIRECT3DRMFRAME3 teapartsFrame = NULL;  
 char szXfile0[] = "teapot0.x" ; // Frame file to load  
 DWORD position = 2; // Frame position  
 . . .  
 retval = lpD3DRM->CreateFrame(globVars.aScene,  
 &teapartsFrame);  
 if(FAILED(retval))  
 // Frame creation error handler goes here  
   
 // Load image into frame by it offset in the file  
 retval = teapartsFrame->Load(szXfile0, // Source  
 &position,  
 D3DRMLOAD_BYPOSITION, // Options  
 NULL, NULL);  
 if(FAILED(retval))  
 // Frame load error handler goes here  
 
 Loading meshes  
 

 

Mesh data is present in X files. If the file was converted into X format by means of the Conv3ds 
utility, with no format switch entered in the command, then the mesh data is defined for each 
object in the file. In this case the individual meshes can be loaded by means of the Load() 
function of IDirect3DRMMeshBuilder3. On the other hand, if the mesh was created by means 
of the -m switch, described previ-ously, then the X file contains a single mesh that includes all the 
objects present in the .3ds file. Note that the -m option performs a similar function in regards to 
meshes as the -T option in regards to frames.  

 
 Loading as a single mesh  
 

 
If a .3ds file was converted in X format using the -m switch, then all the objects in the original file 
can be loaded using a single Load() call of IDirect3DRMMeshBuilder3. In the sample 
program 3DRM Mesh Load Demo, furnished in the book's CD-ROM, the file named boxsph0.x was 



created from a .3ds format file with the command:  
 
 Conv3ds -m -o"boxsph0.x" -x boxsph.3ds  
 
 The result is a file named boxsph0.x, in text format, in which all objects are contained in a single 
mesh. The file listing is as follows:  

 
 xof 0303txt 0032  
   
 Header {  
 1;  
 0;  
 1;  
 }  
   
 Mesh {  
 122;  
 -1.134496;0.272737;0.485547;,  
 -0.254496;0.272737;0.485547;,  
 -1.134496;1.152737;0.485547;,  
 . . . (rest of file follows)  
 
 The following code fragment shows the loading of the file into a meshbuilder object.  
 
 // Data  
 char szXfile[] = "boxsph0.x" ; // Filename string  
 LPDIRECT3DRMMESHBUILDER3 multiMeshBuilder = NULL;  
 . . .  
 retval = lpD3DRM->CreateMeshBuilder(&multiMeshBuilder);  
 if (FAILED(retval))  
 // Meshbuilder creation failure error handler goes here   
 // Use meshbuilder to load a mesh from a DirectX file  
 retval = multiMeshBuilder->Load(szXfile, // Source  
 NULL,  
 D3DRMLOAD_FROMFILE, // Options  
 NULL, NULL);  
 if (FAILED(retval))   
 // File load error handler goes here  



 The resulting meshbuilder object can now be manipulated and rendered in the conventional 
manner.  

 
 Loading meshes by name  
 
 If the X file was not created with the -m switch, then the individual meshes can be referenced and 
loaded by name. For example, if the X file was created with the command  

 
 Conv3ds -o"boxsph1.x" -x boxsph.3ds  
 

 
the result is a file named boxsph1.x, in text format, and in which objects are contained in 
separately named meshes. In this case the file boxsph.3ds contained two objects: a box and a 
sphere, which were named Box and Sphere in the original file. The resulting file after using 
Conv3ds is as follows:   

 
 xof 0302txt 0064  
 Header {  
 1;  
 0;  
 1;  
 }  
   
 Frame x3ds_Box {  
 FrameTransformMatrix {  
 1.000000, 0.000000, 0.000000, 0.000000,  
 0.000000, 0.000000, -1.000000, 0.000000,  
 0.000000, 1.000000, 0.000000, 0.000000,  
 -0.694496, 0.712737, 0.485547, 1.000000;;  
 }  
 Mesh Box {  
   
 8;  
 -0.440000; -0.000000; -0.440000;,  
 0.440000; -0.000000; -0.440000;,  
 . . . (additional data for Box mesh follows)  
   
 Frame x3ds_Sphere {  
 FrameTransformMatrix {  
 1.000000, 0.000000, 0.000000, 0.000000,  
 0.000000, 0.000000, -1.000000, 0.000000,  
 0.000000, 1.000000, 0.000000, 0.000000,  



 0.674236, -0.636010, 0.000000, 1.000000;;  
 }  
 Mesh Sphere {  
   
 114;  
 0.000000; 0.551888; 0.000000;,  
 0.000000; 0.509878; 0.211199;,  
 . . . (additional data for Sphere mesh follows)  
 
 The following code fragment shows loading the Box mesh into a meshbuilder object.  
 
 // Data  
 char szXfile1[] = "boxsph1.x" ; // Second format  
 char meshName[] = "Box";  
 . . .  
 retval = lpD3DRM->CreateMeshBuilder(&boxMeshBuilder);  
 if (FAILED(retval))  
 // Meshbuilder creation failure error handler goes here   
 // Use meshbuilder to load a mesh from a DirectX file  
 retval = boxMeshBuilder->Load(szXfile1, // Source  
 &meshName,  
 D3DRMLOAD_BYNAME, // Options  
 NULL, NULL);  
 if (FAILED(retval))  
 // Mesh load error handler goes here  
 

 
The program 3DRM Mesh Load Demo in the book's CD-ROM contains menu com-mands to load 
individual meshes. One of these commands loads all four individual meshes that are part of a 
teapot object. Each individual mesh is colored using the SetColorRGB() function of the 
IDirect3DRMMeshBuilder3 interface. The result is shown in color plate 9.  

 

 
Although it is not explicitly stated in the documentation, it appears that the X file does not contain 
positional information regarding meshes. We make this deduction based on our failed attempts to 
load a mesh by position.  

 



Interpreting X File Data  
 

 

We have stated that the applications programmer is likely to rely on a modeling program for the 
construction of graphical objects. A typical scenario is to model 3D objects using 3D Studio MAX, 
TrueSpace4, or some other application. The resulting file can be already in X format or in .3ds 
format. In the latter case it can be con-verted into X format by means of the Conv3ds utility 
discussed previously in this chapter. The meshes in the X file are then loaded into program code 
either as frames, or as meshbuilder objects.  

 

 

Considering the power and refinement of the available image editing tools, it is difficult to imagine 
a circumstance in which the programmer would hard-code a mesh by defining its faces, vertices, 
and normals. However, there are cases in which, for reasons of convenience or performance, it 
may be profitable to store mesh data directly in code. If the programmer is familiar with how mesh 
data is stored in the file, it is possible to use a 3D modeling program to create the mesh and then 
cut-and-paste the mesh data from the file into program code. In other words, let the modeling 
program do the hard work of finding the vertices, faces, and normals, and use this information to 
define the required data.  

 
 Decoding an X file cube  
 

 
The DirectX file format templates can be of considerable assistance in interpreting the data 
contained in a DirectX text format file and in deciphering the encoding. Appendix C contains the 
templates for the DirectX file format. In the following example we use the data in the file boxsph1.x, 
which was obtained from the 3ds-format file named boxsph.3ds by means of the command:  

 
 Conv3ds -o"boxsph1.x" -x boxsph.3ds  
 
 Our purpose is to use the raw mesh data contained in the X file named boxsph1.x in order to hard-
code a cube mesh. The data for the mesh object named "Box" appears in the file as follows:  

 
 Mesh Box {  
   
 8;  
 -0.440000; -0.000000; -0.440000;,  
 0.440000; -0.000000; -0.440000;,  
 -0.440000; -0.000000; 0.440000;,  
 0.440000; -0.000000; 0.440000;,  
 -0.440000; 0.880000; -0.440000;,  
 0.440000; 0.880000; -0.440000;,  
 -0.440000; 0.880000; 0.440000;,  
 0.440000; 0.880000; 0.440000;;  
   
 12;  
 3;0,3,2;,  



 3;3,0,1;,  
 3;4,7,5;,  
 3;7,4,6;,  
 3;0,5,1;,  
 3;5,0,4;,  
 3;1,7,3;,  
 3;7,1,5;,  
 3;3,6,2;,  
 3;6,3,7;,  
 3;2,4,0;,  
 3;4,2,6;;  
   
 MeshNormals {  
 24;  
 -0.000000;-1.000000;-0.000000;,  
 0.000000;0.000000;-1.000000;,  
 -1.000000;0.000000;0.000000;,  
 -0.000000;-1.000000;-0.000000;,  
 0.000000;0.000000;-1.000000;,  
 1.000000;0.000000;0.000000;,  
 -0.000000;-1.000000;-0.000000;,  
 0.000000;0.000000;1.000000;,  
 -1.000000;0.000000;0.000000;,  
 -0.000000;-1.000000;-0.000000;,  
 1.000000;0.000000;0.000000;,  
 0.000000;0.000000;1.000000;,  
 0.000000;1.000000;-0.000000;,  
 0.000000;0.000000;-1.000000;,  
 -1.000000;0.000000;0.000000;,  
 0.000000;1.000000;-0.000000;,  
 0.000000;0.000000;-1.000000;,  
 1.000000;0.000000;0.000000;,  
 0.000000;1.000000;-0.000000;,  
 0.000000;0.000000;1.000000;,  
 -1.000000;0.000000;0.000000;,  
 0.000000;1.000000;-0.000000;,  
 1.000000;0.000000;0.000000;,  
 0.000000;0.000000;1.000000;;  



   
 12;  
 3;0,9,6;,  
 3;9,0,3;,  
 3;12,21,15;,  
 3;21,12,18;,  
 3;1,16,4;,  
 3;16,1,13;,  
 3;5,22,10;,  
 3;22,5,17;,  
 3;11,19,7;,  
 3;19,11,23;,  
 3;8,14,2;,  
 3;14,8,20;;  
 

 
To decipher this data you can observe how it is formatted in the template for the Mesh component. 
The template appears in the Microsoft documentation (reproduced with minor editing in Appendix 
C) as follows:  

 
 Template: Mesh  
 UUID <3D82AB44-62DA-11cf-AB39-0020AF71E433>  
   
 Member Name Type Optional Array Optional Data   
 Size Objects   
 nVertices DWORD (see list)   
 vertices array Vector nVertices   
 nFaces DWORD   
 faces array nFaces   
 MeshFace  
 
 Description  
 
 Defines a simple mesh. The first array is a list of vertices. The second array defines the faces of 
the mesh by indexing into the vertex array.  

 
 Optional data objects  
 
 The following optional data elements are used by Direct3D Retained Mode.  
 
 MeshFaceWraps If not present, wrapping for  



 both u and v defaults to false.   
 MeshTextureCoords If not present, there are no  
 texture coordinates.   
 MeshNormals If not present, normals are  
 generated using the  
 GenerateNormals API.   
 MeshVertexColors If not present, the colors  
 default to white.   
 MeshMaterialList If not present, the material  
 defaults to white   
 

 
If we now observe the X file data in light of the Mesh template we notice that the MeshNormals 
optional data object is the only one included with the mesh. This means that the mesh has no 
wraps, texture coordinates, vertex colors, or materials list. The first value (8) indicates the number 
of vertices and is followed by the coordinate triplets for each vertex, as follows:  

 
 8;  
 -0.440000; -0.000000; -0.440000;,  
 0.440000; -0.000000; -0.440000;,  
 -0.440000; -0.000000; 0.440000;,  
 0.440000; -0.000000; 0.440000;,  
 -0.440000; 0.880000; -0.440000;,  
 0.440000; 0.880000; -0.440000;,  
 -0.440000; 0.880000; 0.440000;,  
 0.440000; 0.880000; 0.440000;;  
 
 We can use this data to construct the array that encodes the coordinates for each vertex, as 
follows:  

 
 D3DVECTOR vertices[] = {  
 -0.440000, -0.000000, -0.440000,  
 0.440000, -0.000000, -0.440000,  
 -0.440000, -0.000000, 0.440000,  
 0.440000, -0.000000, 0.440000,  
 -0.440000, 0.880000, -0.440000,  
 0.440000, 0.880000, -0.440000,  
 -0.440000, 0.880000, 0.440000,  
 0.440000, 0.880000, 0.440000 };  
 
The mesh file also contains the optional MeshNormals data which you can use to obtain the array 



of normals for our hard-coded cube. The template for the MeshNormal (see Appendix C) is as 
follows:  

 
 Template: MeshNormals  
   
 UUID <F6F23F43-7686-11cf-8F52-0040333594A3>  
   
 Member Name Type Optional Array Size   
 nNormals DWORD   
 normals array Vector nNormals   
 nFaceNormals DWORD   
 faceNormals array nFaceNormals   
 MeshFace  
 
 Description  
 

 
Defines normals for a mesh. The first array of vectors is the normal vectors themselves, and the 
second array is an array of indexes specifying which normals should be applied to a given face. 
The value of the nFaceNormals member should be equal to the number of faces in a mesh.  

 
 First we observe the array that contains the 24 mesh normal vectors:  
 
 MeshNormals {  
 24;  
 -0.000000;-1.000000;-0.000000;,  
 0.000000;0.000000;-1.000000;,  
 . . .  
 1.000000;0.000000;0.000000;,  
 0.000000;0.000000;1.000000;;  
   
 From this array we can obtain the data for the 24 vector normals as follows:  
   
 D3DVECTOR normals[] = {  
 -0.000000, -1.000000, -0.000000, // Vector 1  
 0.000000, 0.000000, -1.000000, // Vector 2  
 -1.000000, 0.000000, 0.000000, // . . .  
 -0.000000, -1.000000, -0.000000,  
 0.000000, 0.000000, -1.000000,  
 1.000000, 0.000000, 0.000000,  



 -0.000000, -1.000000, -0.000000,  
 0.000000, 0.000000, 1.000000,  
 -1.000000, 0.000000, 0.000000,  
 -0.000000, -1.000000, -0.000000,  
 1.000000, 0.000000, 0.000000,  
 0.000000, 0.000000, 1.000000,  
 0.000000, 1.000000, -0.000000,  
 0.000000, 0.000000, -1.000000,  
 -1.000000, 0.000000, 0.000000,  
 0.000000, 1.000000, -0.000000,  
 0.000000, 0.000000, -1.000000,  
 1.000000, 0.000000, 0.000000,  
 0.000000, 1.000000, -0.000000,  
 0.000000, 0.000000, 1.000000,  
 -1.000000, 0.000000, 0.000000,  
 0.000000, 1.000000, -0.000000,  
 1.000000, 0.000000, 0.000000,  
 0.000000, 0.000000, 1.000000 }; // Vector 24  
 

 

To display the mesh using the AddFaces() function of IDirect3DRMMeshBuilder3, discussed 
earlier in this chapter, you need to construct the face data array. This array encodes, for each face 
in the mesh, the number of vertices in the face and the offset of the data in the arrays of vertices 
and the array of vertex normals. The information is contained in the X file following the array of 
vertices and the array of vertex normals, as follows:  

 
 12;  
 3;0,3,2;,  
 3;3,0,1;,  
 3;4,7,5;,  
 3;7,4,6;,  
 3;0,5,1;,  
 3;5,0,4;,  
 3;1,7,3;,  
 3;7,1,5;,  
 3;3,6,2;,  
 3;6,3,7;,  
 3;2,4,0;,  
 3;4,2,6;;  
 . . .  
 12;  



 3;0,9,6;,  
 3;9,0,3;,  
 3;12,21,15;,  
 3;21,12,18;,  
 3;1,16,4;,  
 3;16,1,13;,  
 3;5,22,10;,  
 3;22,5,17;,  
 3;11,19,7;,  
 3;19,11,23;,  
 3;8,14,2;,  
 3;14,8,20;;  
 

 
The first thing to notice is that there are 12 faces in the cube mesh. Earlier in this chapter you 
hard-coded a cube consisting of six square faces. Meshes built by most 3D modeling programs 
are based on triangular surfaces. Therefore, the resulting cube has 12 faces instead of 6. Figure 
21-9 shows the faces, vertices, and vertex normals of a 12-faced cube.  

 

 

  
 
 Figure 21-9: Faces, vertices, and vertex normals of a 12-faced cube 

   
 

 

Comparing Figures 21-3 and 21-9 we notice that the total number of vertices and the number of 
vertex normals is the same for a six-faced cube based on rectangular surfaces, than for a twelve-
faced cube based on triangles. However, each face of the cube in Figure 21-9 contains three 
vertices, instead of four vertices per face in the cube of Figure 21-3. Therefore the face data for the 
twelve-faced cube consists of 12 entries, each of which contains three offsets for the vertices and 
three offsets for the vertex normals.  

 

 
With this knowledge you can now merge the face data for the vertices, and the face data for the 
vertex normals, contained in the X file to produce the face data array for the 12-faced cube. The 



resulting array is as follows:  
 
 // Face data for each of the 12 faces  
 // |-------|-------|----- vertex offsets  
 // | | |   
 DWORD faceData[] = { 3, 0, 0, 3, 9, 2, 6, // Face 1  
 3, 3, 9, 0, 0, 1, 3, // Face 2  
 3, 4, 12, 7, 21, 5, 15, // . . .  
 3, 7, 21, 4, 12, 6, 18,  
 3, 0, 1, 5, 16, 1, 4,  
 3, 5, 16, 0, 1, 4, 13,  
 3, 1, 5, 7, 22, 3, 10,  
 3, 7, 22, 1, 5, 5, 17,  
 3, 3, 11, 6, 19, 2, 7,  
 3, 6, 19, 3, 11, 7, 23,  
 3, 2, 8, 4, 14, 0, 2, // . . .  
 3, 4, 14, 2, 8, 6, 20, 0 }; // Face 12  
 // | | | |  
 // | |-------|-------|-- vertex normals  
 // | offsets   
 // |_______________________ number of vertices  
 

 
The comments fields in the previous code fragment indicate the origin of the offsets. Notice that 
the data is the same as the one in the X file. The following code fragment shows the call to the 
AddFaces() function of IDirect3DRMMeshBuilder3 to display the hard-coded cube listed 
previously.  

 
 pMeshBuilder->AddFaces( 8, // Number of vertices  
 vertices, // Array of vertices  
 24, // Number of vertex normals   
 normals, // Array of vertex normals  
 faceData, // Array of face data  
 NULL );  
 
 The sample program 3DRM Mesh Create Demo included in the book's CD-ROM demonstrates the 
encoding and display of a hard-coded cubes with six and twelve faces.  

 



 Summary  
 

 

We visited in this chapter several mesh-related manipulations that are at the core of 3D application 
development. We started with the creation of simple faces and meshes by hard-coding the data 
into our programs. Due to the practical limitations of this technique, we then explored a more 
efficient mechanism for mesh creation based on the use of a 3D modeling program. Because such 
applications often output data in the .3ds proprietary format, we discussed the use of the Conv3ds 
utility. This program, which is furnished with the DirectX SDK, converts .3ds files into X format 
which can be handled in retained mode. We also examined how the frames and meshes contained 
in an X format file can be loaded and displayed by a retained mode application. The chapter 
concludes with the use of DirectX temp-lates in the interpretation of mesh data contained in an X 
format file.  

 
 The following chapter is about how materials and textures are applied to retained mode objects to 
improve their visual quality.  

 



Chapter 22: Textures and Materials  
 
 Overview  
 

 

Our discussion of retained mode functions continues here with textures, materials, and other related 
topics such as wraps. More specialized uses of textures, such as decals, mipmaps, and 
transparency are discussed in Chapter 23. Some of the material in the present chapter was 
mentioned in Chapters 14 and 16. We now revisit these topics in an applied context. The 
programmer manipulates textures and materials to enhance the visual quality of 3D objects. A 
mesh is visually rendered with no other attribute than a surface color. By handling textures and 
materials, you can make 3D objects appear to have specific surface irregularities and color 
patterns. For example, you can make a wall appear to be constructed of red bricks, a teapot to be 
made of porcelain, or an airplane to shine as if it were built of metal.  

 



Textures in Retained Mode  
 
 A texture is actually a 2D concept. Retained mode textures are encoded in 2D bitmaps, usually in 
.bmp or .ppm formats.  

 

 
Any image can be used as a texture, but developing a good texture is a graphics art form. In the 
context of texture programming the term textel, a composite of texture and pixel, is used to 
represent each individual element of a texture.  

 

 

The simplest texture rendering technique is called point mapping. In point mapping the rendering 
software looks up each pixel in a texture map and applies it to the corresponding screen pixel. 
Often point mapping produces an effect that is unnatural and disturbing. Satisfactory texturing 
requires that the distance between the object and the viewer be taken into account at the time of 
applying the texture. This means that the texture must be rendered perspectively. Bilinear filtering is 
a method of texture rendering that uses the weighted average of four texture pixels. This results in 
more pleasant textures than those that result from point mapping.  

 



The Texture Bitmap  
 

 

The texture is stored in a rectangular bitmap which can be in RGB or ramp color models. A texture 
bitmap in RGB format can be encoded in 8-, 24-, or 32-bit color. In the ramp model the texture 
color must be represented in 8 bits. Although texture bitmaps can be rectangular in shape, it is 
generally accepted that the renderer works better with square textures. In any case, a rectangular 
texture bitmap is scaled to a square shape at the time it is rendered. Textures are rendered more 
efficiently if the bitmap size is a power of 2, usually 32 X 32, 64 X 64, 128 X 128, 256 X 256, or 
512 X 512 pixels. Here again, if the texture bitmap size is not a power of 2 it is scaled 
automatically to the nearest power of 2 size. For these reasons, in retained mode programming it 
is generally recommended that texture bitmaps are square and that their pixel size are a power of 
2.  

 
 Creating a texture  
 
 Retained mode provides four ways of creating textures:  
 
   1.Create texture from a DirectDraw surface.  
 
   2.Create texture from a memory block.  
 
   3.Load texture from a bitmap file.  
 
   4.Load texture from a file in .xformat.  
 
 Most of the texture loading functions are in the IDirect3DRM3 interface, as listed in Table 22-1.  
 
 Table 22-1: IDirect3DRM3 Texture-related Functions  
 
    
 
 Function  

 
Description  

 

 
    
 
 CreateTexture()  

 
Creates a texture from a memory image.  

 

 
 CreateTextureFromSurface()  

 
Creates a texture from a DirectDraw surface.  

 

 
 LoadTexture()  

 
Loads a texture from a file. File must be in .bmp 
or .ppm format.  

 

 
 LoadTextureFromResource()  

 
Loads a texture from a program resource.  

 



 
 SetDefaultTextureColors()  

 
Sets the number of default colors to be used 
with a texture object.  

 

 
 SetDefaultTextureShades()  

 
Sets the number of default shades to be used 
with a texture object.  

 

 
    
 

 
In this section we discuss the texture-related functions that are auxiliary in nature, that is, the 
functions to create a texture from memory or from a DirectDraw surface and those to set the 
default texture colors and shades. The functions to load a texture from a bitmap, which are the 
most used, are discussed separately.  

 
 Texture from memory image  
 

 
The CreateTexture() function of IDirect3DRM3 is used to create a texture from an image 
resident in memory. The memory associated with the image is used each time the texture is 
rendered. This makes it possible to use the memory data both as a rendering target and as a 
texture. The function has the following general form:  

 
 HRESULT CreateTexture(  
 LPD3DRMIMAGE lpImage, // 1  
 LPDIRECT3DRMTEXTURE3 *lplpD3DRMTexture3 // 2  
 );  
 
 The first parameter is the address of a structure describing the texture source. This structure, of 
type D3DRMIMAGE, is defined as follows:  

 
 typedef struct _D3DRMIMAGE {  
 int width, height;  
 int aspectx, aspecty;  
 int depth;  
 int rgb;  
 int bytes_per_line;  
 void *buffer1;  
 void *buffer2;  
 unsigned long red_mask;  
 unsigned long green_mask;  
 unsigned long blue_mask;  
 unsigned long alpha_mask;  
 int palette_size;  



 D3DRMPALETTEENTRY *palette;  
 }D3DRMIMAGE;  
 
 The members of the D3DRMIMAGE structure are described in Table 22-2.  
 
 Table 22-2: Members of D3DRMIMAGE  
 
    
 
 Member  

 
Description  

 

 
    
 
 width and height  

 
Width and height of the image, in pixels.  

 

 
 aspectx and aspecty  

 
Aspect ratio for nonsquare pixels.  

 

 
 depth  

 
Number of bits per pixel.  

 

 
 rgb  

 
Flag that indicates whether pixels are RGB 
values or palette indices. If this member is 
FALSE, pixels are indices into a palette. 
Otherwise, pixels are RGB values.  

 

 
 bytes_per_line  

 
Number of bytes of memory for a scan line. 
This value must be a multiple of four.  

 

 
 buffer1  

 
Memory buffer to render into.  

 

 
 buffer2  

 
Buffer for double buffering. Set this member to 
NULL for single buffering.  

 

 
 red_mask, green_mask,   

 
A mask for RGB pixels or pixel palette indices. 
If RGB blue_mask, and alpha_mask is 
TRUE, these members are masks for the red, 
green, and blue parts of a pixel. Otherwise, 
they are masks for the significant bits of the 
red, green, and blue elements in the palette.  

 

 
 palette_size  

 
Number of entries in the palette.  

 

 
 palette  

 
Pointer to a D3DRMPALETTEENTRY structure 
describing the color palette to be used. Only if 
the D3DRMIMAGE RGB member is FALSE.  

 



 
    
 

 
If the call succeeds, the second parameter is the address of a pointer to an 
IDirect3DRMTexture3 interface. The function returns D3DRM_OK if it succeeds, or an error 
otherwise.  

 
 Texture from a DirectDraw surface  
 

 

A DirectDraw surface can serve as the source for a retained mode surface. Retained mode 
documentation recommends that textures created from a DirectDraw surface are located in system 
memory. This optimizes performance and improves memory management. The 
CreateTextureFromSurface() function of IDirect3DRM3 serves to create the surface. The 
function has the following general form:  

 
 HRESULT CreateTextureFromSurface(  
 LPDIRECTDRAWSURFACE lpDDS, // 1  
 LPDIRECT3DRMTEXTURE3 *lplpD3DRMTexture3 // 2  
 );  
 

 
The first parameter is the address of the DirectDrawSurface object containing the texture. If 
the call succeeds, the second parameter is the address of the pointer to an 
IDirect3DRMTexture3 interface. The function returns D3DRM_OK if it succeeds, or an error 
otherwise.  

 
 Default texture parameters  
 
 Two functions of IDirect3DRM3 serve to set the default number of texture colors and shades 
respectively. The functions have similar general forms, as follows:  

 
 HRESULT SetDefaultTextureColors(  
 DWORD dwColors // 1  
 );  
   
 HRESULT SetDefaultTextureShades(  
 DWORD dwShades // 1  
 );  
 

 
In both functions the only parameter is a double word value that defines in one case the number of 
default colors and in the other one the number of default texture shades. In either case the default 
parameters refer to textures that have not yet been created, and have no effect on existing 
textures. Both functions return D3DRM_OK if they succeed, or an error otherwise.  

 



 Retained mode texture programming   
 
 The IDirect3DRMTexture3 interface provides access to several texture-related functions. 
These are listed in Table 22-3.  

 
 Table 22-3: Functions in IDirect3DRMTexture3  
 
    
 
 Function  

 
Description  

 

 
    
 
 Color  

 
  

 

 
 GetColors()  

 
Retrieves the number of colors used in 
rendering the texture  

 

 
 SetColors()  

 
Sets the number of texture colors  

 

 
 Decals  

 
  

 

 
 GetDecalOrigin()  

 
Retrieves the origin of a decal  

 

 
 GetDecalScale()  

 
Retrieves the scale of a decal  

 

 
 GetDecalSize()  

 
Retrieves the size of a decal  

 

 
 GetDecalTransparency()  

 
Retrieves the transparency attribute of a decal  

 

 
 GetDecalTransparentColor()  

 
Retrieves the transparent color of a decal  

 

 
 SetDecalOrigin()  

 
Sets the decal's offset from its top-left corner  

 

 
 SetDecalScale()  

 
Sets the scaling property of a decal  

 

 
 SetDecalSize()  

 
Sets the decal size if it is being scaled 
according to scene depth  

 

 
 SetDecalTransparency()  

 
Sets the transparent property of a decal  

 

 
 SetDecalTransparentColor() 

 
Sets the transparent color of a decal 

 



 SetDecalTransparentColor()  Sets the transparent color of a decal  
 
 Images  

 
  

 

 
 GetImage()  

 
Returns the address of the image used in 
creating a texture  

 

 
 Initialization  

 
  

 

 
 InitFromFile()  

 
Initializes a texture object from file data  

 

 
 InitFromImage()  

 
Initializes a texture object from a memory 
image  

 

 
 InitFromResource2()  

 
Initializes a texture object from a resource  

 

 
 InitFromSurface()  

 
Initializes a texture object from a DirectDraw 
surface  

 

 
 Mipmaps  

 
  

 

 
 GenerateMIPMap()  

 
Creates a mipmap from a single image source  

 

 
 Shading  

 
  

 

 
 GetShades()  

 
Retrieves the number of shades used for each 
texture color  

 

 
 SetShades()  

 
Sets the maximum number of shades for each 
texture color  

 

 
 Others  

 
  

 

 
 GetCacheOptions()  

 
Retrieves texture management information for 
the current texture  

 

 
 GetSurface()  

 
Retrieves the DirectDraw surface used in 
creating a texture  

 

 
 SetCacheOptions()  

 
Sets texture management parameters  

 

 
 SetDownsampleCallback()  

 
Specifies a callback function to be used when 
texture is downsampled  

 



 
 SetValidationCallback()  

 
Sets a callback function to be used to validate 
and update the primary texture source  

 

 
 Changed()  

 
Notifies the renderer of the texture region that 
has changed  

 

 
    
 
 In the remainder of this chapter we discuss the most used of these functions. The ones related to 
decals and mipmaps are discussed in Chapter 23.  

 



Wraps  
 

 
In retained mode programming the notion of a wrap refers to how a texture is applied to a face or 
mesh. It is the wrap that determines how the texture conforms to the shape of the object. Four 
types of wraps are available in retained mode:  

 
   •Flat  
 
   •Cylindrical  
 
   •Spherical  
 
   •Chrome  
 

 

In the flat wrap the texture behaves as if it were painted on a cloth that is wrapped over the object. 
The cylindrical wrap can be visualized as if the texture were located on a sheet of paper that is 
wrapped around a cylindrically shaped object. The spherical wrap is similar to the cylindrical wrap, 
except that in this case the wrapped object is spherical. A chrome wrap allocates texture 
coordinates so that the texture appears to be reflected onto the objects. The chrome wrap takes 
the reference frame position and uses the vertex normals in the mesh to calculate reflected 
vectors. These vectors are based on an imaginary sphere that surrounds the mesh. The resulting 
effect is the mesh reflecting whatever is wrapped on the sphere.  

 

 

Texture wrapping is a complex task. Most retained mode applications apply materials and textures 
to objects as they are modeled in the art environment. 3D modeling programs, such as 3D Studio 
MAX and TrueSpace, have powerful texture functions, dozens of texture-related options, and 
include many texture bitmaps. In most cases the easiest way to visualize, create, and apply a 
texture is in the 3D modeling environment. Later in this chapter, we explore how to load textured 
objects into application code, either as meshes or as frames. Only on rare occasions will the 
applications programmer need to resort to manipulating wrapping modes directly. For this reason, 
our coverage of texture wraps is rather elementary. The article Texture Wrapping Simplified by 
Peter Donnelly that appears in Microsoft Developers Network documentation contains additional 
discussions of texture wraps. The article includes a demonstration program for experimenting with 
texture wrapping options. The program is included in the Chapter 22/Texture Demo by Donnelly 
directory in the book's CD-ROM.  

 
 Wrap arguments  
 
 The CreateWrap() function of IDirect3DRM3 is used to create a wrapping function. The 
function has 16 parameters, which should be well understood. Its general form is as follows:  

 
 HRESULT CreateWrap(  
 D3DRMWRAPTYPE type, // 1  
 LPDIRECT3DRMFRAME3 lpRef, // 2  
 D3DVALUE ox, // 3  
 D3DVALUE oy, // 4  



 D3DVALUE oz, // 5  
 D3DVALUE dx, // 6  
 D3DVALUE dy, // 7  
 D3DVALUE dz, // 8   
 D3DVALUE ux, // 9  
 D3DVALUE uy, // 10   
 D3DVALUE uz, // 11  
 D3DVALUE ou, // 12  
 D3DVALUE ov, // 13  
 D3DVALUE su, // 14  
 D3DVALUE sv, // 15  
 LPDIRECT3DRMWRAP *lplpD3DRMWrap // 16  
 );  
 
 The first parameter is one of the members of the D3DRMWRAPTYPE enumeration, which is defined 
as follows:  

 
 typedef enum _D3DRMWRAPTYPE{  
 D3DRMWRAP_FLAT, // flat wrap  
 D3DRMWRAP_CYLINDER, // cylindrical wrap  
 D3DRMWRAP_SPHERE, // spherical wrap  
 D3DRMWRAP_CHROME // chrome wrap   
 } D3DRMWRAPTYPE;  
 

 

The four wrap types are discussed in detail later in this section. The second parameter is the 
reference frame for the wrap. If the call succeeds, the sixteenth parameter is the address of a 
pointer to an IDirect3DRMWrap interface. This interface contains three functions: Init(), 
Apply(), and ApplyRelative(). Init() uses a similar parameter list to CreateWrap() and 
is used to initialize a Direct3DRMWrap object. The Apply() function applies the wrap to a face 
or mesh. ApplyRelative() uses world transformation of the frame containing the wrap on the 
object vertices.  

 

 
The remaining parameters (3 to 15), sometimes called the wrap arguments, determine how the 
texture is mapped to the object's surface. Figure 22-1 shows a texture seam that appears on the 
center of the object's surface and how this situation is corrected by remapping the texture bitmap 
to the object.  

 



 

  
 
 Figure 22-1: Mapping a texture bitmap to the object's surface 

   
 

 

Parameters 3, 4, and 5 of the CreateWrap() function define the origin of the wrap. These 
arguments determine the location of the wrap's seam on the object. The default value is [0,0,0]. In 
the case of a rectangular object, the default position places the origin for the wrap at the center of 
the object. The resulting wrap is as shown in the top part of Figure 22-1. You can make the texture 
origin coincide with the edge of the object by resetting the x and y coordinates of the bitmap, 
represented by the ox and oy parameters in the general form of the CreateWrap() function 
listed previously. If you assume that w represents the width of the rectangular object and h its 
height, then, to set the origin of the bitmap to the bottom-left corner of the object you have to set 
the ox parameter to -0.5w and the oy parameter to -0.5h. Figure 22-2 shows recalculating the ox 
and oy parameters in the case of a square object that is exactly twice the size of a texture bitmap. 

 

 

  
 
 Figure 22-2: Resetting the wrap origin parameters 

   
 



parameters determine the z-axis of the wrap. Parameters 9, 10, and 11 are called the up vectors. 
The action of the direction and the up vectors is to define a coordinate system for the wrap, 
sometimes called the wrap space. The direction vector defines the z-axis in the wrap space, and 
the up vector defines its y-axis. The x-axis is always at right angles to both y and z, so usually it 
can be ignored.  

 

 

Parameters 12 and 13 define the texture origin, represented by the variables ou and ov in the 
function's general form. The values of these parameters determine which part of the texture 
coincides with the wrap origin. Normally they are set to zero. One possible use for these parameter 
is to extract portions of a large texture. For example, a 256 X 256 pixel texture may contain four 
individual images of 128 X 128 pixels. By setting the appropriate values for the ou and ov 
parameters, as well as the scaling parameters described in the next paragraph, only a portion of 
the texture is used in the wrap.  

 

 

The orientation of the texture within the wrap depends on the sign of the scaling factors and on the 
bitmap format. When sv is positive, CreateWrap() places the bitmap's first scan line at the 
bottom of the wrap. This is satisfactory for bitmaps in .bmp format. However, .ppm bitmaps are 
inverted. In the case of .ppm bitmaps, you must set a negative value for sv to orient the top of the 
texture to the top of the wrap.  

 

 

Parameters 14 and 15 define the texture scale, represented by the variables su and sv in the 
general form. These parameters determine how the texture is scaled to the object. In the 
calculations a square texture is considered to have dimensions of 1 X 1. In the case of a flat wrap 
su is the scale of the width of the texture to the width of the object, whereas sv is the scale of the 
height of the texture to the height of the object. For a cylindrical wrap, a value of 1 for su ensures 
that the texture wraps exactly once around the object so that the longitudinal edges will meet. In 
this case sv is used to scale the texture so that it covers the object from top to bottom. If the height 
of the object is represented by the variable h, then sv can be set to 1/h. In the case of a spherical 
wrap su and sv are both set to 1 in order to stretch the texture to just cover the object.  

 
 Texture wrapping flags  
 

 

Retained mode applications can create mesh groups that share common properties; among them 
are colors, materials, and textures. The functions for creating and manipulating mesh groups are 
located in the IDirect3DRMMesh interface and were discussed in Chapter 21. One of the shared 
characteristics of mesh groups determine how a texture is mapped to a surface. This is determined 
by a texture mapping flag that is set by the SetGroupMapping() function and retrieved by 
GetGroupMapping().  

 
 The texture mapping flags are defined in the D3DRMMAPPING type, as follows:  
 
 typedef DWORD D3DRMMAPPING, D3DRMMAPPINGFLAG;  
 static const D3DRMMAPPINGFLAG D3DRMMAP_WRAPU = 1;  
 static const D3DRMMAPPINGFLAG D3DRMMAP_WRAPV = 2;  
 static const D3DRMMAPPINGFLAG D3DRMMAP_PERSPCORRECT = 4;  
 



infinite tiling of the texture. Values greater than 1.0 are valid for both u and v. If neither 
D3DRMMAP_WRAPU or D3DRMMAP_WRAPV is set, the texture is a cylinder with an infinite length and 
a circumference of 1.0. Texture coordinates greater than 1.0 are valid only in the dimension that is 
not wrapped. If both D3DRMMAP_WRAPU and D3DRMMAP_WRAPV are set, the texture is a torus. In 
this case texture coordinates greater than 1.0 are invalid.  

 

 
Applications usually set a wrap flag for cylindrical wraps when the intersection of the texture edges 
does not match the edges of the face. On the other hand, there is no need to set a wrap flag if 
more than half of a texture is applied to a single face. The D3DRMMAP_PERSPCORRECT flag 
ensures that the texture wrapping is corrected for perspective.  

 
 Flat wrap  
 

 

The conventional description for a flat wrap is to say that it conforms to the faces of an object as if 
the texture were a piece of rubber stretched over the object. Peter Donnelly points out in the 
article, mentioned earlier in the chapter, that this description is inherently flawed. He proposes, 
instead, that we visualize the flat wrap as the projection of the texture image onto a flat, translucent 
plane, in which case the projector can be placed in any position relative to this plane.  

 
 In the case of a flat wrap the [u,v] coordinates are derived from a vector [x,y,z] by the following 
equations:  

 
 u = sux – ou  
 
 v = svy – ov  
 

 
In the preceding formulas, s is the window-scaling factor and o is the window origin. Code should 
select the scaling factors and offsets so that the ranges of x and y are mapped to the range 0 to 1 
for u and v.  

 
 Cylindrical wrap  
 

 
In the cylindrical wrap the texture behaves as if it were a piece of paper wrapped around a 
cylindrical-shaped object that is placed so that its left and right edges are joined. The object is 
placed in the center of the cylinder and the texture is deformed inward onto its surface. Figure 22-3 
shows the parameters used in cylindrical wrapping.  



 

  
 
 Figure 22-3: Cylindrical wrapping parameters 

   
 

 
In cylindrical wrapping the direction vector specifies the axis of the cylinder, and the up vector the 
point on the outside of the cylinder where u equals 0. The following equations are used to calculate 
the texture coordinates [u,v] for a vector [x,y,z]:  

 

 

  
 
 The value u is typically not scaled, whereas v is scaled and translated so that the range of z maps 
to the range from 0 to 1 for v. Figure 22-4 shows the result of a cylindrical wrap.  

 

 

  



 
 Figure 22-4: Cylindrical wraps 

   
 
 Spherical wrap  
 
 The spherical wrap is similar to the cylindrical wraps, but in this case the wrapped form is a 
sphere, instead of a cylinder.  

 

 
As in the cylindrical wrap, the u-coordinate is derived from the angle that the vector [x,y,0] makes 
with the x-axis, whereas the v-coordinate is derived from the angle that the vector [x,y,z] makes 
with the z-axis. Consequently, spherical mapping causes distortion of the texture at the z-axis. 
Figure 22-5 shows the location of the u and v parameters in spherical wrapping.  

 

 

  
 
 Figure 22-5: Spherical wrapping parameters 

   
 
 In the case of spherical wrapping, the [u,v] coordinates are derived from a vector [x,y,z] by using 
means of the following formulas:  

 

 

  
 



 Scaling factors and texture origin are often not needed in spherical wrapping because the 
unscaled range of u and v is already 0 through 1.  

 
 Chrome wrap  
 

 
A chrome wrap makes the texture appear to be reflected onto the objects. The system uses the 
reference frame position and the vertex normals in the mesh to calculate the reflected vectors, 
which are based on an imaginary sphere that surrounds the mesh. The resulting effect is the mesh 
reflecting whatever is wrapped on this imaginary sphere.  

 

 

The basic notion of the chrome wrap is that the texture is attached to the scene, not to the object 
itself. For example, if a conventional wrap is applied to a sphere, the wrap pattern rotates as the 
sphere rotates. However, if the same texture is applied to the sphere using a chrome wrap, then 
the texture does not rotate with the sphere, which produces the illusion of the texture being 
reflected by the object's surface. This implies, first, that chrome wraps are most effective in 
animated renderings. Second, this implies that the texture applied as a chrome wrap must be 
either part of the scene background, or part of another object, for the reflection to appear natural.  

 

 

Implementing chrome wraps is computationally expensive because the wrap must be reapplied 
every time the object moves. This is because the orientation of the texture map is related to the 
scene, not to the object. The usual approach is to create a move callback function on the frame that 
contains the wrapped object. In this manner the application is notified of every movement of the 
object, at which time the wrap can be reapplied.  

 



Materials in Retained Mode  
 

 

A material property of a mesh, face, or frame determines how its surface reflects light. A material is 
not a texture but textures are effectively enhanced by selecting an adequate material to serve as 
its base. On the other hand, a miss-match between the material and the texture can produce 
disturbing and unnatural effects. For these reasons texture design usually starts with a material 
selection. Furthermore, many objects can be very effectively rendered by manipulating mesh color 
and materials alone. Textures are computationally expensive and should be used only when they 
play a crucial role in enhancing the image.  

 

 

In retained mode the material component has an emissive property and a specular property. The 
first one determines whether the material emits light on its own. This is useful in modeling lamps, 
neon signs, or other self-luminous objects. Also, the emissive property is useful in producing 
unusual effects, such as ghostly or radioactive objects. The specular property determines if the 
material reflects light and, if so, how it reflects it. You can control the emissive property of a 
material by defining the red, green, and blue color values. The specular property is also defined by 
the red, green, and blue values of the reflected light and by a power setting. The default specular 
color is white. The power setting determines the size, and consequently the sharpness, of the 
reflected highlights. A small highlight makes an object appear shiny or metallic. A large highlight 
gives a plastic appearance.  

 
 Materials programming  
 
 The retained mode IDirect3DRMMaterial2 interface contains functions to interact with material 
objects. Table 22-4 lists the functions in IDirect3DRMMaterial2.  

 
 Table 22-4: Functions in IDirect3DRMMaterial2  
 
    
 
 Function  

 
Action  

 

 
    
 
 Ambient controls  

 
  

 

 
 GetAmbient()  

 
Retrieve RGB ambient color value  

 

 
 SetAmbient()  

 
Set RGB ambient color value  

 

 
 Emission controls  

 
  

 

 
 GetEmissive()  

 
Retrieve RGB intensity of emissive property  

 

   



 SetEmissive()  Set RGB intensity of emissive property  
 
 Power controls  

 
  

 

 
 GetPower()  

 
Retrieve power setting  

 

 
 SetPower()  

 
Set power used in specular component  

 

 
 Specular controls  

 
  

 

 
 GetSpecular()  

 
Retrieve the RGB intensity of the specular component  

 

 
 SetSpecular()  

 
Set RGB color value of specular highlights  

 

 
    
 

 

DirectX version 6.0 introduced the GetAmbient() and SetAmbient() functions that allow a 
finer control over material properties. In previous versions of the interface the ambient color of a 
material was always equal to the face color and could not be modified. In 
IDirect3DRMMaterial2 an object uses the face color as the ambient color by default, but this 
value can be changed by calling the SetAmbient() function.  

 

 

In addition to the functions in IDirect3DRMMaterial2, applications need to use other material-
related functions to create and apply a material. Materials can be applied to a mesh, to a 
meshbuilder, to a face, or to a frame. To apply a material to a mesh object you must first create a 
group and then use the SetGroupMaterial() function of the IDirect3DRMMesh interface. To 
apply a material to a meshbuilder object you use the SetMaterial() function of 
IDirect3DRMMeshBuilder3. A material is applied to a face by means of the SetMaterial() 
function of IDirect_3DRMFace2. Finally, a material can be applied to a frame, thus overriding 
any material settings at the face, mesh, or meshbuilder levels. In this case you use the 
SetMaterialMode() function of IDirect3DRMFrame3.  

 
 Creating and applying a material  
 

 
In applications programming materials are most often associated with meshes through the 
meshbuilder objects. Although occasionally, you may need to apply individual materials to the 
various faces of a mesh. Applying a material to a mesh is usually a two-step process: first you 
must create and specify the material, then the material must be set on the mesh.  

 
 To create a material you use the CreateMaterial() function of IDirect3DRM3. This function 
also defines the specular property of the material. Its general form is as follows:  

 
 HRESULT CreateMaterial(  
 D3DVALUE vPower, // 1  



 LPDIRECT3DRMMATERIAL2 *lplpD3DRMMaterial // 2  
 );  
 

 

This first parameter defines the sharpness of the reflected highlights. A high value produces a 
metallic look and a lower one a more plastic appearance. This value can be changed in a material 
by means of the SetPower() function of IDirect3DRMMaterial2. The second parameter is 
filled with the address of a pointer to IDirect3DRMMaterial2 interface if the call succeeds. This 
pointer can be used to access the functions listed in Table 22-4. The call returns D3DRM_OK if it 
succeeds, or an error otherwise.   

 

 
The following function receives as parameters a meshbuilder object. It then creates a material 
according to the caller's specifications and applies it to the mesh. The function is part of the 3DRM 
Textures Demo program in the book's CD-ROM.  

 
 //*****************************************************  
 // name: MatToMesh()  
 // desc: Creates a material according to the caller's  
 // parameters and applies it to the mesh  
 // Note: the function accumulates errors in a local  
 // variable, which is inspected before the  
 // function returns.  
 //*****************************************************  
 BOOL MatToMesh(LPDIRECT3DRMMESHBUILDER3 aMeshBuilder,  
 float meshRed, // mesh/material color  
 float meshGreen,  
 float meshBlue,  
 float meshAlpha,   
 float ambientRed, // ambient color  
 // values  
 float ambientGreen,  
 float ambientBlue,   
 float specRed, // Specular  
 float specGreen,  
 float specBlue,  
 float emisRed, // Emissive  
 float emisGreen,  
 float emisBlue,  
 float matPower) // Power value  
 {  
   
 // Local variables  



 static HRESULT rtnError = 0;  
 LPDIRECT3DRMMATERIAL2 aMaterial = NULL;  
   
 // Create material  
 // (power is set later)  
 retval = lpD3DRM->CreateMaterial(D3DVAL(0.0),  
 &aMaterial);  
 rtnError = rtnError + retval;  
   
 // Set specular color and intensity  
 retval = aMaterial->SetSpecular(  
 D3DVAL(specRed),  
 D3DVAL(specGreen),  
 D3DVAL(specBlue));  
 rtnError = rtnError + retval;  
   
 // Set power  
 retval = aMaterial->SetPower(D3DVALUE(matPower));  
 rtnError = rtnError + retval;  
   
 // Set emissive property  
 retval = aMaterial->SetEmissive(  
 D3DVAL(emisRed),  
 D3DVAL(emisGreen),  
 D3DVAL(emisBlue));  
 rtnError = rtnError + retval;  
   
 retval = aMaterial->SetAmbient(  
 D3DVAL(ambientRed),  
 D3DVAL(ambientGreen),  
 D3DVAL(ambientBlue));  
 rtnError = rtnError + retval;  
   
 // Set the material on the mesh  
 retval = aMeshBuilder->SetMaterial(aMaterial);  
 rtnError = rtnError + retval;  
   
 // Set the mesh color according to caller's specs  



 retval = aMeshBuilder->SetColor(  
 RGBA_MAKE(int(255 * meshRed),  
 int(255 * meshGreen),  
 int(255 * meshBlue),  
 int(255 * meshAlpha)));  
 rtnError = rtnError + retval;  
   
   
 RELEASE(aMaterial);  
   
 if(rtnError)  
 return FALSE;  
 else  
 return TRUE;  
 }  
 
 Notice that, to simplify the coding, the function accumulates errors in a local variable which is 
inspected before it returns. Also notice that the material object is created and released locally.  

 
 Obtaining materials specifications  
 

 

It is often difficult to empirically determine the specular, emissive, and ambient color of a specific 
material and its specular power. Experimenting in code with different settings for all four elements 
can be a fruitless task. A more reasonable approach is to use a 3D modeling program to simulate 
a desired material. Most 3D modeling applications include extensive libraries of materials from 
which the user can select. The material can then be applied to an object that is similar to the one in 
the application and the results rendered on the screen. When the desired material effect is 
achieved, the model can be saved to a file in X format, or to one that can later be converted into X 
format. In either case the resulting X file must be in text form. The material is stored in the file 
following the Material template specifications (see Appendix C). For example, a metallic surface 
appears as follows in the X file listing:  

 
 Material x3ds_mat_Metal {  
 0.717647, 0.647059, 0.309804, 1.000000;; // color  
 30.000000; // specular power  
 1.000000, 1.000000, 1.000000;; // specular color  
 0.00, 0.00, 0.00;; // emissive color  
 

 

The four values in the first row correspond to the material color, in RGBA format. These values can 
be used in coloring the mesh that contains the material and also in determining the ambient color 
for the material itself. The value in the second row is the specular power. The third row encodes 
the specular color and the fourth one the emissive color. These values can be used in the 
corresponding calls to SetAmbient(), SetEmissive(), SetSpecular(), and SetPower(). 
For example, the following code fragment shows a call to the MatToMesh() function previously 



listed to create a metallic material.  
 
 // Routine variables  
 BOOL success;  
 LPDIRECT3DRMMESHBUILDER3 sphereMeshBuilder = NULL;  
 . . .  
 // Create gold material and attach to mesh   
 success = MatToMesh(sphereMeshBuilder,  
 0.717647f, // Mesh/ambient color red  
 0.647059f, // green  
 0.309804f, // blue  
 1.000000f, // alpha  
 0.5f, // ambient red  
 0.2f, // green  
 0.2f, // blue  
 1.0f, // Specular red  
 1.0f, // green  
 1.0f, // blue  
 0.0f, // Emissive red  
 0.0f, // green   
 0.0f, // blue  
 30.0f); // Power  
 if(!success)  
 // Material creation error handler goes here  
 
 Color plate number 11 shows a metallic and a plastic material as they are rendered by the 3DRM 
Textures Demo program in the book's CD-ROM.  

 



Applying Textures to Meshes  
 

 

Retained mode applications can apply textures to mesh objects by performing a series of texture-
related operations that originate in the IDirect3DRM3, IDirect_3DRMTexture3, and 
IDirect3DRMMeshBuilder3 interfaces. In the following discussions we assume that a 
compatible texture file is located in the program's path. In many cases the safest location for the 
texture file is the same directory in which the application resides. At its simplest, the process of 
applying a texture to a mesh object in an already existing scene consists of the following steps:  

 
   1.The rendering quality is set using a light, fill, and shade mode that ensure adequate rendering of 

the texture.  
 
   2.A suitable wrap is created for applying the texture to the object.  
 
   3.The texture bitmap is loaded into the application.  
 
   4.The texture is associated with the object to which it is applied.  
 

 

In some cases the above process can be one of the most complex in retained mode programming. 
On the other hand, when the texturing is not subject to many technical requirements, it can be 
applied in a straightforward manner with considerable improvement of the visual quality. It is this 
simpler case that we describe in the present section. Later in this chapter, we explore the use of 
3D modeling software in creating and applying more complex textures.  

 
 Preliminary operations  
 

 

An object of type LPDIRECT3DRMTEXTURE3 cannot be directly rendered by retained mode. To 
make the texture visible it must first be applied to a face, a mesh, a meshbuilder, or a frame. At 
higher levels of processing the meshbuilder approach is a reasonable one. In the example that 
follows we assume that a meshbuilder object has been previously created and that a spherically 
shaped mesh has been loaded, typically from a file in X format. Also, that a child frame is available 
in the scene.  

 
 Several preparatory operations are usually required before a texture can be applied to the mesh. 
These are as follows:  

 
   1.Create a material and set its properties.  
 
   2.Set the material on the mesh.  
 
   3.Set the quality for the meshbuilder.  
 
   4.Create a suitable wrap.  
 
   5.Apply the wrap to the meshbuilder object.  



 
 Much of the programming related to these preparatory operations was discussed previously in this 
chapter in the context of materials and wraps. In this case the coding can proceed as follows:  

 
 // General data for routine  
 HRESULT retval;  
 LPDIRECT3DRMMATERIAL2 sphereMaterial = NULL;  
 LPDIRECT3DRMMESHBUILDER3 sphereMeshBuilder = NULL;  
 LPDIRECT3DRMWRAP aWrap = NULL;  
 // Variables for wrap and texture processing   
 D3DRMBOX bBox; // Bounding box  
 D3DVALUE minY, maxY; // y coordinates min and max  
 D3DVALUE bHeight; // Height  
 . . .  
 // Step 1:  
 // Create a material and define its properties  
 retval = lpD3DRM->CreateMaterial(D3DVAL(15.0),  
 &sphereMaterial);  
 if(FAILED(retval))  
 {  
 // Material creation error handler goes here  
 }  
 // Set ambient property color and intensity  
 retval = sphereMaterial->SetAmbient(  
 D3DVALUE(2.0), // red  
 D3DVALUE(2.0), // green  
 D3DVALUE(2.0)); // blue  
 if(FAILED(retval))  
 {  
 // Ambient property error handler goes here  
 }  
   
 // Step 2:  
 // Set the material on the mesh  
 retval = sphereMeshBuilder->SetMaterial(sphereMaterial);  
 if(FAILED(retval))  
 {  
 // Material setting error handler goes here  
 }  



 // Step 3:  
 // Set quality for meshbuilder  
 // Use highest quality  
 retval = sphereMeshBuilder->SetQuality(D3DRMRENDER_GOURAUD);  
 if(FAILED(retval))  
 {  
 // Quality setting error handler goes here  
 }  
 // Step 4:  
 // Create a cylindrical wrap for the spherical mesh  
 // First obtain bounding box for sphere  
 retval = sphereMeshBuilder->GetBox(&bBox);  
 if(FAILED(retval))  
 {  
 // Bounding box error handler goes here  
 }  
 // ASSERT:  
 // D3DVECTOR types bBox.min and bBox.max now hold the  
 // bounding box dimensions  
 // Store values in local variables  
 maxY = bBox.max.y;  
 minY = bBox.min.y;  
 bHeight = maxY - minY;  
 // Using the bounding box data, create a cylindrical wrap  
 retval = lpD3DRM->CreateWrap(  
 D3DRMWRAP_CYLINDR, // Wrap type  
 NULL, // NULL reference   
 D3DVAL(0.0), // x of Origin   
 D3DVAL(0.0), // y  
 D3DVAL(0.0), // z  
 D3DVAL(0.0), // x of z-axis  
 D3DVAL(1.0), // y  
 D3DVAL(0.0), // z   
 D3DVAL(0.0), // x of y-axis  
 D3DVAL(0.0), // y  
 D3DVAL(1.0), // z   
 D3DVAL(0.0), // Texture origin   
 D3DDivide(minY, bHeight),   



 D3DVAL(1.0), // Scale factor  
 D3DDivide(D3DVAL(1.0), bHeight),  
 &aWrap); // Address of wrap   
 if (FAILED(retval))  
 {  
 // Wrap creation error handler goes here  
 }  
   
 // Step 5:  
 // Apply wrap to meshbuilder  
 retval = aWrap->Apply((LPDIRECT3DRMOBJECT) sphereMeshBuilder);  
 if (FAILED(retval))  
 {  
 // Wrap application error handler goes here  
 }  
 
 At this point you are ready to proceed with loading and applying the texture.  
 
 Loading the texture  
 

 

A texture is a 2D bitmap. The source of a texture can be any image that is in a compatible format 
(.bmp or .ppm) or that can be converted into these formats. Scanned pictures, texture libraries 
from drawing and modeling programs, and clip art provide easy access to many useful textures. In 
addition, applications often create their own art for textures, usually by means of drawing or bitmap 
editing. Whatever the origin, the retained mode texture file is a square bitmap whose pixel size is a 
power of 2. Because the .ppm format exists mostly for compatibility reasons, in the following 
examples we assume that texture files are in .bmp format.  

 

 
The LoadTexture() function of IDirect3DRM3 provides a way for loading a texture from a file. 
The call assumes that the texture file is in either .bmp of .ppm formats and that it has a color depth 
of 8, 24, or 32 bits-per-pixel. The function's general form is as follows:  

 
 HRESULT LoadTexture(  
 const char *lpFileName, // 1  
 LPDIRECT3DRMTEXTURE3 *lplpD3DRMTexture // 2  
 );  
 

 

The first parameter is a pointer to the filename of the texture file. The filename can be entered 
directly in the call by enclosing it in double quotation marks. If the call succeeds, the second 
parameter is the address of a pointer that is initialized with an object of IDirect3DRMTexture3 
interface. This object provides access to all the functions listed in Table 22-3. The function returns 
D3DRM_OK if it succeeds, or an error otherwise.  

 



 The following code fragment shows loading a texture contained in a file named limestn3.bmp and 
applying the texture to a mesh.  

 
 // General data for routine  
 LPDIRECT3DRMTEXTURE3 aTex = NULL;  
 LPDIRECT3DRMFRAME3 childframe = NULL;  
 . . .  
 // Load texture and set texture to mesh  
 retval = lpD3DRM->LoadTexture("limestn3.bmp", &aTex);  
 if (FAILED(retval))  
 {  
 // Load failure error handler goes here   
 }  
 // Change the number of shades from default (16) to 32  
 retval = aTex->SetShades(32);  
 if (FAILED(retval))  
 {  
 // Texture shades change error handler goes here  
 }   
 // Apply texture to meshbuilder object  
 retval = sphereMeshBuilder->SetTexture(aTex);  
 if (FAILED(retval))  
 {  
 // Set texture error handler goes here  
 }  
   
 // Texture is made visible by adding the meshbuilder as a  
 // a visual to the child frame  
 retval = childframe->AddVisual(   
 (LPDIRECT3DRMVISUAL)sphereMeshBuilder);  
 if (FAILED(retval))  
 {  
 // Adding visual error handler goes here  
 }  
 
 If all has gone well, the application can now proceed to render the scene in the normal manner.  
 



Textures from X Files  
 

 
Retained mode provides an alternative approach to textures that does not require creating 
meshes, calculating wraps, and manipulating rendering properties. This option consists of the 
following steps:  

 
   1.The desired object and its texture are created in a modeling program.  
 

   
2.The textured object is saved as an X format file, or converted into X format using the Conv3ds 
utility discussed in the previous chapter. The texture file itself, and the texture file reference in the 
X file, may require editing.  

 

   
3.In the application, an object of type IDirect3DRMFrame3 is created and the Load() function 
of IDirect3DRMFrame3 is used to load the textured object, from the X file, into one or more 
frames. The material mode is set to D3DRMMATERIAL_FROMFRAME and the textured objects are 
rendered.  

 
 In many cases this easy approach to textures is a viable option.  
 
 Creating a textured object  
 

 

The mechanics of applying textures to objects vary with different modeling programs. In most 
cases there are one or more texture-related services that enable you to load texture libraries, 
visualize them on objects of different shapes and colors, and apply the texture to one or more 
preexisting objects. The more powerful modeling applications, such as 3D Studio MAX and 
TrueSpace, contain several useful texture creation and editing facilities.  

 

 

Although creating textures in a modeling program is often easy and convenient, there are many 
caveats regarding their use in application code. One of them is that the rendering engines in the 
modeling programs are sometimes more powerful and sophisticated than the one available in 
retained mode. This determines that a texture may not appear the same in the application as it did 
in the modeler. For example, a rendering program may have ray tracing or Phong rendering 
capabilities, whereas in retained mode programming you have to be content with Gouraud 
shading. Another source of possible differences between the modeled and the imported textures 
relates to lighting.  

 

 

When creating a texture in the modeling program it is also important to make sure that the number, 
type, intensity, position, and color of the lights are the same as those used by the application. 
Small variations in lighting conditions often make textures appear quite different. In addition, you 
must be aware that the notions of textures and materials are often considered equivalent in the 
modeler. In this sense, a metallic surface luster may be labeled as a texture in the modeling 
program, whereas to the application this effect is achieved by means of a material.  

 
 Making a DirectX-compatible texture  
 
One of the issues related to the use of software-created textures in retained mode applications is 
the texture file itself. Modeling programs are often capable of manipulating texture files in formats, 



sizes, and color ranges that are not compatible with retained mode. For example, 3D Studio MAX 
uses rectangular texture files in JPG format. DirectX texture files, on the other hand, must be in 
.bmp or .ppm formats; they must be square shaped; their size must be a power of 2; and the color 
range must be 8-, 24-, or 32-bits. This means that you must often convert the texture file from the 
format used by the modeling program into one that is compatible with DirectX retained mode.  

 

 

The texture file format conversion is usually best performed by means of a bitmap editing 
application, such as Picture Publisher or Corel Photo Paint. To make the format conversion, you 
usually start by loading the original texture into the bitmap editor. If the texture is not square you 
must now crop it or stretch it as necessary. This is also a good time in which to edit the bitmap to 
improve it or make it more suitable for the purpose at hand. When edited, the bitmap is saved in a 
format, proportion, size, and color depth that is compatible with DirectX.  

 

 

If the texture file used by the modeling program is in one of the formats supported by DirectX 
(.bmp or .ppm) the references in the X file will work correctly in retained mode code. However, it is 
more often the case that the modeling program uses file formats different from .bmp or .ppm. This 
means that you must manually edit the file reference before loading it into our application. For 
example, the following is a material template from a textured image created with 3D Studio MAX 
and then converted to X format using the Conv3ds utility.  

 
 Material x3ds_mat_Granite_Pink_Gra {  
 0.854902, 0.552941, 0.533333, 1.000000;;  
 29.000000;  
 0.968627, 0.905882, 0.901961;;  
 0.00, 0.00, 0.00;;  
 TextureFilename {  
 "GRANITPK.JPG";  
 }  
 

 

In this case the texture file, named GRANITPK.JPG, is one of the files that are found in 3D Studio 
MAX texture library. After you have edited the image in this file so that it conforms with DirectX 
requirements, and saved it in .bmp or .ppm format, you must then edit the material template to 
reflect this change. If the JPG file was changed to .bmp format, then the text reference will have to 
be edited as follows:  

 
 Material x3ds_mat_Granite_Pink_Gra {  
 0.854902, 0.552941, 0.533333, 1.000000;;  
 29.000000;  
 0.968627, 0.905882, 0.901961;;  
 0.00, 0.00, 0.00;;  
 TextureFilename {  
 "GRANITPK.BMP";  
 }  
 
 Loading the textured frame  



 

 

The process of loading the textured object into application code is identical to that used for loading 
into a frame, which was described in Chapter 21. The X file must contain a single, top-level frame 
or a frame hierarchy. This means that, if the file was converted from 3ds to X format by means of 
Conv3ds, it must have used the default option or the -T switch. The following code fragment shows 
the process of loading a textured object into a frame.  

 
 // Data for routine  
 struct _globVars  
 {  
 . . .  
 LPDIRECT3DRMFRAME3 aScene; // Master frame   
 . . .   
 } globVars;  
   
 LPDIRECT3DRMFRAME3 texturedFrame = NULL;   
 char szXfile[] = "texcube.x" ; // X format file  
 HRESULT retval;  
 . . .  
   
 // Create the frame  
 retval = lpD3DRM->CreateFrame(globVars.aScene,  
 &texturedFrame);  
 if(FAILED(retval))  
 {  
 // Frame creation error handler goes here  
 }  
 // Load image into frame  
 retval = texturedFrame->Load(szXfile, // Source  
 NULL,  
 D3DRMLOAD_FROMFILE, // Options  
 NULL, NULL);  
 if(FAILED(retval))  
 {  
 // Frame load error handler goes here  
 }  
 // Set material mode to frame  
 retval = globVars.aScene->SetMaterialMode(  
 D3DRMMATERIAL_FROMFRAME);  
 if(FAILED(retval))  



 {  
 // Material mode creation error handler goes here  
 }  
 
 The project 3DRM Textures Demo in the book's CD-ROM contains examples of texture 
manipulations and display.  

 



Summary  
 

 

Here we have explored the fundamentals of using materials and textures in retained mode 
programming. We have seen how textures can be loaded into application code from memory, from 
DirectDraw surfaces, and from bitmaps. Several types of wraps are used to determine how the 
texture is applied to the object. One special wrap, called a chrome wrap, is used in implementing 
reflective textures.  

 

 

Materials are fundamental to effective modeling because the material determines how the surface 
of the object reflects light. A well-selected material enhances the texture on which it is applied. In 
fact, many objects can be attractively rendered with a simple material. We also saw how textures 
are applied to meshes and frames and how textures created in a modeling program can be loaded 
into a retained mode application.  

 
 But we are not finished with textures and materials. In the following chapter we look at some special 
effects that relate to texture programming, such as decals, mipmaps, and transparency.  

 



Chapter 23: Decals and Mipmaps  
 
 Overview  
 

 

In this chapter we turn our attention to decals and mipmaps. These are two texture-related topics 
that, because of their specialized nature, were not covered in Chapter 22. Decals provide a useful 
mechanism for rendering a texture without having to attach it to a mesh or frame. Although they are 
a 2D object, you can use decals to solve many complex modeling problems in 3D programming. 
Mipmaps are a series of attached surfaces, of progressively lower resolution, which provide a 
computationally efficient way of simulating perspective effects for textures.  

 



Decals in Retained Mode  
 

 
In retained mode programming a decal is a texture rendered directly as a visual. That is, the 
texture bitmap is not wrapped to an object but displayed as a viewport-aligned rectangle. The 
IDirect3DRMTexture3 functions listed in Table 23-1 enable you to manipulate decals.  

 
 Table 23-1: Decal-related Functions in IDirect3DRMTexture3  
 
    
 
 Function  

 
Description  

 

 
    
 
 GetDecalOrigin()  

 
Retrieves the origin of a decal  

 

 
 GetDecalScale()  

 
Retrieves the scale of a decal  

 

 
 GetDecalSize()  

 
Retrieves the size of a decal  

 

 
 GetDecalTransparency()  

 
Retrieves the transparency attribute of a decal  

 

 
 GetDecalTransparentColor()  

 
Retrieves the transparent color of a decal  

 

 
 SetDecalOrigin()  

 
Sets the decal's offset from its top-left corner  

 

 
 SetDecalScale()  

 
Sets the scaling property of a decal  

 

 
 SetDecalSize()  

 
Sets the decal size if it is being scaled 
according to scene depth  

 

 
 SetDecalTransparency()  

 
Sets the transparent property of a decal  

 

 
 SetDecalTransparentColor()  

 
Sets the transparent color of a decal  

 

 
    
 
 Decals and Pseudo 3D  
 
Because the z-axis of the decal must be parallel to the z-axis of the viewport, the decal appears as 
a rectangular image floating in the scene. This limitation may lead us to think that decals are just 



postage-stamp-like objects that are used to decorate the scene. This would mean that the use of 
decals is limited to simulating pictures, windows, and other rectangular objects. In reality decals 
provide a powerful modeling tool. The fact that decals can be scaled and made transparent makes 
possible their use in creating sprites.  

 

 

In Chapter 12, we discussed sprite animation techniques and developed software that uses 
animated sprites. The sample program DD Animation Demo, in the book's CD-ROM, uses a sprite 
image set to simulate the rotation of two gears. Figure 12-4 shows the fundamentals of this 
technique. In 3D graphics objects are modeled as solid, which can be scaled, rotated, translated, 
and even sheared. Therefore, a sprite for a 3D application can be modeled as a solid object and 
animated by applying the transformations that we have discussed in previous chapters. Quality-
wise this is a much more effective solution than using an image set to implement animation or 
simulate 3D.  

 

 

The main drawback to using 3D sprites is not a technical one, but a practical one. Animating 3D 
objects is computationally expensive. An application that requires several 3D sprites may find its 
performance degraded to a point in which its basic functionality is impaired. For this reason 
computer game designers and programmers often rely on simulating 3D by using a sequence of 
2D images, usually in an image strip as the one shown in Figure 12-4. This technique is 
sometimes called pseudo 3D.  

 

 

For example, consider a 3D simulation of air combat in which a fighter aircraft attacks a bomber 
from the rear. If the application simulates the view from the tail gunner turret, then the attacking 
fighter will appear to become large, and perhaps slightly change its pitch as it approaches the 
bomber. One way to depict this scene would be to use a 3D model of the fighter aircraft and 
manipulate the scale and rotation during the animation sequence. However, this technique is time-
consuming and somewhat wasteful because the model of the fighter is always rendered from the 
same viewing angle. An alternative approach is to use a progressive sequence of 2D images of 
the fighter which are positioned in the viewport during the animation (see Figure 3-17). The result 
may not be as visually accurate as using a 3D model, but rendering the animation would consume 
less time.  

 

 
Decals provide an alternative way of implementing pseudo 3D sprites. The decal-related functions 
listed in Table 23-1 allow scaling, resizing, positioning, and other–wise manipulating the sprite 
imagery in ways that are sometimes more convenient than the DirectDraw methods described in 
Chapter 12.  

 
 Decals in complex modeling  
 

 

Some graphics effects are very difficult to model in 3D. For example, a game program may render a 
spaceship using a 3D model. But when the spaceship is impacted by an asteroid, the resulting 
explosion and disintegration would be very difficult to depict by manipulating the faces and meshes 
of the 3D object. In this case the application may use a 2D image set, rendered as decals, to 
represent the destruction of the spaceship. Many such cases arise in the design of an interactive 
3D application and decals often offer a satisfactory, if not ideal, solution.  

 



Decal Programming  
 

 

From the previous discussion you may have gathered that decal programming can go from very 
simple to very complex. In one case an application may use a decal to decorate a scene by means 
of one or more square pictures. In the other case decals may serve to render sprites and other 
animated objects, often through callback functions, strip imagery, and using scaling and 
transparency effects.  

 
 Creating a decal  
 

 

In creating a decal the first step is to load the decal bitmap into an object of type 
DIRECT3DRMTEXTURE3. This can be accomplished in any of the ways in which a texture can be 
loaded, described in Chapter 22. One approach already discussed is to load the texture from a 
bitmap file using the LoadTexture() function of IDirect3DRM3. The result of this call is an 
object of type IDirect3DRMTexture3 which can be used to access the functions in the 
corresponding interface. At this point there is no difference between a conventional texture and a 
decal. For example, the following code fragment shows loading a bitmap named decal1.bmp into a 
texture object.  

 
 // Routine data  
 LPDIRECT3DRMTEXTURE3 aTex = NULL; // Texture object  
 LPDIRECT3DRM3 lpD3DRM = NULL; // Direct3D RM object  
 . . .  
 // Load bitmap into texture object   
 retval = lpD3DRM->LoadTexture( "decal1.bmp", &aTex );  
 if(FAILED(retval))  
 {  
 // Texture loading error handler goes here  
 }  
 
 After the texture object is satisfactorily created, you can proceed to set the decal attributes, which 
are origin, size, scale, and transparency.  

 
 Decal origin  
 

 
The origin of a decal determines its position on the frame that contains it. The default position for a 
decal is its top-left corner aligned with the frame's center. The SetDecalOrigin() function of 
IDirect3DRMTexture3 enables you to reposition the origin in relation to the frame. The 
function's general form is as follows:  

 
 RESULT SetDecalOrigin(  
 LONG lX, // 1  
 LONG lY // 2  
 );  



 

 
The first parameter is the new x-coordinate for the decal origin and the second one is the new y-
coordinate. The default origin is at [0,0]. The function returns D3DRM_OK if it succeeds, or an error 
otherwise.  

 

 
The values required for offsetting the decal origin are related to the size of the decal bitmap. Figure 
23-1 shows a decal bitmap of 512 pixels per side. By offsetting the decal origin to [256,256] it is 
centered in the frame.  

 

 

  
 
 Figure 23-1: Centering a decal in the frame 

   
 
 Decal Size  
 

 
You can change the size of the decal by means of the SetDecalSize() function of 
IDirect3DRMTexture3. Resizing a decal is particularly useful when the decal is scaled 
according to its depth in the scene. The function has the following general form:  

 
 HRESULT SetDecalSize(  
 D3DVALUE rvWidth, // 1  
 D3DVALUE rvHeight // 2  
 );  
 

 

The first parameter is the factor used in calculating the new width of the decal and the second one 
is used in calculating the height of a decal. Both are entered in model coordinates. A factor of 2 for 
the width and height parameters quadruples the displayed size of the decal. Because the data 
types are D3DVALUE fractional values are also allowed. The function returns D3DRM_OK if it 
succeeds, or an error otherwise.  

 
 Figure 23-2 shows a decal that has been scaled to twice its width and 1.5 times its height. The 
processing is shown in the 3DRM Decal Demo program in the book's CD-ROM.  



 

 

  
 
 Figure 23-2: Changing the decal size 

   
 
 Decal scale  
 

 

The decal's scaling attribute is set with the SetDecalScale() function of 
IDirect3DRMTexture3. If this attribute is TRUE, then depth is taken into account at render-ing 
time. If FALSE, then the depth of the frame holding the decal is ignored. In this case the decal is 
always displayed at the same size, independently of its position in relation to the camera. The 
default for the scaling property is TRUE. The function's general form is as follows:  

 
 HRESULT SetDecalScale(  
 DWORD dwScale // 1  
 );  
 

 
The function's only parameter represents the new scaling property. A value of -1 or FALSE 
indicates that decal scaling is disabled. Otherwise, decal scaling is enabled. The function returns 
D3DRM_OK if it succeeds, or an error otherwise.  

 

 
If the scale attribute is set to FALSE, then the decal is displayed at the original size of the bitmap 
that contains it. In this case any factor that could affect the size of the displayed image is ignored, 
such as camera or frame position within the scene, or the size of the decal set with the 
SetDecalSize() function. Figure 23-3 shows the same decal.  

 

 

  
 
 Figure 23-3: Effect of the decal scale attribute 

   



 

 
On the left image the scale attribute is FALSE. In spite of the values passed by the 
SetDecalSize() function, the decal is displayed at the size of the bitmap. In the image to the 
right the scale attribute is set to TRUE.  

 

 

It is interesting to note that the scaling parameter is a DWORD type, rather than a boolean. This 
seems to suggest that numeric scaling is possible with this function. In other words, that a higher 
value for the scaling parameter will determine that the decal is scaled differently than with a lower 
value. However, Microsoft documentation refers to the scaling attribute as being TRUE or FALSE 
and does not refer to any numeric property.  

 
 Decal transparency  
 

 

In Chapter 10, we discussed DirectDraw transparency by means of color keys. In Chapter 13, we 
developed more effective dynamic color keying methods. A source color key is a single color or a 
color range that the artist selects so that pixels that match the color key are not written to the 
destination. Instead, the background pixel is shown through. The resulting effect of a color key is to 
make the object appear transparent for those pixels that match the color key.  

 

 

Texture transparency can be achieved in decals by a method similar to the color keys used in 
DirectDraw. Two types of functions in IDirect3DRMTexture3 relate to decal transparency. One 
type enables you to set and retrieve the transparency property of a decal and another type enables 
you to set and retrieve the transparent color. For obvious reasons the transparent color setting is 
active only if the transparency attribute is enabled.  

 
 The SetDecalTransparency() function is used to set the decal transparency attribute. The 
function has the following general form:  

 
 HRESULT SetDecalTransparency(   
 BOOL bTransp // 1  
 );  
 

 
The function's only parameter is set to TRUE to enable decal transparency. If it is FALSE, then the 
decal is opaque. The default value is FALSE. The function returns D3DRM_OK if it succeeds, or an 
error otherwise. A companion function named GetDecalTransparency() allows retrieving the 
transparency attribute.  

 

 
If the transparent attribute is enabled for a decal, we can set the single color that will be 
transparent by means of SetDecalTransparentColor() of IDirect3DRMTexture3. The 
function has the following general form:  

 
 HRESULT SetDecalTransparentColor(  
 D3DCOLOR rcTransp // 1  
 );  
 
The function's only parameter is a value of type D3DCOLOR that specifies the transparent color in 



RGB format. The default transparent color is black. The function returns D3DRM_OK if it succeeds, 
or an error otherwise. Figure 23-4shows the results of an opaque and a transparent decal.  

 

 

  
 
 Figure 23-4: Opaque and transparent decals 

   
 

 

Because there is no provision for setting a transparent color range in immediate mode, you must 
be careful in specifying the exact RGB values for the transparent color. For example, you may 
have created a True color bitmap in a paint program and assigned white as the transparent color. 
Therefore, we assume that the transparent color for this bitmap can be specified as RGB(0xff, 0xff, 
0xff). However, it is possible that the actual RGB value for white used by the paint program could 
have been RGB(0xf0, 0xf0, 0xf0), which is almost pure white, but not the exact value specified for 
the transparent color. The difficulty in determining the exact value of the transparent color keys 
was addressed in Chapter 13 in the context of dynamic color keys. In regards to decals one way of 
simplifying this problem is by reducing the color range of the decal bitmap. This limits the values 
for the transparent color and makes it easier to find the exact RGB values.  

 
 Frames and decals  
 

 

After a decal is created as a texture, and its properties defined by calling the functions of 
IDirect3DRMTexture3, it is usually attached to a child frame as a visual. This step ensures that 
the decal can be rendered. However, we must realize that, although a decal is attached to a frame, 
it is not a 3D object, such as a mesh or a face. Therefore, some of the frame-level transformations 
may not produce the same effect when applied to a decal as when applied to a 3D object. 
Because there is no vertex or vertex normal data in the case of a decal, it should not surprise us 
that some 3D transformations become inoperable in this case.  

 

 

For example, if we attach a decal to a child frame as a visual and then use the AddRotation() 
or SetRotation() functions on the frame, the decal remains unchanged while other objects 
contained in the frame rotate as expected. The reason is that a decal is not a 3D object and 
contains no information so that immediate mode can apply a rotation transformation. However, if 
the decal's scale attribute is set to TRUE, then some of the frame-level transformations that relate 
to the decal's size are applied in the conventional manner. For example, if we call an 
AddTranslation() or SetVelocity() function on the frame, the results will affect the decal 
as well as the other objects in the frame.  

 

 This characteristic of decals can be used to produce many interesting effects in an uncomplicated 
manner. For instance, we could use transparency to create the image of a planet and attach it to 



remains unchanged by the call to SetRotation(). With little manipulation the scene can be 
made to simulate the moons rotating around a stationary planet.  

 

 

In the 3DRM Decal Demo program in the book's CD-ROM we illustrate this processing. The 
program creates a decal and a 3D object, in the form of a teapot, which are both attached to the 
same frame. Then translation and rotation transformations are applied to the frame. The result is 
that the teapot appears to rotate and translate, while the decal is scaled but does not rotate. In the 
following listing we eliminated the error handlers to shorten the example:  

 
 // Routine variables  
 struct _globVars  
 {  
 . . .  
 LPDIRECT3DRMFRAME3 aScene; // Master frame  
 . . .  
 } globVars;  
   
 // Other global variables  
 LPDIRECT3DRMFRAME3 aChildFrame = NULL;  
 LPDIRECT3DRMTEXTURE3 aTex = NULL;  
 LPDIRECT3DRMMESHBUILDER3 meshbuilder = NULL;   
 . . .  
 //***************************  
 // create mesh and decal  
 //***************************  
 // First create the child frame  
 retval = lpD3DRM->CreateFrame(globVars.aScene,  
 &aChildFrame);  
 //*****************  
 // create mesh  
 //*****************   
 // Create the meshbuilder object  
 retval = lpD3DRM->CreateMeshBuilder(&meshbuilder);  
 // Use meshbuilder to load a mesh from a DirectX file  
 retval = meshbuilder->Load(szXfile, // Source  
 NULL,  
 D3DRMLOAD_FROMFILE, // Options  
 NULL, NULL);  
 // Set the mesh color (bright green in this case).   
 retval = meshbuilder->SetColorRGB(D3DVAL(0.0), // red   



 D3DVAL(0.7), // green   
 D3DVAL(0.0)); // blue  
 // Set highest quality for meshbuilder  
 retval = meshbuilder->SetQuality(D3DRMRENDER_PHONG);  
   
 //*****************  
 // create decal  
 //*****************  
 // Load bitmap into texture object   
 retval = lpD3DRM->LoadTexture( szTexFile0, &aTex );  
 // Set decal attributes   
 retval = aTex->SetDecalScale(TRUE);  
 retval = aTex->SetDecalSize(4, 4);  
 retval = aTex->SetDecalOrigin(256, 256);  
 retval = aTex->SetDecalTransparency(FALSE);  
   
 //******************  
 // frame operations  
 //******************  
 // Set velocity to frame  
 retval = aChildFrame->SetVelocity(NULL,   
 D3DVAL(0.004f),  
 D3DVAL(0.002f),  
 D3DVAL(0.0125f),   
 1); _// Rotational _// velocity  
 // Set rotation to frame  
 // HAS NO VISIBLE EFFECT ON DECAL !!!  
 retval = aChildFrame->SetRotation(NULL,   
 D3DVAL(0.0f),  
 D3DVAL(1.0f),  
 D3DVAL(0.0f),   
 D3DVAL(0.08f));// angle  
 //***************  
 // add visuals  
 //***************  
 // Add decal frame as a visual  
 retval = aChildFrame->AddVisual((LPDIRECT3DRMVISUAL) aTex);  
 // Add mesh as a visual  



 retval = aChildFrame->AddVisual(  
 (LPDIRECT3DRMVISUAL)meshbuilder);  
 . . .  
 
 Figure 23-5 is a screen snapshot of the Decal movement command in the 3DRM Decal Demo 
program.  

 

 

  
 
 Figure 23-5: Decal movement within a frame in the 3DRM Decal Demo program 

   
 



Decal Programming  
 

 

From the previous discussion you may have gathered that decal programming can go from very 
simple to very complex. In one case an application may use a decal to decorate a scene by means 
of one or more square pictures. In the other case decals may serve to render sprites and other 
animated objects, often through callback functions, strip imagery, and using scaling and 
transparency effects.  

 
 Creating a decal  
 

 

In creating a decal the first step is to load the decal bitmap into an object of type 
DIRECT3DRMTEXTURE3. This can be accomplished in any of the ways in which a texture can be 
loaded, described in Chapter 22. One approach already discussed is to load the texture from a 
bitmap file using the LoadTexture() function of IDirect3DRM3. The result of this call is an 
object of type IDirect3DRMTexture3 which can be used to access the functions in the 
corresponding interface. At this point there is no difference between a conventional texture and a 
decal. For example, the following code fragment shows loading a bitmap named decal1.bmp into a 
texture object.  

 
 // Routine data  
 LPDIRECT3DRMTEXTURE3 aTex = NULL; // Texture object  
 LPDIRECT3DRM3 lpD3DRM = NULL; // Direct3D RM object  
 . . .  
 // Load bitmap into texture object   
 retval = lpD3DRM->LoadTexture( "decal1.bmp", &aTex );  
 if(FAILED(retval))  
 {  
 // Texture loading error handler goes here  
 }  
 
 After the texture object is satisfactorily created, you can proceed to set the decal attributes, which 
are origin, size, scale, and transparency.  

 
 Decal origin  
 

 
The origin of a decal determines its position on the frame that contains it. The default position for a 
decal is its top-left corner aligned with the frame's center. The SetDecalOrigin() function of 
IDirect3DRMTexture3 enables you to reposition the origin in relation to the frame. The 
function's general form is as follows:  

 
 RESULT SetDecalOrigin(  
 LONG lX, // 1  
 LONG lY // 2  
 );  



 

 
The first parameter is the new x-coordinate for the decal origin and the second one is the new y-
coordinate. The default origin is at [0,0]. The function returns D3DRM_OK if it succeeds, or an error 
otherwise.  

 

 
The values required for offsetting the decal origin are related to the size of the decal bitmap. Figure 
23-1 shows a decal bitmap of 512 pixels per side. By offsetting the decal origin to [256,256] it is 
centered in the frame.  

 

 

  
 
 Figure 23-1: Centering a decal in the frame 

   
 
 Decal Size  
 

 
You can change the size of the decal by means of the SetDecalSize() function of 
IDirect3DRMTexture3. Resizing a decal is particularly useful when the decal is scaled 
according to its depth in the scene. The function has the following general form:  

 
 HRESULT SetDecalSize(  
 D3DVALUE rvWidth, // 1  
 D3DVALUE rvHeight // 2  
 );  
 

 

The first parameter is the factor used in calculating the new width of the decal and the second one 
is used in calculating the height of a decal. Both are entered in model coordinates. A factor of 2 for 
the width and height parameters quadruples the displayed size of the decal. Because the data 
types are D3DVALUE fractional values are also allowed. The function returns D3DRM_OK if it 
succeeds, or an error otherwise.  

 
 Figure 23-2 shows a decal that has been scaled to twice its width and 1.5 times its height. The 
processing is shown in the 3DRM Decal Demo program in the book's CD-ROM.  



 

 

  
 
 Figure 23-2: Changing the decal size 

   
 
 Decal scale  
 

 

The decal's scaling attribute is set with the SetDecalScale() function of 
IDirect3DRMTexture3. If this attribute is TRUE, then depth is taken into account at render-ing 
time. If FALSE, then the depth of the frame holding the decal is ignored. In this case the decal is 
always displayed at the same size, independently of its position in relation to the camera. The 
default for the scaling property is TRUE. The function's general form is as follows:  

 
 HRESULT SetDecalScale(  
 DWORD dwScale // 1  
 );  
 

 
The function's only parameter represents the new scaling property. A value of -1 or FALSE 
indicates that decal scaling is disabled. Otherwise, decal scaling is enabled. The function returns 
D3DRM_OK if it succeeds, or an error otherwise.  

 

 
If the scale attribute is set to FALSE, then the decal is displayed at the original size of the bitmap 
that contains it. In this case any factor that could affect the size of the displayed image is ignored, 
such as camera or frame position within the scene, or the size of the decal set with the 
SetDecalSize() function. Figure 23-3 shows the same decal.  

 

 

  
 
 Figure 23-3: Effect of the decal scale attribute 

   



 

 
On the left image the scale attribute is FALSE. In spite of the values passed by the 
SetDecalSize() function, the decal is displayed at the size of the bitmap. In the image to the 
right the scale attribute is set to TRUE.  

 

 

It is interesting to note that the scaling parameter is a DWORD type, rather than a boolean. This 
seems to suggest that numeric scaling is possible with this function. In other words, that a higher 
value for the scaling parameter will determine that the decal is scaled differently than with a lower 
value. However, Microsoft documentation refers to the scaling attribute as being TRUE or FALSE 
and does not refer to any numeric property.  

 
 Decal transparency  
 

 

In Chapter 10, we discussed DirectDraw transparency by means of color keys. In Chapter 13, we 
developed more effective dynamic color keying methods. A source color key is a single color or a 
color range that the artist selects so that pixels that match the color key are not written to the 
destination. Instead, the background pixel is shown through. The resulting effect of a color key is to 
make the object appear transparent for those pixels that match the color key.  

 

 

Texture transparency can be achieved in decals by a method similar to the color keys used in 
DirectDraw. Two types of functions in IDirect3DRMTexture3 relate to decal transparency. One 
type enables you to set and retrieve the transparency property of a decal and another type enables 
you to set and retrieve the transparent color. For obvious reasons the transparent color setting is 
active only if the transparency attribute is enabled.  

 
 The SetDecalTransparency() function is used to set the decal transparency attribute. The 
function has the following general form:  

 
 HRESULT SetDecalTransparency(   
 BOOL bTransp // 1  
 );  
 

 
The function's only parameter is set to TRUE to enable decal transparency. If it is FALSE, then the 
decal is opaque. The default value is FALSE. The function returns D3DRM_OK if it succeeds, or an 
error otherwise. A companion function named GetDecalTransparency() allows retrieving the 
transparency attribute.  

 

 
If the transparent attribute is enabled for a decal, we can set the single color that will be 
transparent by means of SetDecalTransparentColor() of IDirect3DRMTexture3. The 
function has the following general form:  

 
 HRESULT SetDecalTransparentColor(  
 D3DCOLOR rcTransp // 1  
 );  
 
The function's only parameter is a value of type D3DCOLOR that specifies the transparent color in 



RGB format. The default transparent color is black. The function returns D3DRM_OK if it succeeds, 
or an error otherwise. Figure 23-4shows the results of an opaque and a transparent decal.  

 

 

  
 
 Figure 23-4: Opaque and transparent decals 

   
 

 

Because there is no provision for setting a transparent color range in immediate mode, you must 
be careful in specifying the exact RGB values for the transparent color. For example, you may 
have created a True color bitmap in a paint program and assigned white as the transparent color. 
Therefore, we assume that the transparent color for this bitmap can be specified as RGB(0xff, 0xff, 
0xff). However, it is possible that the actual RGB value for white used by the paint program could 
have been RGB(0xf0, 0xf0, 0xf0), which is almost pure white, but not the exact value specified for 
the transparent color. The difficulty in determining the exact value of the transparent color keys 
was addressed in Chapter 13 in the context of dynamic color keys. In regards to decals one way of 
simplifying this problem is by reducing the color range of the decal bitmap. This limits the values 
for the transparent color and makes it easier to find the exact RGB values.  

 
 Frames and decals  
 

 

After a decal is created as a texture, and its properties defined by calling the functions of 
IDirect3DRMTexture3, it is usually attached to a child frame as a visual. This step ensures that 
the decal can be rendered. However, we must realize that, although a decal is attached to a frame, 
it is not a 3D object, such as a mesh or a face. Therefore, some of the frame-level transformations 
may not produce the same effect when applied to a decal as when applied to a 3D object. 
Because there is no vertex or vertex normal data in the case of a decal, it should not surprise us 
that some 3D transformations become inoperable in this case.  

 

 

For example, if we attach a decal to a child frame as a visual and then use the AddRotation() 
or SetRotation() functions on the frame, the decal remains unchanged while other objects 
contained in the frame rotate as expected. The reason is that a decal is not a 3D object and 
contains no information so that immediate mode can apply a rotation transformation. However, if 
the decal's scale attribute is set to TRUE, then some of the frame-level transformations that relate 
to the decal's size are applied in the conventional manner. For example, if we call an 
AddTranslation() or SetVelocity() function on the frame, the results will affect the decal 
as well as the other objects in the frame.  

 

 This characteristic of decals can be used to produce many interesting effects in an uncomplicated 
manner. For instance, we could use transparency to create the image of a planet and attach it to 



remains unchanged by the call to SetRotation(). With little manipulation the scene can be 
made to simulate the moons rotating around a stationary planet.  

 

 

In the 3DRM Decal Demo program in the book's CD-ROM we illustrate this processing. The 
program creates a decal and a 3D object, in the form of a teapot, which are both attached to the 
same frame. Then translation and rotation transformations are applied to the frame. The result is 
that the teapot appears to rotate and translate, while the decal is scaled but does not rotate. In the 
following listing we eliminated the error handlers to shorten the example:  

 
 // Routine variables  
 struct _globVars  
 {  
 . . .  
 LPDIRECT3DRMFRAME3 aScene; // Master frame  
 . . .  
 } globVars;  
   
 // Other global variables  
 LPDIRECT3DRMFRAME3 aChildFrame = NULL;  
 LPDIRECT3DRMTEXTURE3 aTex = NULL;  
 LPDIRECT3DRMMESHBUILDER3 meshbuilder = NULL;   
 . . .  
 //***************************  
 // create mesh and decal  
 //***************************  
 // First create the child frame  
 retval = lpD3DRM->CreateFrame(globVars.aScene,  
 &aChildFrame);  
 //*****************  
 // create mesh  
 //*****************   
 // Create the meshbuilder object  
 retval = lpD3DRM->CreateMeshBuilder(&meshbuilder);  
 // Use meshbuilder to load a mesh from a DirectX file  
 retval = meshbuilder->Load(szXfile, // Source  
 NULL,  
 D3DRMLOAD_FROMFILE, // Options  
 NULL, NULL);  
 // Set the mesh color (bright green in this case).   
 retval = meshbuilder->SetColorRGB(D3DVAL(0.0), // red   



 D3DVAL(0.7), // green   
 D3DVAL(0.0)); // blue  
 // Set highest quality for meshbuilder  
 retval = meshbuilder->SetQuality(D3DRMRENDER_PHONG);  
   
 //*****************  
 // create decal  
 //*****************  
 // Load bitmap into texture object   
 retval = lpD3DRM->LoadTexture( szTexFile0, &aTex );  
 // Set decal attributes   
 retval = aTex->SetDecalScale(TRUE);  
 retval = aTex->SetDecalSize(4, 4);  
 retval = aTex->SetDecalOrigin(256, 256);  
 retval = aTex->SetDecalTransparency(FALSE);  
   
 //******************  
 // frame operations  
 //******************  
 // Set velocity to frame  
 retval = aChildFrame->SetVelocity(NULL,   
 D3DVAL(0.004f),  
 D3DVAL(0.002f),  
 D3DVAL(0.0125f),   
 1); _// Rotational _// velocity  
 // Set rotation to frame  
 // HAS NO VISIBLE EFFECT ON DECAL !!!  
 retval = aChildFrame->SetRotation(NULL,   
 D3DVAL(0.0f),  
 D3DVAL(1.0f),  
 D3DVAL(0.0f),   
 D3DVAL(0.08f));// angle  
 //***************  
 // add visuals  
 //***************  
 // Add decal frame as a visual  
 retval = aChildFrame->AddVisual((LPDIRECT3DRMVISUAL) aTex);  
 // Add mesh as a visual  



 retval = aChildFrame->AddVisual(  
 (LPDIRECT3DRMVISUAL)meshbuilder);  
 . . .  
 
 Figure 23-5 is a screen snapshot of the Decal movement command in the 3DRM Decal Demo 
program.  

 

 

  
 
 Figure 23-5: Decal movement within a frame in the 3DRM Decal Demo program 

   
 



Summary  
 

 

Now we conclude our discussion of texture-related topics. In Chapter 22, we discussed the 
fundamentals of texture programming. In the present one we explored two specialized uses of 
textures, namely decals and mipmaps. Topics covered include the creation of decals, the definition 
of their origin and scale, and the use of decal transparency in rendering sprites. We also looked at 
creating and manipulating mipmaps.  

 

 
In Chapter 24, we change our focus to lights and shadows in retained mode programming. The 
manipulation of lights and shadows greatly increases the visual fidelity of the scene and serves to 
enhance the texture and materials applied to 3D objects.  

 



 Chapter 24: Lights and Shadows  
 
 Overview  
 

 

In retained mode light makes objects visible. There are no default lights, therefore no objects are 
visible until we create lights and attach them to the scene. In addition lighting effects are used to 
enhance the visual quality of objects. Retained mode has a rich set of light types and light controls. 
It includes ambient lights and four types of directed lights: parallel point, point, directional, and spot 
lights. The position, color, and intensity of each light can be controlled by code. In addition, lights 
can be attenuated over distance according to two different formulae and three attenuation 
coefficients. Because lights are placed in frames, all the manipulations and movements that can be 
applied to frames are also applicable to the contained lights.  

 

 
In previous chapters we have looked at lights in general and have created some basic lighting to 
make our scenes visible. In this chapter we explore light programming in greater detail. We also 
look at the creation of shadows in retained mode programming.  

 



Retained Mode Lights  
 

 
In Chapter 14, we mentioned the retained mode lighting module. At that time we said that retained 
mode uses two different lighting models: monochromatic (or ramp) and RGB. We also discussed 
how lighting is used to improve the visual quality of a scene and looked at the five types of lights, 
which can be summarized as follows:  

 

   
1.An ambient light source illuminates the entire scene. It has no orientation or position and is 
unaffected by surface characteristics of the illuminated objects. Because all objects are illuminated 
with equal strength, the position and orientation of the frame is inconsequential.  

 

   
2.A directional light has a specific orientation, but no position. It appears to illuminate all objects 
with equal intensity. This light source is often used to simulate the effect of distant sources, such 
as the sun. Rendering speed is maximum for directional lights.  

 

   
3.The parallel point light is a variation of directional light. The orientation of a parallel point light is 
determined by the position of the source. Whereas a directional light source has orientation, but no 
position, a parallel point light source has orientation and position. The rendering performance is 
similar to the directional source.  

 

   
4.A point light source radiates light equally in all directions. This light is computationally expensive 
to render because retained mode must calculate a new lighting vector for every face it illuminates. 
On the other hand, a point light source produces a more faithful lighting effect. When visual fidelity 
is a concern a point light source is the best option.  

 

   

5.A spotlight is cone-shaped light with the source located at the cone's vertex. All objects within 
the cone are illuminated, but at two degrees of intensity. The central area of the cone is brightly lit. 
This section is called the umbra. The surrounding section, which is dimly lit, is called the 
penumbra. In retained mode the angles of the umbra and penumbra can be individually specified. 
Figure 14-12 shows the umbra and the penumbra in spotlight illumination.  

 
 Ambient and directed lights  
 

 

The five light types listed in the preceding section can be further refined. Considering the variations 
in their fundamental characteristics you can classify them into ambient and directed groups. In this 
case the group of directed lights contains the directional, parallel point, point, and spotlight types. 
In this case you must be careful not to confuse the general group of directed lights with the more 
specific designation of directional light.  

 

 
Ambient light is light that has been scattered so much that its direction and source have become 
indeterminate. It has a low level of intensity all over the scene. Ambient light has color and 
intensity, but no direction or source. It is independent of all objects in the scene and does not 
contribute to specular reflection.  

 

 

Direct light, on the other hand, has color and intensity, and travels in a specified direction. Direct 
light interacts with material of a surface and creates specular highlights. Its direction is used in 
shading algorithms such as Gouraud and Phong shading. Reflected direct light does not contribute 
to the ambient light level in a scene. The objects in a scene that generate direct light are called 
lights or light objects. Each direct light illuminates the scene differently. Figure 24-1 graphically 



describes ambient and direct light sources.  
 

 

  
 
 Figure 24-1: Ambient and direct light sources 

   
 
 Direct3D lighting model  
 

 

Natural light is difficult to model in a computer environment. Every ray of light emitted by a source 
reflects hundreds, perhaps thousands, of times on the surface of every object in the scene. Each 
time the light encounters a surface, part of it is absorbed by it and parts of it are reflected in many 
directions. These reflections, in turn, then strike another object, with different properties, and the 
process continues until the attenuation makes the light invisible to the viewer.  

 

 
The number and complexity of calculations required are such that it is currently impossible to 
simulate the natural effect of light. 3D systems rely on algorithmic simplifications based on 
mathematical formulas for determining attenuation, reflectance, and falloff. In the default mode 
Direct3D attenuation calculations are based on the following formula:  

 

 

  
 
 where Dn is the normalized distance, R is the light's range, and D is the distance from the light 
source to the vertex under consideration.  



 

When the normalized distance has been determined, then Direct3D uses constant, linear, and 
quadratic attenuation factors to determine the attenuation effect. The resulting value for the 
attenuation ranges between 1.0 at the light source and 0.0 at the light's maximum range. Constant 
attenuation attenuates the light without taking into account the distance from the light to the vertex 
being lit. Linear and quadratic attenuation formulas are based on the distance from the light to the 
object. The attenuation is then applied to the red, green, and blue components of the light's color 
to make the light's intensity a factor of the distance that the light travels to the vertex.  

 
 In the default state Direct3D uses the following formula to calculate the total attenuation of light 
over distance:  

 
   
 

 
where A is the total attenuation and Dn is the normalized distance from the light source to the 
vertex calculated using the formula listed previously in this section. The dvAtt0, dvAtt1, and dvAtt2 
values refer to the constant, linear, and quadratic attenuation factors for the light. In most cases, 
these attenuation factors are between 0.0 and 1.0, inclusive.  

 

 
The formula applies to point lights and spotlights because directional and parallel point lights don't 
attenuate over distance. Applications can change the light attenuation formula by manipulating the 
flags passed to the SetRenderMode() function, as discussed later in this chapter.  

 

 

The constant, linear and quadratic attenuation factors act as coefficients in the formula. It is 
possible to control the attenuation curves by making adjustments to these factors. Direct3D 
immediate mode provides a structure of type D3DLIGHT2, which enables you to control the three 
attenuation factors. Retained mode program-mers rely on functions in the IDirect3DRMLight 
interface to accomplish this purpose. These functions are described later in this chapter. Microsoft 
documentation states that most applications should set the linear attenuation factor to 1.0 and the 
constant and quadratic attenuation factors to 0.0 to produce a light that steadily falls off over 
distance. Also, a constant attenuation factor of 1.0 makes a light that doesn't attenuate but is still 
limited by its range. Figure 24-2 shows the effect over distance of the three light attenuation 
factors.  

 

 

  
 
 Figure 24-2: Constant, linear, and quadratic attenuation 

   



 

With the light intensity attenuated, Direct3D calculates how much of the remaining light reflects 
from a vertex. The calculation is based on the angle of the vertex normal and the direction of the 
incident light. This step is not necessary for directional and parallel point lights because these 
sources do not attenuate over distance. In calculating reflection Direct3D uses two reflectance 
types: diffuse and specular. Each type is associated with a particular formula that determines how 
much light is reflected in each case. After the amount of reflection is determined according to type, 
then the reflectance properties of the material are taken into account for the vertex being lit. These 
are the color values of the diffuse and specular components that the rasterizer uses to produce 
specific shading effects, such as Gouraud and Phong, and specular highlighting.  

 

 

Attenuation effect for spotlights require special considerations. We have seen that spotlights emit a 
cone of light that has a dark inner section, called the penumbra, and an outer, more brightly lit 
section, called the umbra. The varying intensity between the umbra and the penumbra requires a 
special form of attenuation calculations called the falloff. In this case the amount of light received by 
a vertex is a function of its location within the umbra or the penumbra. Direct3D uses the dot 
product of two vectors to calculate falloff. One vector is the spotlight's direction vector and the other 
one extends from the vertex being lit to the light source.  

 



Retained Mode Lights  
 

 
In Chapter 14, we mentioned the retained mode lighting module. At that time we said that retained 
mode uses two different lighting models: monochromatic (or ramp) and RGB. We also discussed 
how lighting is used to improve the visual quality of a scene and looked at the five types of lights, 
which can be summarized as follows:  

 

   
1.An ambient light source illuminates the entire scene. It has no orientation or position and is 
unaffected by surface characteristics of the illuminated objects. Because all objects are illuminated 
with equal strength, the position and orientation of the frame is inconsequential.  

 

   
2.A directional light has a specific orientation, but no position. It appears to illuminate all objects 
with equal intensity. This light source is often used to simulate the effect of distant sources, such 
as the sun. Rendering speed is maximum for directional lights.  

 

   
3.The parallel point light is a variation of directional light. The orientation of a parallel point light is 
determined by the position of the source. Whereas a directional light source has orientation, but no 
position, a parallel point light source has orientation and position. The rendering performance is 
similar to the directional source.  

 

   
4.A point light source radiates light equally in all directions. This light is computationally expensive 
to render because retained mode must calculate a new lighting vector for every face it illuminates. 
On the other hand, a point light source produces a more faithful lighting effect. When visual fidelity 
is a concern a point light source is the best option.  

 

   

5.A spotlight is cone-shaped light with the source located at the cone's vertex. All objects within 
the cone are illuminated, but at two degrees of intensity. The central area of the cone is brightly lit. 
This section is called the umbra. The surrounding section, which is dimly lit, is called the 
penumbra. In retained mode the angles of the umbra and penumbra can be individually specified. 
Figure 14-12 shows the umbra and the penumbra in spotlight illumination.  

 
 Ambient and directed lights  
 

 

The five light types listed in the preceding section can be further refined. Considering the variations 
in their fundamental characteristics you can classify them into ambient and directed groups. In this 
case the group of directed lights contains the directional, parallel point, point, and spotlight types. 
In this case you must be careful not to confuse the general group of directed lights with the more 
specific designation of directional light.  

 

 
Ambient light is light that has been scattered so much that its direction and source have become 
indeterminate. It has a low level of intensity all over the scene. Ambient light has color and 
intensity, but no direction or source. It is independent of all objects in the scene and does not 
contribute to specular reflection.  

 

 

Direct light, on the other hand, has color and intensity, and travels in a specified direction. Direct 
light interacts with material of a surface and creates specular highlights. Its direction is used in 
shading algorithms such as Gouraud and Phong shading. Reflected direct light does not contribute 
to the ambient light level in a scene. The objects in a scene that generate direct light are called 
lights or light objects. Each direct light illuminates the scene differently. Figure 24-1 graphically 



describes ambient and direct light sources.  
 

 

  
 
 Figure 24-1: Ambient and direct light sources 

   
 
 Direct3D lighting model  
 

 

Natural light is difficult to model in a computer environment. Every ray of light emitted by a source 
reflects hundreds, perhaps thousands, of times on the surface of every object in the scene. Each 
time the light encounters a surface, part of it is absorbed by it and parts of it are reflected in many 
directions. These reflections, in turn, then strike another object, with different properties, and the 
process continues until the attenuation makes the light invisible to the viewer.  

 

 
The number and complexity of calculations required are such that it is currently impossible to 
simulate the natural effect of light. 3D systems rely on algorithmic simplifications based on 
mathematical formulas for determining attenuation, reflectance, and falloff. In the default mode 
Direct3D attenuation calculations are based on the following formula:  

 

 

  
 
 where Dn is the normalized distance, R is the light's range, and D is the distance from the light 
source to the vertex under consideration.  



 

When the normalized distance has been determined, then Direct3D uses constant, linear, and 
quadratic attenuation factors to determine the attenuation effect. The resulting value for the 
attenuation ranges between 1.0 at the light source and 0.0 at the light's maximum range. Constant 
attenuation attenuates the light without taking into account the distance from the light to the vertex 
being lit. Linear and quadratic attenuation formulas are based on the distance from the light to the 
object. The attenuation is then applied to the red, green, and blue components of the light's color 
to make the light's intensity a factor of the distance that the light travels to the vertex.  

 
 In the default state Direct3D uses the following formula to calculate the total attenuation of light 
over distance:  

 
   
 

 
where A is the total attenuation and Dn is the normalized distance from the light source to the 
vertex calculated using the formula listed previously in this section. The dvAtt0, dvAtt1, and dvAtt2 
values refer to the constant, linear, and quadratic attenuation factors for the light. In most cases, 
these attenuation factors are between 0.0 and 1.0, inclusive.  

 

 
The formula applies to point lights and spotlights because directional and parallel point lights don't 
attenuate over distance. Applications can change the light attenuation formula by manipulating the 
flags passed to the SetRenderMode() function, as discussed later in this chapter.  

 

 

The constant, linear and quadratic attenuation factors act as coefficients in the formula. It is 
possible to control the attenuation curves by making adjustments to these factors. Direct3D 
immediate mode provides a structure of type D3DLIGHT2, which enables you to control the three 
attenuation factors. Retained mode program-mers rely on functions in the IDirect3DRMLight 
interface to accomplish this purpose. These functions are described later in this chapter. Microsoft 
documentation states that most applications should set the linear attenuation factor to 1.0 and the 
constant and quadratic attenuation factors to 0.0 to produce a light that steadily falls off over 
distance. Also, a constant attenuation factor of 1.0 makes a light that doesn't attenuate but is still 
limited by its range. Figure 24-2 shows the effect over distance of the three light attenuation 
factors.  

 

 

  
 
 Figure 24-2: Constant, linear, and quadratic attenuation 

   



 

With the light intensity attenuated, Direct3D calculates how much of the remaining light reflects 
from a vertex. The calculation is based on the angle of the vertex normal and the direction of the 
incident light. This step is not necessary for directional and parallel point lights because these 
sources do not attenuate over distance. In calculating reflection Direct3D uses two reflectance 
types: diffuse and specular. Each type is associated with a particular formula that determines how 
much light is reflected in each case. After the amount of reflection is determined according to type, 
then the reflectance properties of the material are taken into account for the vertex being lit. These 
are the color values of the diffuse and specular components that the rasterizer uses to produce 
specific shading effects, such as Gouraud and Phong, and specular highlighting.  

 

 

Attenuation effect for spotlights require special considerations. We have seen that spotlights emit a 
cone of light that has a dark inner section, called the penumbra, and an outer, more brightly lit 
section, called the umbra. The varying intensity between the umbra and the penumbra requires a 
special form of attenuation calculations called the falloff. In this case the amount of light received by 
a vertex is a function of its location within the umbra or the penumbra. Direct3D uses the dot 
product of two vectors to calculate falloff. One vector is the spotlight's direction vector and the other 
one extends from the vertex being lit to the light source.  

 



 Lighting Control  
 

 
Retained mode applications may not need to perform any additional manipulation of the scene 
lighting after it has been created. On the other hand, the IDirect3DRMLight interface provides a 
rich set of functions for controlling lights whenever it is necess-ary. Table 24-2 lists the functions in 
this interface.  

 
 Table 24-2: Functions in IDirect3DRMLight  
 
    
 
 Function  

 
Description  

 

 
    
 
 Attenuation controls  

 
  

 

 
 GetConstantAttenuation()  

 
Retrieves the constant attenuation factor  

 

 
 GetLinearAttenuation()  

 
Retrieves the linear attenuation factor  

 

 
 GetQuadraticAttenuation()  

 
Retrieves the quadratic attenuation factor  

 

 
 SetConstantAttenuation()  

 
Sets the constant attenuation factor  

 

 
 SetLinearAttenuation()  

 
Sets the linear attenuation factor  

 

 
 SetQuadraticAttenuation()  

 
Sets the quadratic attenuation factor  

 

 
 Color controls  

 
  

 

 
 GetColor()  

 
Retrieves the light's color  

 

 
 SetColor()  

 
Sets the light's color using a DD3DCOLOR value 

 

 
 SetColorRGB()  

 
Sets the light's color using RGB values  

 

 
 Frame enable  

 
  

 

 
 GetEnableFrame()  

 
Retrieves frame illuminated by the light  

 



 
 SetEnableFrame()  

 
Sets frame illuminated by the light  

 

 
 Light types  

 
  

 

 
 GetType()  

 
Retrieves the light type  

 

 
 SetType()  

 
Sets the light type  

 

 
 Spotlight controls  

 
  

 

 
 GetRange()  

 
Retrieves the spotlight's range  

 

 
 SetRange()  

 
Sets the spotlight's range  

 

 
 GetPenumbra()  

 
Retrieves the penumbra angle of a spotlight  

 

 
 GetUmbra()  

 
Retrieves the umbra angle of a spotlight  

 

 
 SetPenumbra()  

 
Sets the penumbra angle of a spotlight  

 

 
 SetUmbra()  

 
Sets the umbra angle of a spotlight  

 

 
    
 
 Light attenuation controls  
 

 

Earlier in this chapter we saw that Direct3D attenuates lights over distance using a formula that 
takes into account three factors called constant, linear, and quadratic attenuation. The effect of 
these factors is shown graphically in Figure 24-2. The retained mode IDirect3DRMLight 
interface contains methods to set and retrieve each of the three attenuation factors for a light. In 
addition, retained mode applications can set a render mode flag that makes retained mode use an 
immediate mode D3DLIGHT2 structure to define the light type.  

 
 Enabling realistic highlights  
 

 

The SetRenderMode() function was introduced in DirectX 6. This function provides a way of 
producing more realistic specular highlights in retained mode. The new style of highlights depends 
both on the light direction and the viewer's location. Previously highlights were rendered without 
taking into account the viewer's location. Realistic highlights, also called view-dependent 
highlights, are enabled by calling the SetRenderMode() function of IDirect3DRMDevice3 and 
passing the D3DRMRENDERMODE_VIEWDEPENDENTSPECULAR flag as a parameter. If this flag is 
set, Direct3D retained mode uses the D3DLIGHT2 structure to define the light type. If it is not set, 



then lighting behavior reverts to the flat specular highlights of previous DirectX versions.  
 

 
Direct3D changes the rendering of highlights by using different formulas for calculating the total 
attenuation factor. The default formula applies when the 
D3DRMRENDERMODE_VIEWDEPENDENTSPECULAR is not set. In this case the total attenuation is 
calculated as follows:  

 
   
 

 

where A is the total attenuation and Dn is the normalized distance from the light source to the 
vertex calculated using the formula listed previously in this section. The dvAtt0, dvAtt1, and dvAtt2 
values refer to the constant, linear, and quadratic attenuation factors for the light. If the 
D3DRMRENDERMODE_VIEWDEPENDENTSPECULAR is set, then the following formula is used to 
determine the total attenuation.  

 

 
  

 
 Observing these formulas you can see that when the view-dependent specular highlights flag is 
clear the attenuation factor is greater than in the default state.  

 
 The default attenuation factors are shown in Table 24-3.  
 
 Table 24-3: Default Attenuation Factors for Lights  
 
    
 
 Attenuation Type  

 
Constant   

  
Value  

 

 
    
 
 Constant attenuation  

 
dvAtt0   

  
1.0  

 

 
 Linear attenuation  

 
dvAtt1   

  
0.0  

 

 
 Quadratic attenuation  

 
dvAtt2   

  
0.0  

 

 
    
 
 Applying these values to the preceding formulas results in the following calculations for total 
attenuation:  

 
 default 1.0 + 0.0 + 0.0 = 1.0 



 default 1.0 + 0.0 + 0.0 = 1.0  
 enhanced 1/1.0 + 0.0 + 0.0 = 1.0  
 

 
This means that the default mode is constant attenuation and that the state of the 
D3DRMRENDERMODE_VIEWDEPENDENTSPECULAR flag is inconsequential in this default state. This 
can be confirmed by observing the constant attenuation curve in Figure 24-2.  

 

 

You have seen that setting or clearing the D3DRMRENDERMODE_VIEWDEPENDENTSPECULAR is 
done by calling the SetRenderMode() function of IDirect3DRMDevice3. Retained mode 
documentation states that this flag is associated with bit number 4. Therefore, you can use the 
mask 0x10 to manipulate this bit without affecting the other render mode flags. The following code 
fragment shows the manipulation to set and clear the view-dependent specular flag.  

 
 // Routine data  
 static DWORD renderMode; // Storage for render mode flags  
 . . .  
 // Set render mode to view-dependent specular highlights  
 // flag = 0001 0000 binary = 0x10  
 renderMode = globVars.aDevice->GetRenderMode();  
 renderMode = renderMode | 0x10;  
 retval = globVars.aDevice->SetRenderMode(renderMode);  
 if(FAILED(retval))  
 // Failed setting render mode set handler goes here  
 . . .  
 // Clear render mode view-dependent specular highlights flag  
 renderMode = globVars.aDevice->GetRenderMode();  
 renderMode = renderMode & 0xffffffef;  
 retval = globVars.aDevice->SetRenderMode(renderMode);  
 if(FAILED(retval)) RMError(retval);  
 // Failed render mode set error handler goes here  
 
 Changing light attenuation  
 

 

Retained mode applications can change the light attenuation from the default state of constant 
attenuation to linear or quadratic attenuation, or use a combination of these factors. Recall that 
constant attenuation is actually no attenuation. In most cases an application that requires light 
attenuation effects over distance will set the linear attenuation factor to 1.0 and the constant and 
quadratic attenuation factors to 0.0. However, because the attenuation factors are the coefficients 
of the formulas listed in the preceding section, all three factors can be assigned values 
independently, usually with unpredictable and unexpected results.  

The IDirect3DRMLight interface contains functions to set and retrieve the three attenuation 



set the attenuation factors are as follows:  
 
 HRESULT SetLinearAttenuation(. . .  
 HRESULT SetConstantAttenuation(. . .  
 HRESULT SetQuadraticAttenuation(  
 D3DVALUE rvAtt // 1  
 );  
 
 The only parameter is a value of type D3DVALUE that represents the new attenuation factor in 
each case. The functions return D3DRM_OK if they succeed, or an error other-wise.  

 
 The functions to retrieve the attenuation factors have the following general forms:  
 
 D3DVALUE GetLinearAttenuation()  
 D3DVALUE GetConstantAttenuation();  
 D3DVALUE GetQuadraticAttenuation();  
 
 The return value is the attenuation factor for the light object referenced in the call. The following 
code fragment shows setting the light attenuation factor.  

 
 // Routine data  
 LPDIRECT3DRMLIGHT light1 = NULL;  
 LPDIRECT3DRM3 lpD3DRM = NULL;  
   
 // Light attenuation coefficients  
 float constAtt = 1.0f;  
 float linearAtt = 0.0f;  
 float quadAtt = 0.0f;  
 . . .  
 // Create a bright, parallel point light  
 retval = lpD3DRM->CreateLight(D3DRMLIGHT_PARALLELPOINT,   
 (D3DCOLOR) 0x00ffffff,  
 &light1);  
 if(FAILED(retval))  
 {  
 // Light creation error handler goes here  
 }  
 // Set attenuation coefficients  
 retval = light1->SetConstantAttenuation((D3DVALUE) constAtt);  
 if(FAILED(retval))  



 // Error handler goes here  
 retval = light1->SetLinearAttenuation((D3DVALUE) linearAtt);  
 if(FAILED(retval))  
 // Error handler goes here  
 retval = light1->SetQuadraticAttenuation((D3DVALUE) quadAtt);  
 if(FAILED(retval))  
 // Error handler goes here  
 

 

Light attenuation is active in relation to directed lights only. Ambient light is not attenuated over 
distance. In regards to the four types of directed lights, attenuation effects are also different. 
Directional light types have no position and therefore are not attenuated. Neither are parallel point 
lights. Point lights and spotlights are the only directed lights attenuated over distance. In addition, 
retained attenuation is more evident if view-dependent specular highlights are disabled.  

 
 Spotlight controls  
 

 
In the listing of the functions of the IDirect3DRMLight interface (see Table 24-2) you will notice 
a group of functions that relate specifically to spotlights. This is because spotlights have three 
attributes that are not present in the other types. These are the spotlight range and the angles of 
the umbra and penumbra cones.  

 

 
The spotlight range limits the effects of the light to objects located within these values. The default 
range for a spotlight is 256 units of model space. The SetRange() function can be used to 
shorten or lengthen the default range. The GetRange() function returns the current range of a 
spotlight.  

 

 

The angle of the centrally lit cone of light of a spotlight, called the umbra, can also be set and 
retrieved by means of the SetUmbra() and GetUmbra() functions of IDirect3DRMLight. The 
default value for the umbra is 0.4 radians, or approximately 23 degrees. The angle of the outer, 
dimly light area of a spotlight, called the penumbra, can also be set and retrieved by means of the 
GetPenumbra() and SetPenumbra() functions of IDirect3DRMLight. The default angle for 
the penumbra is 0.5 radians, or approximately 28.5 degrees.  

 
 3DRM Light Demo program  
 

 
The 3DRM Light Demo program in the book's CD-ROM enables you to experiment with ambient 
and directed lights. The program executes by displaying the image of a teapot and a modeless 
dialog box, as shown in Figure 24-3.  

 



 

  
 
 Figure 24-3: Screen snapshot of the 3DRM Light Demo program 

   
 

 
With this program you can enable and disable an ambient light and control its intensity, as well as 
select any one of the four types of directed lights and the attenuation mode. The rendering of view-
dependant specular highlights can be enabled or disabled and the directed light can be moved 
along the x-axis and along the z-axis.  

 



Shadows  
 

 
In retained mode a shadow is the result of the projection of a mesh onto a plane by a single light. 
Consequently, the elements of a shadow are the mesh that casts it, the light that generates it, and 
the plane onto which it is rendered. The shadow is a visual object that is attached to the same 
frame that contains the mesh that casts the shadow.  

 

 

The elements of a retained mode shadow make evident some of its limitations. The fact that each 
shadow is associated with a mesh and a single light source indicate that adding shadow 
functionality onto an elaborate scene is not a simple task. In this case each shadow requires a 
particular mesh and a particular light source. Furthermore, because retained mode shadows are 
only projected onto a plane, it is not possible to generate shadows on the surface of objects that 
are not flat. But perhaps the most important limitations of retained mode shadows are their 
computational cost. 3D applications that perform animation must often do without shadows 
because of the processing time that they require.  

 

 

There are two ways for creating a shadow. The simplest one is by calling the Create_Shadow() 
function of IDirect3DRM3. Alternatively, you can create a shadow using the CreateObject() 
function of this same interface and then call the Init() function of IDirect3DRMShadow2. Both 
approaches were discussed in detail in Chapter 16, as well as the functions in 
IDirect3DRMShadow2 interface. At this point we are interest-ed in the programming required to 
generate shadows in retained mode.  

 
 Creating a shadow  
 

 
In creating a shadow you must define the three elements mentioned previously; that is, the object 
that casts the shadow, the light that produces the shadow, and the plane onto which the shadow is 
projected. These elements can be seen in Figure 24-4.  

 

 

  
 
 Figure 24-4: Elements of a shadow 

   
 



 
The only retained mode object that can cast a shadow is a mesh. In practical programming we 
sometimes use the meshbuilder object to add a visual onto a frame, this saving having to create a 
mesh. However, when programming shadows we must have available the mesh object that casts 
the shadow, therefore we must specifically create the mesh.  

 

 

The light that produces the shadow must be a directed light. Ambient lights are multidirectional and 
produce no shadows. In addition, the position of the camera, the light, the mesh, and the plane 
must be such that the shadow is visible at render-ing time. It is quite possible to position one or 
more of these elements so that the generated shadow lies outside of the viewing frustum. 
Assuming that the mesh object that generates the shadow has already been created, and also that 
there is a directed light conveniently positioned, then producing a shadow consists of three steps: 
creating the shadow, defining the shadow option, and attaching the shadow as a visual to the 
frame. The following code fragment shows the processing.  

 
 // Routine variables  
 LPDIRECT3DRMFRAME3 aChildFrame = NULL;  
 LPDIRECT3DRMLIGHT dirLt = NULL;  
 LPDIRECT3DRMSHADOW2 aShadow = NULL;  
 LPDIRECT3DRMMESH teapotMesh = NULL;  
 . . .  
 // Code assumes that a teapotMesh and a directed light object  
 // already exist in the scene   
 retval = lpD3DRM->CreateShadow( teapotMesh, // Mesh object  
 dirLt, // Light   
 D3DVAL(0), // |  
 D3DVAL(-2), _// | Plane for _// | shadow  
 D3DVAL(0), // |  
 D3DVAL(0), // |  
 D3DVAL(1), // | Shadow plane  
 D3DVAL(0), // | normal  
 &aShadow); // Shadow object  
 if(FAILED(retval))  
 {  
 // Shadow creation error handler goes here  
 }  
 // Set shadow options   
 retval = aShadow->SetOptions(D3DRMSHADOW_TRUEALPHA);  
 if(FAILED(retval))  
 {  
 // Shadow option error handler goes here  
 }  
 // Attach shadow to frame as visual   



 retval = aChildFrame->AddVisual(aShadow);  
 if(FAILED(retval))  
 {  
 // Add visual error handler goes here  
 }  
 
 3DRM Shadow Demo program  
 

 
The 3DRM Shadow Demo program in the book's CD-ROM shows a rotating teapot that generates a 
shadow onto the x-plane. The code used in the sample program is similar to the one listed 
previously.  

 



Summary  
 

 

We have now concluded our tour of retained mode light and shadow programming. In it we 
explored the lighting models and formulas, the creation and control of ambient and directed lights, 
the positioning of lights within a scene, and the generation of shadows. It is through light 
programming that the objects of our scenes become visible at rendering time. What is more, by the 
adequate selection and placement of lights and shadows we can significantly enhance the visual 
quality of 3D objects.  

 

 

With the discussion of lights and shadows we conclude our discussion of static rendering in DirectX 
retained mode, which includes the simple movements that can be directly applied to frames. In the 
following chapter we explore retained mode animation. It is animation that makes 3D applications 
unique and powerful. The static rendering of a 3D object is visually identical to the display of a 2D 
image.  

 



Chapter 25: 3D Animation  
 
 Overview  
 

 

Animation is often the central feature of a 3D application. We have already encountered Direct3D 
animation in the context of frame movements. In Chapter 19, we covered topics related to the 
continuous scaling, rotation, and translation of frames which make possible a rudimentary level of 
animation. The SetRotation() and SetVelocity() functions implement this functionality at 
the frame level, whereas the Move() and Tick() functions of IDirect3DRM provide a timing 
mechanism that drives the animation. The 3DRM Move Demo program in the book's CD-ROM 
shows the basic processing.  

 

 

Simple, frame-level manipulations by means of SetVelocity() and SetRotation() provide 
an easy way of producing interesting effects. In some cases, these methods are all that is required 
for an animated application. However, in programs that require more powerful animations the 
controls that are available with SetRotation() and SetVelocity() are too limited. For these 
cases retained mode provides other more powerful and flexible animation mechanisms.  

 

 

In addition to the animation facilities provided by retained mode functions there is a simple, often 
overlooked, approach to animation. The technique is based on creating an intercept routine that 
receives control at every beat of the animation pulse, then executing step-by-step image changes 
within this intercept. This approach usually requires implementing a move callback function that is 
called by the rendering loop. Code can use this intercept to produce any desired changes in the 
visuals. We start our discussion of animation techniques by examining this approach. An alternative 
animation method is based on a technique called key-framing. Retained mode contains extensive 
support for several flavors of key frame animation. Key frame animation by tranformation keys and 
by interpolators are also discussed in this chapter.  

 



Direct Intercept Animation  
 

 

A simple approach to animation consists of creating a callback function that is called at every 
animation beat, and providing the necessary processing in the intercept routine. This technique, 
which could be called the direct intercept method, is both powerful and laborious. It is powerful 
because you can use the intercept routine to produce any scene change that is available in 
retained mode. There is no limit to the number or types of movements, or to the number of 
changes that can be applied to a single scene. For example, you can use the callback function to 
transform objects, to morph meshes, to change the color, intensity, or position of lights, to modify 
the color tint of objects, to change materials and textures, to manipulate fog intensity, or to perform 
any other valid action on the scene's objects. The only limits to what can be accomplished are 
those imposed by bandwidth and by rendering performance.  

 

 

The major limitation of this method is that it requires that you calculate and execute all the 
individual steps of the animation. In direct intercept animation there is no assistance from the 
system in calculating in-betweens or in producing the intermediate calls. Later in this chapter you 
will see that retained mode provides other animation methods that take advantage of considerable 
help from the system.  

 
 Implementing direct intercept animation consists of two steps:  
 
   1.Creating the direct intercept routine, sometimes called the move callback function  
 
   2.Calculating and implementing the step-by-step changes in the intercept routine  
 
 Creating the move callback function  
 

 

The AddMoveCallback() function of IDirect3DRMFrame3 provides a way of creating a 
callback function that is called every time frame motion attributes are applied. The 
AddMoveCallback() function was discussed in Chapter 19. Creating a move callback function 
for direct intercept animation consists of calling the AddMoveCallback() function and passing as 
a parameter the name of the intercept routine.  

 
 // Create a frame intercept callback function  
 retval = aChildFrame->AddMoveCallback(FrameInterceptCallback,  
 NULL,  
 D3DRMCALLBACK_PREORDER );  
 if(FAILED(retval))  
 {  
 // Move callback creation failure error handler goes here  
 }  
 
 Implementing the step changes  
 



 The actual animation is performed in the intercept routine. It is up to the programmer to decide 
what actions are to be executed and to provide some form of iteration control for these actions.  

 

 
Suppose that you want to implement an animation consisting of a z-axis translation combined with 
a simultaneous color tint change of the object. This means that the object is to move away from 
the viewer as its color progressively fades to black.  

 

 

The first design decision in implementing direct intercept animation for this case is determining the 
number of discrete steps in the image update sequence. The more steps, the slower the changes. 
Let's assume that the object is to be translated from a z-axis coordinate of 0 to a z-axis coordinate 
of 40. Also assume that the animation consists of 40 discrete steps. This means that you must 
translate the object one unit along the z-axis at every beat of the animation pulse. At the same 
time you need to fade the object's color from its maximum intensity to black. Because the retained 
mode RGB color attributes are defined in the range 1.0 to 0.0, you can produce the desired tint 
fade by subtracting 1/40th (0.025) to the color intensity during each iteration. This means that you 
start with a color attribute of 1.0 and subtract 0.025 at every iteration of the animation pulse. At the 
40th iteration the color will fade to black and the object will move 40 units along the z-axis. The 
intercept routine can be coded as follows:  

 
 //************************************************************  
 // Name: FrameInterceptCallback()  
 // Desc: Intercept routine for performing a simultanous  
 // translation and color tint change animation.  
 // Note: Code assumes that delta = 1.0. No error handling  
 // is provided.  
 //************************************************************  
 void FrameInterceptCallback( LPDIRECT3DRMFRAME3 aFrame,  
 void *arg,  
 D3DVALUE delta )  
 {  
   
 static D3DVALUE colorTint = D3DVAL(1.0); _// Initial _// color  
 static D3DVALUE changeRate = D3DVAL(0.025); // 1/40 units  
 static D3DVALUE frameAction = D3DVAL(0.0); // Initial z  
   
 // Set the color  
 aFrame->SetColorRGB(D3DVAL(0.0),  
 D3DVAL(colorTint), // Green tint  
 D3DVAL(0.0));  
 // Move the frame  
 aFrame->SetPosition(NULL, // Use local transform  
 D3DVAL(0.0), // x   
 D3DVAL(0.0), // y  



 D3DVAL(frameAction)); // z  
   
 // Update tint  
 colorTint = colorTint - changeRate;  
 if(colorTint < 0)  
 colorTint = 1.0f;  
   
 // Update frame position  
 frameAction = frameAction + delta;  
 if(frameAction > 40)  
 frameAction = 0.0f;  
 }  
 
 The program 3DRM Mode Intercept Demo in the book's CD-ROM implements the preceding 
animation.  

 



Key Frame Animation  
 

 

In Chapter 5, we discussed several low-level controls used in animation. At that time we discussed 
the in-between, or tweening, techniques used in cartoon animation. This method is based on 
defining two key positions, which serve to mark the beginning and the end of an action sequence, 
and then creating the in-between images. At that time we mentioned that computers can be used 
to generate the in-betweens by performing geometrical transformations on the key frames. The 
process is illustrated in Figure 25-1.  

 

 

  
 
 Figure 25-1: Defining the key frames 

   
 

 

The animation shown in Figure 25-1 consists of moving the four-pointed star from its initial position 
on the top-left corner of the viewing area to its final position in the bottom-left corner. At the same 
time the star is rotated by approximately 30 degrees. To accomplish this animation we define three 
key frames, labeled with the numbers 1, 2, and 3 in the illustration. The movement of the star from 
key frame number 1 to key frame number 2 is accomplished by performing a translation, a scaling, 
and a rotation transformation. The same is true to move from key frame number 2 to key frame 
number 3. Once the key frames are defined, the system calculates and generates the intermediate 
images between key frames.  

 



Computer-Generated In-Betweens  
 

 

In computer-based animation it is the computer that can generate the in-betweens. The 
fundamental algorithm for transformation-based animations consists of establishing a range of 
motion for the action that is to take place between two key frames. The calculations require 
defining the number of images that are used for each second of animation. In the United States, 
television technology uses a rate of 30 images per second, whereas professional motion pictures 
use 24 images per second. Next, you define the time lapse between the key frames. When the 
image rate and the time lapse are known, the system can calculate the number of in-betweens that 
are required. Usually the calculations are based on a linear interpolation.  

 

 

Suppose you decide that the animation shown in Figure 25-1 is to take place in two-thirds of a 
second, and that the frame rate is of 30 images per second. In this example the area of motion 
between key frame number 1 and key frame number 2 requires one-third of a second, or 10 
frames at 30 fps. Given this information, the system can proceed to determine the total translation, 
rotation, and scaling required between key frame number 1 and key frame number 2. These totals 
for each transformation are divided by the number of frames, in this case 10, and the resulting 
transformation applied to each set of image coordinates.  

 
 One of the problems that occasionally arises in key frame animation is that there can be more than 
one path-of-motion between key frames. This ambiguity can be seen in Figure 25-2.  

 

 

  
 
 Figure 25-2: Ambiguity in key frame animation 

   
 

 

In the case in Figure 25-2 you can see that the animation between key frames requires a translation 
and a rotation transformation. Also the rotation can take place either in a clockwise or a counter-
clockwise direction, creating two possible image sets between key frames. The resolution of 
ambiguities such as this one usually requires the definition of additional key frames. For example, to 
make sure that sequence option A is the one generated, you can define a new key frame in which 
the dagger appears in a vertical position, with the tip facing up, as shown in the illustration.  

 



Key Frame Animation in Retained Mode  
 

 
Retained mode supports basic key frame animation. The key frame animation functionality is found 
in the IDirect3DRM3, IDirect3DRMAnimation2, IDirect3DRMAnimationSet2, 
IDirect3DRMAnimationArray, and IDirect3DRMInterpolator interfaces.  

 

 
In the key frame method of retained mode animation the application code starts by creating an 
animation object. To the animation object code you can add position, rotation, and scaling keys. 
Each key contains an arbitrary time value. The animation is driven by calling the SetTime() 
function of IDirect3DRMAnimation2.  

 

 

A higher level of animation programming is by means of animation sets. In this case a complex 
animation is created by combining several animation objects. Animation sets can be built by adding 
individual animations, or by loading the animation set from a file, resource, memory block, or 
stream. This last option opens up the possibility of using a modeling program to create the 
animation sets, which can then be loaded from a file in X format into the application. Modeling and 
animation programs simplify the process of creating complex animations by providing visual tools 
and technical controls. Many application developers use this approach to creating animations, 
rather than constructing the key frames in code.  

 



Retained mode animation programming  
 

 

The Direct3DRMAnimation2 interface contains functions to animate the position, orientation, 
and scale of a frame object. This frame object can be a visual, a light, or a viewport. Animation 
controls are based on keys, each one key containing a time and a value component. The functions 
allow adding and deleting keys, animating the frame, setting the animation time, and changing 
animation options. Table 25-1 lists the functions in IDirec3DRMAnimation3.  

 
 Table 25-1: Functions in the IDirect3DRMAnimation3 Interface  
 
    
 
 Function  

 
Description  

 

 
    
 
 Key operations  

 
  

 

 
 AddKey()  

 
Adds a new key to the animation  

 

 
 AddPositionKey()  

 
Adds a position key based on a time key and the 
coordinates for each axis  

 

 
 AddRotateKey()  

 
Adds a rotate key based on a time key and a rotation 
quaternion  

 

 
 AddScaleKey()  

 
Adds a scale key based on a time key and a scale factor 
for each axis  

 

 
 DeleteKey()  

 
Removes all keys at a particular time  

 

 
 DeleteKeyByID()  

 
Removes a particular key  

 

 
 GetKeys()  

 
Retrieves a key corresponding to a particular time range  

 

 
 ModifyKey()  

 
Modifies the value of a key  

 

 
 Frame and time  

 
  

 

 
 GetFrame()  

 
Retrieves animation frame  

 

 
 SetFrame()  

 
Sets the animation frame  

 



 
 SetTime()  

 
Sets the animation time  

 

 
 Animation options  

 
  

 

 
 GetOptions()  

 
Retrieves the animation options  

 

 
 SetOptions()  

 
Sets the animation options  

 

 
    
 



Creating an Animation  
 

 
The creation of animations and animation sets was discussed in Chapter 16 in the context of the 
IDirect3DRM3 interface. Here we present a brief revisiting of the fundamental concepts, starting 
with a single animation and continuing with animation sets.  

 

 
The first step in creating a retained mode animation consists of calling Create_Animation() 
function of IDirect3DRM3. This call creates an empty IDirect3DRM_Animation2 object. The 
object can be used to access the methods of IDirect3DRM_Animation2. The function's general 
form is as follows:  

 
 HRESULT CreateAnimation(  
 LPDIRECT3DRMANIMATION2 *lplpD3DRMAnimation // 1  
 );  
 
 Its only parameter is the address of a pointer to the IDirect3DRMAnimation2 interface, which is 
filled if the call succeeds. The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 

 

After the animation object is successfully created, code can implement the animation by using the 
methods of IDirect3DRMAnimation2 and other retained mode interfaces. In the following 
discussion we assume that the application contains a time-driven pulse that calls the rendering 
routine. The 3DRM Move Demo program developed in Chapter 19 can serve as a template for the 
message loop and the basic implementation of the RenderScene() function. We also assume 
that the master scene has been created, and that there is a child frame available that contains the 
visual object to be animated. Given this basic program skeleton, the process of creating the 
animation consists of the following steps:  

 
   1.Some suitable animation options are selected.  
 
   2.The animation parameters are defined for the animation object created in Step 1. These include 

the frame to be animated, the key frames, and the animation's time element.  
 
   3.A frame move callback is attached to the child frame that contains the animation object.  
 

 

The actual animation is performed by means of time pulse that drives the rendering loop. The 
easiest way of implementing a time pulse for the animation is to use the program thread itself. This 
is what you do when you call the rendering function inside the program's message loop. 
Alternatively you can use other timing mechanisms to drive the animation. Two of these were 
discussed in Chapter 12 in the context of DirectDraw animation. Typically, the rendering loop calls 
the Move() or the Tick() functions which, in turn, call the animation callback function. The image 
updating is performed in the animation callback.  

 
 Selecting the animation options  
 

 
Several types of animation are supported in Direct3D. The SetOptions() function of 
IDirect3DRMAnimation2 is used to select the animation options that are adequate for the case 



at hand. The function has the following general form:  
 
 HRESULT SetOptions(  
 D3DRMANIMATIONOPTIONS d3drmanimFlags // 1  
 );  
 
 The function's only parameter is a structure variable of type D3DRMANIMATIONOPTIONS. It is 
defined as follows:  

 
 typedef DWORD D3DRMANIMATIONOPTIONS;  
 #define D3DRMANIMATION_CLOSED 0x02L  
 #define D3DRMANIMATION_LINEARPOSITION 0x04L  
 #define D3DRMANIMATION_OPEN 0x01L  
 #define D3DRMANIMATION_POSITION 0x20L  
 #define D3DRMANIMATION_SCALEANDROTATION 0x10L  
 #define D3DRMANIMATION_SPLINEPOSITION 0x08L  
 
 Table 25-2 lists the various animation options.  
 
 Table 25-2: Animation Options in D3DRMANIMATIONOPTIONS Structure  
 
    
 
 Constant  

 
Action  

 

 
    
 
 3DRMANIMATION_CLOSED  

 
Animation plays continually. When the G 
end is reached, the animation loops back 
to the beginning.  

 

 
 D3DRMANIMATION_LINEARPOSITION  

 
Defines a linear animation position.  

 

 
 3DRMANIMATION_OPEN  

 
Animation plays once and stops.  

 

 
 3DRMANIMATION_POSITION  

 
Animation position matrix overwrites any 
transformation matrices set by other 
functions.  

 

 
 D3DRMANIMATION_SCALEANDROTATION  

 
Animation's scale and rotation matrix 
overwrites any transformation matrices 
set by other functions.  

 



 
 3DRMANIMATION_SPLINEPOSITION  

 
Animation position is set using splines.  

 

 
    
 

 

When selecting the 3DRMANIMATION_CLOSED flag you can ensure a smooth transition by making 
the last key in the animation a repeat of the first one. In this case the IDirect3DRMAnimation2 
and IDirect3DRMAnimationSet2 interfaces interpret the repeated key as the time difference 
between the last and first keys in the loop. Selecting the incorrect animation option could make our 
animation effects invisible at rendering time. For example, an application that is to use rotation 
keys must select the D3DRMANIMATION_SCALEANDROTATION option. The call to SetOptions()
returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 The GetOptions() function of IDirect3DRMAnimation2 provides a way for code to retrieve 
the current animation options flags. The function has the following general form:  

 
 D3DRMANIMATIONOPTIONS GetOptions( );  
 

 
The call returns a D3DRMANIMATIONOPTIONS type describing the animation options. Because 
these flags are bitmapped, they can be examined by performing a bitwise AND operation with the 
corresponding mask.  

 
 Defining the key frames  
 

 
Retained mode animation requires that code defines a minimum of two key frames. The system 
uses the key frames to calculate the in-betweens. The animation is rendered according to the 
timing parameters specified by the code.  

 

 
Animation keys are used by the AddKey(), AddPositionKey(), AddRotateKey(), 
AddScaleKey(), DeleteKey(), DeleteKeyByID(), GetKey(), and ModifyKey() functions 
listed in Table 25-1. Animation keys are encoded in a structure of type D3DRMANIMATIONKEY, 
which is defined as follows:  

 
 typedef struct _D3DRMANIMATIONKEY  
 {  
 DWORD dwSize;  
 DWORD dwKeyType;  
 D3DVALUE dvTime;  
 DWORD dwId ;  
 union  
 {  
 D3DRMQUATERNION dqRotateKey;  
 D3DVECTOR dvScaleKey;  



 D3DVECTOR dvPositionKey;  
 };  
 } D3DRMANIMATIONKEY;   
 
 The dwSize member defines the size of the animation. The dwKeyType member is the type of 
key, represented by one of the following values:  

 
 D3DRMANIMATION_ROTATEKEY = 0x01   
 D3DRMANIMATION_SCALEKEY = 0x02   
 D3DRMANIMATION_POSITIONKEY = 0x03   
 

 

The dvTime member is the key's zero-based time value, in arbitrary units. If an application adds a 
position key with a time value of 99, a new position key with a time value of 49 occurs exactly 
halfway between the beginning of the animation and the first position key. The time member is 
encoded in a D3DVALUE type. The dwId member is the key's identifier, encoded in a DWORD type. 
The dqRotateKey union member is the value of the D3DRMQUATERNION structure type that 
defines the rotation. The dvScaleKey union member is the value of the D3DVECTOR structure 
type that defines the scale. The dvPositionKey union member is the value of the D3DVECTOR 
structure type that defines the position.  

 
 Adding an animation key  
 

 
IDirect3DRMAnimation2 contains four functions for adding animation keys. The first one, 
named AddKey(), is generic. It enables you to add either a position, a rotation, or a scaling key 
to the animation. The other three functions, AddPosition_Key(), AddRotateKey(), and 
AddScaleKey() are specific for the individual key types.  

 

 

All four key adding functions contain a time element defined in a D3DVALUE type. This time 
element actually defines the zero-based sequential position for the key. For example, in an 
animation consisting of four keys the time element can be assigned values 0, 1, 2, and 3 for each 
of the keys. However, if you define an animation consisting of 20 keys, then the value assigned to 
the time element would be 0 to 19.  

 

 

The time element can also be used to modify the rate of change of the animation. For example, 
consider an animation consisting of five key frames has the values 0, 7, 11, 13, and 14 assigned to 
its sequential positions. In this case the total time for the animation is of 15 arbitrary units. Seven 
of these time units elapse between the first and the second key frames, four time units elapse 
between the second and the third key frames, two units between the third and the fourth key 
frames, and so on. When the animation is rendered the object will appear to accelerate. Figure 25-
3 shows the manipulating of the key frame sequence to simulate acceleration of an object in a 
gravitational field.  

 



 

  
 
 Figure 25-3: Accelerated motion by key frame sequence control 

   
 

 

In Figure 25-3 we assume that the change in image data is the same between the key frames. If 
the animation consists of a translation along the y-axis, this means that the difference between y-
axis values is the same for any key frame pair. In the example in Figure 25-3 acceleration is 
produced by manipulating the sequence number assigned to each key frame. Alternatively, it is 
possible to simulate acceleration by changing the animation parameters themselves. For example, 
you could simulate acceleration of a falling object by assigning progressively large y-axis 
movement to each key frame. A combination of both elements is also possible.  

 

 

Simulating acceleration by varying the key frame sequence numbers usually requires careful 
calculations. For example, to realistically simulate the fall of an object in a gravitational field you 
could use the formulas for gravitational attraction to calculate the rate of change in the object's 
speed. The number of key frame points, sometimes called motion points, determine the accuracy 
of the simulation. The more motion points, the more natural the animation. If the animation 
contains few motion points the acceleration effect may appear bumpy.  

 

 
In the following sections we refer to the so-called time element of a key frame as its sequential 
number. We reserve the notion of animation time as the element that determines the rendering 
speed, which is determined by the Move() and the SetTime() functions, discussed later in this 
chapter.  

 
 Creating a translation animation  
 

 
The AddPositionKey() function of IDirect3DRMAnimation2 enables you to create a new 
position key by performing a translation transformation. The function has the following general 
form:  

 
 HRESULT AddPositionKey(  
 D3DVALUE rvTime, // 1  
 D3DVALUE rvX, // 2  



 D3DVALUE rvY, // 3  
 D3DVALUE rvZ // 4  
 );  
 

 
The first parameter represents the animation sequence number for the key frame. The second, 
third, and fourth parameters are the new x-, y-, and z-axis coordinates for the key frame. The 
function returns D3DRM_OK if it succeeds, or an error otherwise.  

 

 
In actual programming, position keys and sequential key frame numbers are often stored in arrays. 
The values for the various key frame elements are then set in a loop. Figure 25-4 shows the two 
key frames for an animation consisting of a translation transformation.  

 

 

  
 
 Figure 25-4: Key frames for a translation-based animation 

   
 

 

To produce the animation that translates the image of the teapot from the position in key frame 
number 0 to that in key frame number 1 you must add the two position keys to an animation object. 
The coordinates for the two position keys, as well as the count of the number of keys in the 
animation, can be stored in corresponding arrays. The following code fragment shows the 
necessary processing in this case.  

 
 // Routine data  
 LPDIRECT3DRMANIMATION2 anim = NULL;  
 HRESULT retval;  
 int motionPoints = 2; // Number of key frames  
 D3DVECTOR pointCoords[2] =  
 {  
 { -2.0f, -2.0f, 55.0f }, // Coordinates for key frame 0  
 { 4.0f, 4.0f, -30.0f } // Coordinates for key frame 1  



 };  
 . . .  
 // Create the animation  
 retval = lpD3DRM->CreateAnimation( &anim);  
 if(FAILED(retval))  
 {  
 // Animation creation error handler goes here  
 }  
 // Set the animation options   
 retval = anim->SetOptions( D3DRMANIMATION_CLOSED |  
 D3DRMANIMATION_LINEARPOSITION |  
 D3DRMANIMATION_POSITION);  
 if(FAILED(retval))  
 {  
 // Option selection error handler goes here  
 }  
   
 // Loop to add position keys to animation object  
 for (int i = 0; i < motionPoints; i++)  
 { retval = anim->AddPositionKey( D3DVAL(i), // Key frame   
 // sequence  
 // number   
 pointCoords[i].x,  
 pointCoords[i].y,  
 pointCoords[i].z);  
 if(FAILED(retval))  
 {  
 // Add position key error handler goes here  
 }  
 
 Creating a scaling animation  
 

 
Producing an animation based on a scaling transformation is very much like producing one based 
on a translation transformation. In the case of a scaling transformation you use the 
AddScaleKey() function of IDirect3DRMAnimation2. The function has the following general 
form:  

 
 HRESULT AddScaleKey(   
 D3DVALUE rvTime, // 1  



 D3DVALUE rvX, // 2  
 D3DVALUE rvY, // 3  
 D3DVALUE rvZ // 4  
 );  
 

 
The first parameter represents the animation sequence number for the key frame. The second, 
third, and fourth parameters are the new x-, y-, and z-axis coordinates for the key frame. The 
function returns D3DRM_OK if it succeeds, or an error otherwise.  

 
 Creating a rotation animation  
 
 To create an animation based on a rotation transformation, use the SetRotateKey() function of 
IDirect3DRMAnimation2. The function has the following general form:  

 
 HRESULT AddRotateKey(  
 D3DVALUE rvTime, // 1   
 D3DRMQUATERNION *rqQuat // 2  
 );  
 

 
The first parameter represents the animation sequence number for the key frame. The second 
parameter is a quaternion representing the rotation. The function returns D3DRM_OK if it succeeds, 
or an error otherwise.  

 

 

A quaternion, discussed in Chapter 14, is a structure that represents an axis in 3D space and a 
rotation along that axis. The power of quaternions relates mostly to the possibility of performing the 
operations of composition and interpolation. Here we are concerned with defining a rotation by 
means of a quaternion. The D3DRMQuater_nionFromRotation() nonmember function comes 
to our assistance in this case. We call the function passing to it a scalar and a vector that define 
the transformation, and the call returns the corresponding quaternion. The following code fragment 
shows the processing for performing two 180-degree rotations along the x-axis.  

 
 // Routine data  
 D3DRMQUATERNION quat;  
 int motionPoints = 3;  
 D3DVECTOR axis[]=  
 {  
 { D3DVALUE(1), D3DVALUE(0), D3DVALUE(0) },  
 { D3DVALUE(1), D3DVALUE(0), D3DVALUE(0) },  
 { D3DVALUE(1), D3DVALUE(0), D3DVALUE(0) }  
 };  
 const D3DVALUE angle[]=  
 {  



 (float)PI, // + 180 degrees   
 (float)0,  
 (float)-PI // - 180 degrees  
 };  
   
 // Create the rotation animation  
 for (i = 0; i < motionPoints; i++)  
 {  
 // Calculate the quaternion  
 D3DRMQuaternionFromRotation(&quat,  
 &axis[i],  
 angle[i]);  
 // Add rotate key using quaternion  
 retval = anim->AddRotateKey( D3DVAL(i), // Sequential key  
 &quat); // Quaternion  
 if(FAILED(retval))  
 {  
 // Rotation key error handler goes here  
 }  
 
 Note that in the preceding code fragment the array named axis[], of type D3DVECTOR, serves as 
the axis selector for the rotation.  

 

 
The angle of rotation is defined in the array named angle[]. The function 
D3DRMQuaterionFromRotation() is called with the values obtained from these arrays. The 
quaterion returned by the call is then passed as a parameter to the AddRotateKey() function. 
The resulting rotation can be seen in the program 3DRM Animation Demo in the book's CD-ROM. 

 
 Driving the animation  
 

 

The sequential display of the animation is usually performed by means of a frame-level callback 
function. The creation and setup of a frame callback function was discussed in detail in Chapter 
19. The following code fragment shows the creation and definition of a callback function to be used 
in driving an animation. The code assumes the existence of a child frame that contains the 
animation object.  

 
 // Routine data  
 LPDIRECT3DRMFRAME3 aChildFrame = NULL;  
 LPDIRECT3DRMANIMATION2 anim = NULL;  
 D3DVALUE t = D3DVAL(0.0); // Time lapse control  
 D3DVALUE speed = D3DVAL(0.02); // Speed control  



 . . .  
 retval = aChildFrame->AddMoveCallback( FrameAnimCallback,  
 (void *) aChildFrame,  
 D3DRMCALLBACK_PREORDER );  
 . . .  
 //***************************************************  
 // name: FrameAnimCallback()  
 // desc: Implements a callback for frame animation  
 //***************************************************  
 void FrameAnimCallback(  
 LPDIRECT3DRMFRAME3 aFrame, // Calling frame  
 void *arg,   
 D3DVALUE delta) // Speed factor  
 {  
 // Local variable  
 LPDIRECT3DRMFRAME3 scene;  
   
 aFrame->GetScene(&scene); // Obtain scene   
 t += D3DVAL(speed); // Add speed constant  
 anim->SetFrame(aFrame); // Select frame  
 anim->SetTime(t); // Drive the animation  
   
 RELEASE(scene); // Safe release function  
 }  
 

 
The animation callback function is called by means of the Move() or the Tick() functions. The 
Move() function is generally preferred because it produces a smoother animation, in most cases. 
The call to Move() is usually part of the rendering routine which is, in turn, called by the timer- or 
message-driven animation pulse.  

 

 
An animation is driven by calling the SetTime() function. This sets the visual object's 
transformation to the interpolated position, orientation, and scale of the nearby keys. The speed of 
the animation can be based on the value passed as a parameter to the callback function, on the 
setting of a global variable, or on both factors.  

 



Animation Sets  
 

 

An animation set is a group of animation objects. It was designed to facilitate the playback of 
animations that share the same time parameter and to make possible the creation of complex 
animation sequences. The CreateAnimationSet() function creates an empty 
Direct3DRMAnimationSet object that can be used to gain access to the functions of 
IDirect3DRMAnimationSet2. The function's general form is as follows:  

 
 HRESULT CreateAnimationSet (  
 LPDIRECT3DRMANIMATIONSET2 *lplpD3DRMAnimationSet // 1  
 );  
 

 
Its only parameter is the address that is filled with a pointer to an 
IDirect3DRM_AnimationSet2 interface if the call succeeds. The function returns D3DRM_OK if 
it succeeds, or an error otherwise.  

 
 The IDirect3DRMAnimationSet2 interface, discussed in Chapter 16, provides functions for 
manipulating animation sets. Table 25-3 lists the functions in this interface.  

 
 Table 25-3: Function in IDirect3DRMAnimationSet2  
 
    
 
 Function  

 
Description  

 

 
    
 
 Animation manipulations  

 
  

 

 
 AddAnimation()  

 
Adds an animation to an animation set  

 

 
 DeleteAnimation()  

 
Removes an animation from an animation set  

 

 
 GetAnimations()  

 
Retrieves an array containing the animations in 
an animation set  

 

 
 Load()  

 
Loads an animation set from a file, resource, 
memory, URL, or other sources  

 

 
 Time  

 
  

 

 
 SetTime()  

 
Sets the time for a specific animation set  

 



 
    
 
 Animations in X Files  
 

 

Although it is possible to create animation sets by adding individual animation objects, the most 
frequent use of the IDirect3DRMAnimationSet2 interface is in loading and manipulating 
animations contained in X files. The typical scenario in 3D animation programming is to use a 
specialized tool, such as 3D modeling application, to create the meshes and the animations. 
These tools simplify an otherwise difficult and laborious task. In addition, these tools contain 
controls that make possible the creation of more complex and precise animations.  

 

 
3D Studio MAX and TrueSpace4 contain functions for generating animations. In 3D Studio MAX 
the animation is saved in a file in 3ds format and the -A switch of the Conv3ds utility is then used 
to convert the file into X format. The creation of animations using modeling and specialty software 
is beyond the scope of this book.  

 
 An animation set in the X file format appears as one of the following templates:  
 
   •AnimationKey  
 
   •AnimationOptions  
 
   •Animation  
 
   •AnimationSet  
 

 

The AnimationSet template describes an object equivalent to the retained mode concept. It 
usually contains one or more Animation templates that define the animated frame and set the 
keys. The AnimationOptions template is used to determine if the animation is open or closed, 
as well as to determine the interpolation mode as linear or spline. The most important information 
for rendering the animation is contained in the AnimationKey template. This element defines a 
set of key frames and determines whether the keys represent a rotation, a scaling, or a translation 
transformation.  

 
 Figure 25-5 is a screen snapshot of one of the animation sets contained in the program 3DRM 
Animation Set Demo in the book's CD-ROM.  

 



 

  
 
 Figure 25-5: Screen snapshot of animation set in 3DRM Animation Set Demo 

   
 

 
The animation was created using 3D Studio MAX and saved in a file in 3ds format. The file was 
then converted to the X format by means of the Conv3ds utility funished with the DirectX SDK. The 
command switches were as follows:  

 
 conv3ds -A -s0.02 -x box_sph0.3ds  
 
 The resulting file in X format contains the animation set for a cube, a torus, and a sphere. The 
following is a partial listing of this file. We have added comments to clarify the contents.  

 
 AnimationSet x3ds_animset_0 { // Animation set  
 Animation x3ds_anim_0 { // First animation in set   
 {x3ds_Cube} // Cube object  
 AnimationKey { // First animation key set  
 0; // 0 = rotation   
 5; // 5 keys follow  
 0; 4; 1.000000, 0.000000, 0.000000, 0.000000;;,  
 25; 4; 0.922201, 0.000000, -0.386711, 0.000000;;,  
 50; 4; 0.707107, 0.000000, -0.707107, 0.000000;;,  
 75; 4; 0.378649, 0.000000, -0.925540, 0.000000;;,  
 100; 4; 0.000000, 0.000000, -1.000000, 0.000000;;;  
 }  
 AnimationKey { // Second key set for cube  
 2; // 2 = translation   
 1; // 1 key follows  
 0; 3; 0.000107, -0.300209, -0.010889;;;  
 }  
 }  
 Animation x3ds_anim_1 { // Second animation in set   
 {x3ds_Sphere} // Sphere object  



 AnimationKey { // First animation key set  
 0; // 0 = rotation  
 1; // 1 key follows  
 0; 4; 1.000000, 0.000000, 0.000000, 0.000000;;;  
 }  
 AnimationKey { // Second key set for sphere  
 2; // 2 = translation  
 101; // 101 keys follow  
 0; 3; -1.375861, 0.000000, -1.362754;;,  
 1; 3; -1.432249, 0.000000, -1.200597;;,  
 2; 3; -1.484094, 0.000000, -1.042808;;,  
 3; 3; -1.531396, 0.000000, -0.889388;;,  
   
 99; 3; -1.255123, 0.000000, -1.464121;;,  
 100; 3; -1.424272, 0.000000, -1.411225;;;  
 }  
 }  
 Animation x3ds_anim_2 { // Third animation in set   
 {x3ds_Torus} // Torus object  
 AnimationKey { // First animation key set  
 0; // 0 = rotation   
 1; // 1 key follows  
 0; 4; 1.000000, 0.000000, 0.000000, 0.000000;;;  
 }  
 AnimationKey { // Second animation key set  
 1; // 1 = scaling   
 1; // 1 animation key follows  
 0; 3; 1.098252, 1.098252, 1.098252;;;  
 }  
 AnimationKey { // Third animation key set  
 2; // 2 = translation  
 101; // 101 keys follow  
 0; 3; -0.001230, 0.000646, -0.004002;;,  
 1; 3; -0.001140, 0.046207, -0.004002;;,  
 2; 3; -0.001052, 0.089906, -0.004002;;,  
 . . .  
 98; 3; -0.000385, -0.092070, -0.004002;;,  
 99; 3; -0.000346, -0.046086, -0.004002;;,  



 100; 3; -0.000304, 0.001852, -0.004002;;;  
 }  
 }  
 } // End of X file   
 
 X file templates are listed in Appendix C.  
 
 Loading an animation set  
 

 

As discussed in Chapter 21, a file in 3ds format containing an animation can be converted into the 
X format by means of the Conv3ds utility. The -A switch creates an X file that contains an 
animation set. This animation set can be loaded into an object of type 
DIRECT3DRMANIMATIONSET2 by means of the Load() function of 
IDirect3DRMAnimationSet2. The function has the following general form:  

 
 HRESULT Load(  
 LPVOID lpvObjSource, // 1  
 LPVOID lpvObjID, // 2  
 D3DRMLOADOPTIONS d3drmLOFlags, // 3  
 D3DRMLOADTEXTURE3CALLBACK d3drmLoadTextureProc, // 4  
 LPVOID lpArgLTP, // 5  
 LPDIRECT3DRMFRAME3 lpParentFrame // 6  
 );  
 

 

The first parameter represents the source for the object to be loaded. This can be a file, resource, 
memory block, or stream, depending on the source flags specified in the third parameter. The 
second parameter is the name or position of the object to be loaded. The use of this parameter 
depends on the identifier flags specified in the third parameter. If the D3DRMLOAD_BYPOSITION 
flag is specified, this parameter is a pointer to a DWORD value that gives the object's order in the 
file. This parameter can be NULL. The third parameter is the value Value of the 
D3DRMLOADOPTIONS type describing the load options. These options were discussed in Chapter 
19 and are listed in Table 19-2. The fourth parameter is the address of a 
D3DRMLOADTEXTURE3CALLBACK callback function used to load any textures used by the object. 
This parameter can be NULL if no textures are to be loaded at this time. The fifth parameter is the 
address of application-defined data passed to the D3DRMLOAD_TEXTURE3CALLBACK callback 
function.  

 

 

The sixth parameter is the address of a parent object of type Direct3DRMFrame3. This argument 
only affects the loading of animation sets. If an animation that is loaded from an X file references a 
frame with no parent, then the frame's parent is set automatically to this argument. However, if the 
Load() function is used to load any frames in the X file, the parent frame argument is not used. In 
other words, the parent frame argument is used only when you load animation sets. The value of 
this argument can be NULL. The function returns D3DRM_OK if it succeeds, or an error otherwise.  

 
By default, the Load() function loads the first animation set in the file specified by the first 



parameter. Perspective correction is on by default. The following code fragment shows loading an 
animation set. Code assumes that the child frame already exists.  

 
 // Routine data   
 LPDIRECT3DRMFRAME3 aChildFrame = NULL;   
 LPDIRECT3DRMANIMATIONSET2 animSet = NULL;  
 char szXFile1[] = "box_sph0.x" ; // x file with animation  
 . . .  
 retval = lpD3DRM->CreateAnimationSet( &animSet);  
 if(FAILED(retval))  
 {  
 // Animation set creation error handler goes here  
 }  
   
 // Load the X file into the animation set   
 retval = animSet->Load(szXFile1, // Source  
 NULL,  
 D3DRMLOAD_FROMFILE, // Options  
 NULL, NULL,  
 aChildFrame);  
 if (FAILED(retval))   
 {   
 // Animation set loading error handler goes here  
 }  
 
 Driving the animation set  
 

 

The real-time rendering of an animation set is performed by methods quite similar to those already 
described for driving an individual animation. The application usually sets up a frame-level callback 
function, as discussed earlier. The following code fragment shows the creation and definition of a 
callback function to be used in driving an animation set. The code assumes the existence of a child 
frame that contains the animation object.  

 
 // Routine data  
 LPDIRECT3DRMFRAME3 aChildFrame = NULL;  
 LPDIRECT3DRMANIMATIONSET2 animSet = NULL;  
 D3DVALUE t = D3DVAL(0.0); // Time lapse control  
 D3DVALUE speed = D3DVAL(0.02); // Speed control  
 . . .  
 retval = aChildFrame->AddMoveCallback( SetAnimCallback,  



 (void *) aChildFrame,  
 D3DRMCALLBACK_PREORDER );   
 . . .  
 //***************************************************  
 // name: SetAnimCallback()  
 // desc: Implements a callback for frame animation  
 // of an animation set  
 //***************************************************  
 void SetAnimCallback(LPDIRECT3DRMFRAME3 aFrame,  
 void *arg,  
 D3DVALUE delta)  
 {  
   
 LPDIRECT3DRMFRAME3 scene; // Scene frame  
   
 aFrame->GetScene( &scene); // Get scene  
 t = t + D3DVAL(speed); // Iteration timer  
 animSet->SetTime(t); // Set time  
   
 RELEASE(scene);  
 }  
 

 

As is the case with the animation callback function, the animation set callback function is usually 
called by the Move() function. The call to Move() is typically located in the rendering routine, 
which is, in turn, called by the timer- or message-driven animation pulse. The animation set is 
driven by calling the SetTime() function. SetTime() sets the visual object's transformation to the 
interpolated position, orientation, and scale of the nearby keys. The speed of the animation can be 
based on the value passed as a parameter to the callback function, on the setting of a static or 
global variable, or on both factors.  

 



Interpolators  
 

 

We have seen that retained mode animation techniques are based on generating the in-between 
images by interpolating between the key frames. Starting with version 5, Direct X supports an 
object type called an interpolator. Interpolators provide a more general approach to in-between 
techniques by extending their use into color tint manipulations, mesh morphing, as well as 
materials and textures. In this manner interpolators extend the functionality of the 
Direct3DRMAnimation2 interface. The interpolator functions are located in the 
IDirect3DRMInterpolator interface. Table 25-4 lists the methods in this interface.  

 
 Table 25-4: Methods in IDirect3DRMInterpolator  
 
    
 
 Method  

 
Description  

 

 
    
 
 AttachObject()  

 
Connects an object to the interpolator  

 

 
 DetachObject()  

 
Detaches an object from the interpolator   

 

 
 GetAttachedObjects()  

 
Retrieves the array of objects currently 
attached to the interpolator  

 

 
 GetIndex()  

 
Retrieves the current interpolator index  

 

 
 Interpolate()  

 
Calculates and generates the actions 
previously defined for the interpolator.  

 

 
 SetIndex()  

 
Sets the current interpolator index.  

 

 
    
 

 

Like animations and animation sets, interpolators are associated with key frames. When you 
define an interpolator you set a range of keys, sometimes called the index span of the interpolator, 
and assign values to the key frames. The interpolator logic calculates the in-between values from 
the key frames. When the Interpolate() function is called, the system applies the calculated 
values to the corresponding object automatically.  

 
Suppose you create an interpolator to perform a translation animation on a frame. In this case you 
establish the index span for the interpolator as a value in the range 0 to 40. Next, you define the 
object's position for index number 0. To do this you use the frame interpolator object to call the 
SetPosition() function. Next you define the object's position for the last index in the span. In 



the move callback function you simply call the Interpolate() function passing as arguments 
the current index number and the object to which the interpolation is to be applied. The system 
automatically calculates the in-betweens and calls SetPosition() for the target object. The 
result is a translation animation of the frame.  

 
 Types of interpolators  
 
 Retained mode recognizes the following types of interpolator objects:  
 
   •FrameInterpolator  
 
   •LightInterpolator  
 
   •MaterialInterpolator  
 
   •MeshInterpolator  
 
   •TextureInterpolator  
 
   •ViewportInterpolator  
 

 

The object attached to an interpolator must be of the same type as the interpolator itself. This 
means that a frame object can be attached to a FrameInterpolator, a mesh object to a 
MeshInterpolator, and so on. It is also possible to attach another interpolator to an 
interpolator, thus creating a hierarchical chain. Changing the index of an interpolator changes the 
indices of all attached interpolators to the same value. Table 25-5 lists the methods supported by 
the IDirect3DRM_Interpolator interface.  

 
 Interpolator index and keys  
 

 
The notion of an interpolator key is related to that of an animation key frame. An interpolator key 
defines the values for a procedure call. Each key is associated with an index. The interpolator 
automatically calculates between the key values.  

 

 
An interpolator key is stored by calling one of the supported interface methods listed in Table 25-5. 
The key contains two components: the key index and the parameter values to be applied. Once 
set, the index value for a key never changes.  

 
 Table 25-5: Functions Supported by IDirect3DRMInterpolator  
 
    
 
 Function Category  

 
Function Name  

 



 
    
 
 Viewport  

 
SetFront() 
 
SetBack()  
 
SetField()  
 
SetPlane()  

 

 
 Frame  

 
SetPosition() 
 
SetRotation()  
 
SetVelocity()  
 
SetOrientation()  
 
SetColor()  
 
SetColorRGB()  
 
SetSceneBackground()  
 
SetSceneBackgroundRGB()  
 
SetSceneFogColor()  
 
SetSceneFogParams()  
 
SetQuaternion()  

 

 
 Mesh  

 
Translate()  
 
SetVertices()  
 
SetGroupColor()  
 
SetGroupColorRGB()  

 

 
 Light  

 
SetColor()  
 
SetColorRGB()  
 
SetRange()  
 
SetUmbra()  
 
SetPenumbra()  
 
SetConstantAttenuation()  
 

 



SetLinearAttenuation()  
 
SetQuadraticAttenuation()  

 
 Texture  

 
SetDecalSize()  
 
SetDecalOrigin()  
 
SetDecalTransparentColor()  

 

 
 Material  

 
SetPower() 
 
SetSpecular()  
 
SetEmissive()  

 

 
    
 
 Interpolation modes  
 
 Retained mode interpolators recognize several operation modes, sometimes called options in the 
DirectX literature. These modes are defined in D3DRMINTERPOLATION_OPTIONS, as follows:  

 
 typedef DWORD D3DRMINTERPOLATIONOPTIONS;  
 #define D3DRMINTERPOLATION_OPEN 0x01L  
 #define D3DRMINTERPOLATION_CLOSED 0x02L  
 #define D3DRMINTERPOLATION_NEAREST 0x0100L  
 #define D3DRMINTERPOLATION_LINEAR 0x04L  
 #define D3DRMINTERPOLATION_SPLINE 0x08L  
 #define D3DRMINTERPOLATION_VERTEXCOLOR 0x40L  
 #define D3DRMINTERPOLATION_SLERPNORMALS 0x80L  
 
 Table 25-6 lists the action of each of the constants.  
 
 Table 25-6: Retained Mode Interpolation Options  
 
    
 
 Constant  

 
Effect on Interpolation  

 

 
    
 
 D3DRMINTERPOLATION_OPEN  

 

First and last keys of each key chain 
fix the interpolated values outside of 

 



fix the interpolated values outside of 
the index span.  

 
 D3DRMINTERPOLATION_CLOSED  

 
Cyclic interpolation. The keys repeat 
infinitely with a period equal to the 
index span. A key with an index 
equal to the end of the span is 
ignored.  

 

 
 D3DRMINTERPOLATION_NEAREST  

 
Nearest key value is used for 
determining in-between values.  

 

 
 D3DRMINTERPOLATION_LINEAR  

 
Linear interpolation between the two 
nearest keys is used for determining 
in-between values.  

 

 
 D3DRMINTERPOLATION_SPLINE  

 
B-spline blending function on the 
four nearest keys is used for 
determining in-between values.  

 

 
 D3DRMINTERPOLATION_VERTEXCOLOR  

 
Specifies that vertex colors should 
be interpolated.  

 

 
 D3DRMINTERPOLATION_SLERPNORMALS  

 
Specifies that vertex normals should 
be spherically interpolated (not 
currently implemented).  

 

 
    
 
 The interpolation mode is set by the call to the Interpolate() function.  
 
 Programming interpolators  
 

 

The convenience of interpolators is that they facilitate obtaining the in-betweens. For this reason 
interpolators are particularly useful in animations that are not based on conventional 
transformations. We have seen that animations and animation sets based on rotation, translation, 
or scaling transformations can be readily coded as animations or animation sets. In these cases 
interpolators are not too useful. However, there is no built-in mechanism for animating meshes, 
colors, textures, or materials. In these cases the use of interpolators facilitates the programming.  

 

 

On the other hand, you should remember that interpolators are a convenience that makes it easier 
to calculate and apply the in-betweens required for some types of animation, but that these effects 
can also be achieved by performing the actual calculations in code. For example, an application 
that needs to produce a color change to simulate a fade-in or fade-out effect can do so by means 
of a color interpolator, or by creating a move callback function and then calculating and applying 
the changes in object color during callback processing. In this case the main advantage of using 
an interpolator is that it makes the programming easier. At the same time, interpolators are black 
boxes that sometimes produce unexpected results.  



 
 Interpolator programming usually consists of the following steps:  
 
   1.Creating the interpolator object and defining its type.  
 
   2.Setting the interpolator index span and establishing the individual keys. Attaching the 

interpolator to an object in the application.  
 
   3.Creating an interpolator callback function that receives control with every animation tick. It is this 

function that typically performs the actual interpolation.  
 
 Creating the interpolator object  
 

 
Most retained mode objects can be defined in a data declaration. To keep the coding as simple as 
possible, we have followed this method almost exclusively in this book. In regards to interpolators 
you can define a generic pointer to an interpolator as follows:  

 
 LPDIRECT3DRMINTERPOLATOR interp1 = NULL;  
 

 

However, retained mode does not define data types for the specific interpolator types 
FrameInterpolator, LightInterpolator, MaterialInterpolator, 
MeshInterpolator, TextureInterpolator, and ViewportInterpolator. This means 
that in order to obtain access to the corresponding interfaces you must obtain the corresponding 
object from the COM. In the case of a frame interpolator the coding is as follows:  

 
 // Routine data  
 LPDIRECT3DRMINTERPOLATOR interp1 = NULL;  
 LPDIRECT3DRMFRAME3 frameInterp = NULL;  
 HRESULT retval;  
 . . .  
 retval = lpD3DRM->CreateObject(  
 CLSID_CDirect3DRMFrameInterpolator,  
 NULL,  
 IID_IDirect3DRMInterpolator,  
 (VOID**) &interp1);  
 if(FAILED(retval))  
 {  
 // Interpolator object creation error handler goes here  
 }  
 retval = interp1->QueryInterface(IID_IDirect3DRMFrame3,  
 (VOID**) &frameInterp);  
 if(FAILED(retval))  



 {  
 // Failed interface query error handler goes here  
 }  
 
 Defining the index span and keys  
 

 

After you have obtained the interpolator object, you make calls to any of the functions listed in 
Table 25-5 to define the interpolator keys. Because each key is associated with an index value, 
code usually calls the SetIndex() function of IDirect3DRMInterpolator prior to setting the 
key parameters. For example, to add a position key to a frame interpolator you start by calling 
SetIndex() with a parameter that corresponds to the current interpolator index. Then you record 
the position by calling SetPosition() of IDirect3DRMFrame3. Notice that the values passed in 
the call to SetPosition() are applied to the interpolator, rather than to a real frame. The 
function call and its parameters are stored in the interpolator as a new index and key. These 
values are used in calculating the in-betweens during the call to the Interpolate() function.  

 

 
The SetIndex() function of IDirect3DRMInterpolator sets the interpolator's index to the 
specified value. If other interpolators are attached to the interpolator, this method recursively 
synchronizes their indices to the one passed in the call. The function has the following general 
form:  

 
 HRESULT SetIndex(  
 D3DVALUE d3dVal // 1  
 );  
 
 The only parameter is the value of the interpolator's index.  
 
 The function returns D3DRM_OK if it succeeds, or an error otherwise.  
 

 

There is an interesting characteristic to interpolators that execute in the 
D3DRMINTER_POLATION_CLOSED mode. In this case the value assigned to a key at the end of 
the index span is ignored (see Table 25-6). This means that when assigning key values in the 
closed mode you must usually include a dummy key, with no associated value, at the end of the 
span.  

 

 
After all the indices and keys have been defined for the interpolator, the application must connect 
the interpolator to a real object. In the case of a frame, the interpolator must be attached to a real 
frame. The following code fragment shows the creation of three interpolator keys for a translation 
animation and the attachment of the interpolator to a frame object.  

 
 // Routine data  
 LPDIRECT3DRMINTERPOLATOR interp1 = NULL;  
 LPDIRECT3DRMFRAME3 frameInterp = NULL;  
 LPDIRECT3DRMFRAME3 aChildFrame = NULL;  
 HRESULT retval;  



 . . .  
 // Create first interpolator key  
 retval = interp1->SetIndex(D3DVAL(0));  
 if(FAILED(retval))  
 {  
 // Index creation error handler goes here  
 }  
   
 retval = frameInterp->SetPosition(NULL,  
 D3DVAL(0.0), // x  
 D3DVAL(0.0), // y  
 D3DVAL(40.0)); // z  
 if(FAILED(retval))  
 {  
 // Setting interpolator attribute error handler goes here  
 }  
 // Create second interpolator key  
 retval = interp1->SetIndex(D3DVAL(39));  
 if(FAILED(retval))  
 {  
 // Index creation error handler goes here  
 }   
 retval = frameInterp->SetPosition(NULL,  
 D3DVAL(0.0),  
 D3DVAL(0.0),  
 D3DVAL(0.0));  
 if(FAILED(retval))  
 {  
 // Setting interpolator attribute error handler goes here  
 }  
 // Set extra index  
 retval = interp1->SetIndex(D3DVAL(40));  
 if(FAILED(retval))  
 {  
 // Index creation error handler goes here   
 }  
 // Attach frame object to interpolator  
 retval = interp1->AttachObject(aChildFrame);  



 if(FAILED(retval))  
 {  
 // Frame attachment error handler goes here  
 }  
 
 The interpolator callback  
 

 

Actual interpolation usually takes place within a callback function. The creation of the callback 
function for interpolation is similar to that described earlier in this chapter for other forms of 
animation. Optionally, the application can also create a destroy callback function. For example, in 
the case of a frame interpolator the callback function and the destroy callback function are created 
as follows:  

 
 // Routine data  
 LPDIRECT3DRMINTERPOLATOR interp1 = NULL;  
 LPDIRECT3DRMFRAME3 aChildFrame = NULL;  
 HRESULT retval;  
 . . .  
 // Create an interpolator callback function  
 retval = aChildFrame->AddMoveCallback(InterpolateCallback,  
 (void *) interp1,  
 D3DRMCALLBACK_PREORDER );  
 if(FAILED(retval))  
 {  
 // Callback function creation error handler goes here  
 }  
 // Create destroy callback   
 retval = aChildFrame->AddDestroyCallback( DestroyInterpCallback,  
 interp1);  
 if(FAILED(retval))  
 {  
 // Destroy callback creation error handler goes here  
 }  
 

 
The actual processing performed in the callback function is application dependent. Usually, the 
intercept routine contains a call to the Interpolate() function of 
IDirect3DRMInterpolator. The following code fragment shows a simple interpolation callback 
function.  

 
 //*************************************************************  
 // Name: InterpolateCallback()  



 // Desc: Frame interpolator callback function  
 // Note: The parameter delta is passed by the Move() function  
 // call  
 //*************************************************************  
 void InterpolateCallback( LPDIRECT3DRMFRAME3 aFrame,  
 void *arg,  
 D3DVALUE delta )  
 {  
 LPDIRECT3DRMINTERPOLATOR frameInt;  
   
 // Retrieve target frame  
 frameInt = (LPDIRECT3DRMINTERPOLATOR) arg;  
   
 frameInt->Interpolate(pulse += delta,  
 NULL,  
 D3DRMINTERPOLATION_CLOSED |  
 D3DRMINTERPOLATION_LINEAR);  
 }  
 

 
If the interpolation refers to a translation animation, the call to Interpolate()_calls the 
SetPosition() function for the frame attached to the interpolator. The interpolator mode 
constants passed in the third parameter have the action described in Table 25-6. The actual 
parameters for the call, the so-called in-betweens, are calculated automatically by the interpolator. 

 

 

Alternatively, the call to Interpolate() can reference a specific object in the second parameter. 
In this case the interpolation is applied directly to the specified object bypassing any previous 
attachments. The same interpolator can be used to store more than one key. For example, if the 
defined keys refer to other object attributes, such as color, orientation, or scale, these are all 
simultaneously applied to the attached frames.  

 

 

You can use the same interpolator to store other keys such as orientation, scale, velocity, and color 
keys. Each property exists on a parallel timeline, and calling Interpolate() assigns the 
interpolated value for each property to the attached frames. The program 3DRM Interpolator Demo 
in the book's CD-ROM contains an example of a simultaneous translation and color tint change 
interpolation.  

 



Summary  
 

 

In this chapter we have examined animation techniques in retained mode programming. Most 3D 
applications require some form of animation, so the topic is a crucial one. We discussed several 
animation techniques, starting with the simplest approach which consists of creating a callback 
function for object movements and then hand-coding the necessary transformations and 
manipulations in the intercept handler. We also discussed retained mode animation techniques that 
take advantage of facilities provided by the system. These include animations, animation sets, and 
interpolators. We also explored the advantages of using animations contained in X files.  

 



Appendix A: Windows and DirectX Structures  
 
 Overview  
 
 This appendix contains the structures mentioned in the text. Structures are listed in alphabetical 
order.  

 
 BITMAP  
 typedef struct tagBITMAP { /* bm */  
 int bmType;  
 int bmWidth;  
 int bmHeight;  
 int bmWidthBytes;  
 BYTE bmPlanes;  
 BYTE bmBitsPixel;  
 LPVOID bmBits;  
 };  
   
 BITMAPCOREHEADER  
 typedef struct tagBITMAPCOREHEADER { // bmch   
 DWORD bcSize;   
 WORD bcWidth;   
 WORD bcHeight;   
 WORD bcPlanes;   
 WORD bcBitCount;   
 } BITMAPCOREHEADER;   
   
 BITMAPCOREINFO  
 typedef struct _BITMAPCOREINFO { // bmci   
 BITMAPCOREHEADER bmciHeader;   
 RGBTRIPLE bmciColors[1];   
 } BITMAPCOREINFO;   
   
 BITMAPFILEHEADER  
 typedef struct tagBITMAPFILEHEADER { // bmfh   
 WORD bfType;   
 DWORD bfSize;   
 WORD bfReserved1;   



 WORD bfReserved2;   
 DWORD bfOffBits;   
 } BITMAPFILEHEADER;   
   
 BITMAPINFO  
 typedef struct tagBITMAPINFO { // bmi   
 BITMAPINFOHEADER bmiHeader;   
 RGBQUAD bmiColors[1];   
 } BITMAPINFO;   
   
 BITMAPINFOHEADER  
 typedef struct tagBITMAPINFOHEADER{ // bmih   
 DWORD biSize;   
 LONG biWidth;   
 LONG biHeight;   
 WORD biPlanes;   
 WORD biBitCount   
 DWORD biCompression;   
 DWORD biSizeImage;   
 LONG biXPelsPerMeter;   
 LONG biYPelsPerMeter;   
 DWORD biClrUsed;   
 DWORD biClrImportant;   
 } BITMAPINFOHEADER;   
   
 CHOOSECOLOR  
 typedef struct { // cc   
 DWORD lStructSize;   
 HWND hwndOwner;   
 HWND hInstance;   
 COLORREF rgbResult;   
 COLORREF* lpCustColors;   
 DWORD Flags;   
 LPARAM lCustData;   
 LPCCHOOKPROC lpfnHook;   
 LPCTSTR lpTemplateName;   
 } CHOOSECOLOR;   
   



 COLORADJUSTMENT  
 typedef struct tagCOLORADJUSTMENT { /* ca */  
 WORD caSize;  
 WORD caFlags;  
 WORD caIlluminantIndex;  
 WORD caRedGamma;  
 WORD caGreenGamma;  
 WORD caBlueGamma;  
 WORD caReferenceBlack;  
 WORD caReferenceWhite;  
 SHORT caContrast;  
 SHORT caBrightness;  
 SHORT caColorfulness;  
 SHORT caRedGreenTint;  
 } COLORADJUSTMENT;  
   
 CREATESTRUCT  
 typedef struct tagCREATESTRUCT { // cs   
 LPVOID lpCreateParams;   
 HINSTANCE hInstance;   
 HMENU hMenu;   
 HWND hwndParent;   
 int cy;   
 int cx;   
 int y;   
 int x;   
 LONG style;   
 LPCTSTR lpszName;   
 LPCTSTR lpszClass;   
 DWORD dwExStyle;   
 } CREATESTRUCT;   
   
 DDBLTFX  
 typedef struct _DDBLTFX{  
 DWORD dwSize;  
 DWORD dwDDFX;  
 DWORD dwROP;  
 DWORD dwDDROP;  



 DWORD dwRotationAngle;  
 DWORD dwZBufferOpCode;  
 DWORD dwZBufferLow;  
 DWORD dwZBufferHigh;  
 DWORD dwZBufferBaseDest;  
 DWORD dwZDestConstBitDepth;  
 union  
 {  
 DWORD dwZDestConst;  
 LPDIRECTDRAWSURFACE lpDDSZBufferDest;  
 };  
 DWORD dwZSrcConstBitDepth;  
 union  
 {  
 DWORD dwZSrcConst;  
 LPDIRECTDRAWSURFACE lpDDSZBufferSrc;  
   
 };  
 DWORD dwAlphaEdgeBlendBitDepth;  
 DWORD dwAlphaEdgeBlend;  
 DWORD dwReserved;  
 DWORD dwAlphaDestConstBitDepth;  
 union  
 {  
 DWORD dwAlphaDestConst;  
 LPDIRECTDRAWSURFACE lpDDSAlphaDest;  
 };  
 DWORD dwAlphaSrcConstBitDepth;  
 union  
 {  
 DWORD dwAlphaSrcConst;  
 LPDIRECTDRAWSURFACE lpDDSAlphaSrc;  
 };  
 union  
 {  
 DWORD dwFillColor;  
 DWORD dwFillDepth;  
   



 LPDIRECTDRAWSURFACE lpDDSPattern;  
 };  
 DDCOLORKEY ddckDestColorkey;  
 DDCOLORKEY ddckSrcColorkey;  
 } DDBLTFX,FAR* LPDDBLTFX;  
   
 DDCAPS  
 typedef struct _DDCAPS{  
 DWORD dwSize;  
 DWORD dwCaps;  
 DWORD dwCaps2;  
 DWORD dwCKeyCaps;  
 DWORD dwFXCaps;  
 DWORD dwFXAlphaCaps;  
 DWORD dwPalCaps;  
 DWORD dwSVCaps;  
 DWORD dwAlphaBltConstBitDepths;  
 DWORD dwAlphaBltPixelBitDepths;  
 DWORD dwAlphaBltSurfaceBitDepths;  
 DWORD dwAlphaOverlayConstBitDepths;  
 DWORD dwAlphaOverlayPixelBitDepths;  
 DWORD dwAlphaOverlaySurfaceBitDepths;  
 DWORD dwZBufferBitDepths;  
   
 DWORD dwVidMemTotal;  
 DWORD dwVidMemFree;  
 DWORD dwMaxVisibleOverlays;  
 DWORD dwCurrVisibleOverlays;  
 DWORD dwNumFourCCCodes;  
 DWORD dwAlignBoundarySrc;  
 DWORD dwAlignSizeSrc;  
 DWORD dwAlignBoundaryDest;  
 DWORD dwAlignSizeDest;  
 DWORD dwAlignStrideAlign;  
 DWORD dwRops[DD_ROP_SPACE];  
 DDSCAPS ddsCaps;  
 DWORD dwMinOverlayStretch;  
 DWORD dwMaxOverlayStretch;  



 DWORD dwMinLiveVideoStretch;  
   
 DWORD dwMaxLiveVideoStretch;  
 DWORD dwMinHwCodecStretch;  
 DWORD dwMaxHwCodecStretch;  
 DWORD dwReserved1;  
 DWORD dwReserved2;  
 DWORD dwReserved3;  
 DWORD dwSVBCaps;  
 DWORD dwSVBCKeyCaps;  
 DWORD dwSVBFXCaps;  
 DWORD dwSVBRops[DD_ROP_SPACE];  
 DWORD dwVSBCaps;  
 DWORD dwVSBCKeyCaps;  
 DWORD dwVSBFXCaps;  
 DWORD dwVSBRops[DD_ROP_SPACE];  
 DWORD dwSSBCaps;  
 DWORD dwSSBCKeyCaps;  
   
 DWORD dwSSBCFXCaps;  
 DWORD dwSSBRops[DD_ROP_SPACE];  
 DWORD dwReserved4;  
 DWORD dwReserved5;  
 DWORD dwReserved6;  
 } DDCAPS,FAR* LPDDCAPS;  
   
 DDCOLORKEY  
 typedef struct _DDCOLORKEY{  
 DWORD dwColorSpaceLowValue;  
 DWORD dwColorSpaceHighValue;  
 } DDCOLORKEY,FAR* LPDDCOLORKEY;  
   
 DDPIXELFORMAT  
 typedef struct _DDPIXELFORMAT{  
 DWORD dwSize;  
 DWORD dwFlags;  
 DWORD dwFourCC;  
 union  



 {  
 DWORD dwRGBBitCount;  
 DWORD dwYUVBitCount;  
 DWORD dwZBufferBitDepth;  
 DWORD dwAlphaBitDepth;  
 };  
 union  
 {  
 DWORD dwRBitMask;  
 DWORD dwYBitMask;  
 };  
 union  
 {  
 DWORD dwGBitMask;  
 DWORD dwUBitMask;  
 };  
 union  
 {  
 DWORD dwBBitMask;  
 DWORD dwVBitMask;  
 };  
 union  
 {  
 DWORD dwRGBAlphaBitMask;  
   
 DWORD dwYUVAlphaBitMask;  
 };  
 } DDPIXELFORMAT, FAR* LPDDPIXELFORMAT;  
   
   
 DDSCAPS2  
 typedef struct _DDSCAPS2 {  
 DWORD dwCaps; // Surface capabilities  
 DWORD dwCaps2; // More surface capabilities  
 DWORD dwCaps3; // Not currently used  
 DWORD dwCaps4; // .   
 } DDSCAPS2, FAR* LPDDSCAPS2;  
   



   
 DDSURFACEDESC2  
 typedef struct _DDSURFACEDESC2 {  
 DWORD dwSize;  
 DWORD dwFlags;  
 DWORD dwHeight;  
 DWORD dwWidth;  
 union  
 {  
 LONG lPitch;  
 DWORD dwLinearSize;  
 } DUMMYUNIONNAMEN(1);  
 DWORD dwBackBufferCount;  
 union  
 {  
 DWORD dwMipMapCount;  
 DWORD dwRefreshRate;  
 } DUMMYUNIONNAMEN(2);  
 DWORD dwAlphaBitDepth;  
 DWORD dwReserved;  
 LPVOID lpSurface;  
 DDCOLORKEY ddckCKDestOverlay;  
 DDCOLORKEY ddckCKDestBlt;  
 DDCOLORKEY ddckCKSrcOverlay;  
 DDCOLORKEY ddckCKSrcBlt;  
 DDPIXELFORMAT ddpfPixelFormat;  
 DDSCAPS2 ddsCaps;  
 DWORD dwTextureStage;  
 } DDSURFACEDESC2, FAR* LPDDSURFACEDESC2;   
   
 DIBSECTION  
 typedef struct tagDIBSECTION {   
 BITMAP dsBm;   
 BITMAPINFOHEADER dsBmih;   
 DWORD dsBitfields[3];   
 HANDLE dshSection;   
 DWORD dsOffset;   
 } DIBSECTION;   



   
 DIDATAFORMAT  
 typedef struct {  
 DWORD dwSize;  
 DWORD dwObjSize;  
 DWORD dwFlags;  
 DWORD dwDataSize;  
 DWORD dwNumObjs;  
 LPDIOBJECTDATAFORMAT rgodf;  
 } DIDATAFORMAT;  
   
 DIDEVCAPS  
 typedef struct {  
 DWORD dwSize;  
 DWORD dwDevType;  
 DWORD dwFlags;  
 DWORD dwAxes;  
 DWORD dwButtons;  
 DWORD dwPOVs;  
 } DIDEVCAPS;  
   
 DIDEVICEINSTANCE  
 typedef struct {  
 DWORD dwSize;  
 GUID guidInstance;  
 GUID guidProduct;  
 DWORD dwDevType;  
 TCHAR tszInstanceName[MAX_PATH];  
 TCHAR tszProductName[MAX_PATH];  
 } DIDEVICEINSTANCE;  
   
 DIDEVICEOBJECTDATA  
 typedef struct {  
 DWORD dwOfs;  
 DWORD dwData;  
 DWORD dwTimeStamp;  
 DWORD dwSequence;  
 } DIDEVICEOBJECTDATA;  



   
 DIJOYSTATE  
 typedef struct DIJOYSTATE {   
 LONG lX;   
 LONG lY;   
 LONG lZ;   
 LONG lRx;   
 LONG lRy;   
 LONG lRz;   
 LONG rglSlider[2];  
 DWORD rgdwPOV[4];  
 BYTE rgbButtons[32];  
 } DIJOYSTATE, *LPDIJOYSTATE;   
   
 DIJOYSTATE2  
 typedef struct DIJOYSTATE2 {  
 LONG lX;  
 LONG lY;  
 LONG lZ;  
 LONG lRx;  
 LONG lRy;  
 LONG lRz;  
 LONG rglSlider[2];  
 DWORD rgdwPOV[4];  
 BYTE rgbButtons[128];  
 LONG lVX;  
 LONG lVY;  
 LONG lVZ;  
 LONG lVRx;  
 LONG lVRy;  
 LONG lVRz;  
 LONG rglVSlider[2];  
 LONG lAX;  
 LONG lAY;  
 LONG lAZ;  
 LONG lARx;  
 LONG lARy;  
 LONG lARz;  



 LONG rglASlider[2];  
 LONG lFX;  
 LONG lFY;  
 LONG lFZ;  
 LONG lFRx;  
 LONG lFRy;  
 LONG lFRz;  
 LONG rglFSlider[2];  
 } DIJOYSTATE2, *LPDIJOYSTATE2;  
   
 DIMOUSESTATE  
 typedef struct {  
 LONG lX;  
 LONG lY;  
 LONG lZ;  
 BYTE rgbButtons[4];  
 } DIMOUSESTATE;  
   
 DIPROPDWORD  
 typedef struct {  
 DIPROPHEADER diph;  
 DWORD dwData;  
 } DIPROPDWORD;  
   
 DIPROPHEADER  
 typedef struct {  
 DWORD dwSize;  
 DWORD dwHeaderSize;  
 DWORD dwObj;  
 DWORD dwHow;  
 } DIPROPHEADER;  
   
 DIPROPRANGE  
 typedef struct {  
 DIPROPHEADER diph;  
 LONG lMin;  
 LONG lMax;  
 } DIPROPRANGE;  



   
 DISPLAY_DEVICE  
 typedef struct _DISPLAY_DEVICE {  
 DWORD cb;  
 WCHAR DeviceName[32];  
 WCHAR DeviceString[128];  
 DWORD StateFlags;  
 } DISPLAY_DEVICE, *PDISPLAY_DEVICE, *LPDISPLAY_DEVICE;  
   
 DSETUP_CB_UPGRADEINFO  
 typedef struct _DSETUP_CB_UPGRADEINFO  
 {  
 DWORD UpgradeFlags;  
 } DSETUP_CB_UPGRADEINFO;  
   
 LOGBRUSH  
 typedef struct tag LOGBRUSH { /* lb */  
 UINT lbStyle;  
 COLORREF lbColor;  
 LONG lbHatch;  
 } LOGBRUSH;  
   
 LOGPEN  
 typedef struct tagLOGPEN { /* lgpn */  
 UINT lopnStyle;  
 POINT lopnWidth;  
 COLORREF lopnColor;  
 } LOGPEN;  
   
 LV_KEYDOWN   
 typedef struct tagLV_KEYDOWN {   
 NMHDR hdr;   
 WORD wVKey;   
 UINT flags;   
 } LV_KEYDOWN;   
   
 MONITORINFO  
 typedef struct tagMONITORINFO {   



 DWORD cbSize;   
 RECT rcMonitor;   
 RECT rcWork;   
 DWORD dwFlags;   
 } MONITORINFO, *LPMONITORINFO;   
   
 MONITORINFOEX  
 typedef struct tagMONITORINFOEX {   
 DWORD cbSize;   
 RECT rcMonitor;   
 RECT rcWork;   
 DWORD dwFlags;   
 TCHAR szDevice[CCHDEVICENAME]  
 } MONITORINFOEX, *LPMONITORINFOEX;   
   
 MSG  
 typedef struct tagMSG { // msg   
 HWND hwnd;   
 UINT message;  
 WPARAM wParam;  
 LPARAM lParam;  
 DWORD time;  
 POINT pt;  
 } MSG;  
   
 NMHDR  
 typedef struct tagNMHDR {   
 HWND hwndFrom;   
 UINT idFrom;   
 UINT code;   
 } NMHDR;   
   
 PAINTSTRUCT  
 typedef struct tagPAINTSTRUCT { // ps   
 HDC hdc;   
 BOOL fErase;   
 RECT rcPaint;   
 BOOL fRestore;   



 BOOL fIncUpdate;   
 BYTE rgbReserved[32];   
 } PAINTSTRUCT;   
   
 POINT  
 typedef struct tagPOINT {  
 LONG x;  
 LONG y;  
 } POINT;  
   
 RECT  
 typedef struct tagRECT {  
 LONG left;  
 LONG top;  
 LONG right;  
 LONG bottom;  
 } RECT;  
   
 RGBQUAD  
 typedef struct tagRGBQUAD { // rgbq   
 BYTE rgbBlue;   
 BYTE rgbGreen;   
 BYTE rgbRed;   
 BYTE rgbReserved;   
 } RGBQUAD;   
   
 RGBTRIPLE  
 typedef struct tagRGBTRIPLE { // rgbt   
 BYTE rgbtBlue;   
 BYTE rgbtGreen;   
 BYTE rgbtRed;   
 } RGBTRIPLE;   
   
   
 RGNDATA  
 typedef struct _RGNDATA { /* rgnd */  
 RGNDATAHEADER rdh;  
 char Buffer[1];  



 } RGNDATA;  
   
 RGNDATAHEADER  
 typedef struct _RGNDATAHEADER { // rgndh   
 DWORD dwSize;   
 DWORD iType;   
 DWORD nCount;   
 DWORD nRgnSize;   
 RECT rcBound;   
 } RGNDATAHEADER;   
   
 SCROLLINFO  
 typedef struct tagSCROLLINFO { // si   
 UINT cbSize;   
 UINT fMask;   
 int nMin;   
 int nMax;   
 UINT nPage;   
 int nPos;   
 int nTrackPos;   
 } SCROLLINFO;   
 typedef SCROLLINFO FAR *LPSCROLLINFO;   
   
 SIZE  
 typedef struct tagSIZE {  
 int cx;  
 int cy;  
 } SIZE;  
   
 TBBUTTON  
 typedef struct _TBBUTTON { \\ tbb   
 int iBitmap;   
 int idCommand;   
 BYTE fsState;   
 BYTE fsStyle;   
 DWORD dwData;   
 int iString;   
 } TBBUTTON, NEAR* PTBBUTTON, FAR* LPTBBUTTON;   



 typedef const TBBUTTON FAR* LPCTBBUTTON;   
   
 TEXTMETRICS  
 typedef struct tagTEXTMETRIC { /* tm */  
 int tmHeight;  
 int tmAscent;  
 int tmDescent;  
 int tmInternalLeading;  
 int tmExternalLeading;  
 int tmAveCharWidth;  
 int tmMaxCharWidth;  
 int tmWeight;  
 BYTE tmItalic;  
 BYTE tmUnderlined;  
 BYTE tmStruckOut;  
 BYTE tmFirstChar;  
 BYTE tmLastChar;  
 BYTE tmDefaultChar;  
 BYTE tmBreakChar;  
 BYTE tmPitchAndFamily;  
 BYTE tmCharSet;  
 int tmOverhang;  
 int tmDigitizedAspectX;  
 int tmDigitizedAspectY;  
 } TEXTMETRIC;  
   
 TOOLINFO  
 typedef struct { // ti   
 UINT cbSize;   
 UINT uFlags;   
 HWND hwnd;   
 UINT uId;   
 RECT rect;   
 HINSTANCE hinst;   
 LPTSTR lpszText;   
 } TOOLINFO, NEAR *PTOOLINFO, FAR *LPTOOLINFO;   
   
 WNDCLASSEX  



 typedef struct _WNDCLASSEX { // wc   
 UINT cbSize;   
 UINT style;   
 WNDPROC lpfnWndProc;   
 int cbClsExtra;   
 int cbWndExtra;   
 HANDLE hInstance;   
 HICON hIcon;   
 HCURSOR hCursor;   
 HBRUSH hbrBackground;   
 LPCTSTR lpszMenuName;   
 LPCTSTR lpszClassName;   
 HICON hIconSm;   
 } WNDCLASSEX;   
 



Appendix B: Ternary Raster Operation Codes  
 
 Overview  
 

 
This appendix describes the ternary raster operation codes used by the Windows GDI and DirectX. 
These codes determine how the bits in a source are combined with those of a destination, taking 
into account a particular pattern.  

 
 The following abbreviations are used for the ternary operands and the Boolean functions:  
 
 D = destination bitmap  
 
 P = pattern (determined by current brush)  
 
 S = Source bitmap  
 
 & = bitwise AND  
 
 ~ = bitwise NOT (inverse)  
 
 | = bitwise OR  
 
 ^ = bitwise exclusive OR (XOR)  
 

 
The most commonly used raster operations have been given special names in the Windows 
include file, windows.h. The following table, taken from Developer Studio help files, lists all 256 
ternary raster operations.  

 
    
 
 Raster Operation   

 
ROP code   

 
Boolean operation    

 
Common 
name  

 

 
    
 
 00   

 
00000042  

  
0   

  
BLACKNESS  

 

 
 01   

 
00010289  

  
~(P|S|D)   

  
-  

 

 
 02   

 
00020C89  

  
~(P|S)&D   

  
-  

 

       



 03   000300AA  ~(P|S)   -  
 
 04   

 
00040C88  

  
~(P|D)&S   

  
-  

 

 
 05   

 
000500A9  

  
~(P|D)   

  
-  

 

 
 06   

 
00060865  

  
~(|P~(S^D))   

  
-  

 

 
 07   

 
000702C5  

  
~(P|(S&D))   

  
-  

 

 
 08   

 
00080F08  

  
~P&S&D   

  
-  

 

 
 09   

 
00090245  

  
~(P|(S^D))   

  
-  

 

 
 0A   

 
000A0329  

  
~P&D   

  
-  

 

 
 0B   

 
000B0B2A  

  
~P(|(S&~D))   

  
-  

 

 
 0C   

 
000C0324  

  
~P&S   

  
-  

 

 
 0D   

 
000D0B25  

  
~P|(~S&D))   

  
-  

 

 
 0E   

 
000E08A5  

  
~P|~(S|D)   

  
-  

 

 
 0F   

 
000F0001  

  
~P   

  
-  

 

 
 10   

 
00100C85  

  
P&~(S|D)   

  
-  

 

 
 11   

 
001100A6  

  
~(S|D)   

  
NOTSRCERASE 

 

 
 12   

 
00120868  

  
~(S|~(P^D))   

  
-  

 

 
 13   

 
001302C8  

  
~(S|(P&D))   

  
-  

 

 
 14   

 
00140869  

  
~(D|~(P^S))   

  
-  

 

 
 15   

 
001502C9  

  
~(D|(P&S))   

  
-  

 

 
 16   

 
00165CCA  

  
P^(S^(D&~(P&S)))   

  
-  

 

 
 17  

 
00171D54 

  
~(S^((S^P)&(S^D)))  

  
- 

 



 17   00171D54  ~(S^((S^P)&(S^D)))   -  
 
 18   

 
00180D59  

  
(P^S)&(P^D)   

  
-  

 

 
 19   

 
00191CC8  

  
~(S^D&~(P&S)))   

  
-  

 

 
 1A   

 
001A06C5  

  
P^(D|(S&P))   

  
-  

 

 
 1B   

 
001B0768  

  
~(S^(D&(P^S)))   

  
-  

 

 
 1C   

 
001C06CA  

  
P^(S|(P&D))   

  
-  

 

 
 1D   

 
001D0766  

  
~(D^(S&(P^D)))   

  
-  

 

 
 1E   

 
001E01A5  

  
P^(S|D)   

  
-  

 

 
 1F   

 
001F0385  

  
~(P&(S|D))   

  
-  

 

 
 20   

 
00200F09  

  
P&~S&D   

  
-  

 

 
 21   

 
00210248  

  
~(S|(P^D))   

  
-  

 

 
 22   

 
00220326  

  
~S&D   

  
-  

 

 
 23   

 
00230B24  

  
~(S|(P&~D))   

  
-  

 

 
 24   

 
00240D55  

  
(S^P)&(S^D)   

  
-  

 

 
 25   

 
00251CC5  

  
~(P^(D&~(S&P)))   

  
-  

 

 
 26   

 
002606C8  

  
S^(D|((P&S))   

  
-  

 

 
 27   

 
00271868  

  
S^(D|~(P^S))   

  
-  

 

 
 28   

 
00280369  

  
D&(P^S)   

  
-  

 

 
 29   

 
002916CA  

  
~(P^(S^(D|(P&S))))   

  
-  

 

 
 2A   

 
002A0CC9  

  
D&~(P&S)   

  
-  

 

 
 2B  

 
002B1D58 

  
~(S^((S^P)&(P&D)))  

  
- 

 



 2B   002B1D58  ~(S^((S^P)&(P&D)))   -  
 
 2C   

 
002C0784  

  
S^(P&(S|D))   

  
-  

 

 
 2D   

 
002D060A  

  
P^(S|~D)   

  
-  

 

 
 2E   

 
002E064A  

  
P^(S|(P^D))   

  
-  

 

 
 2F   

 
002F0E2A  

  
~(P&(S|~D))   

  
-  

 

 
 30   

 
0030032A  

  
P&~S   

  
-  

 

 
 31   

 
00310B28  

  
~(S|(~P&D))   

  
-  

 

 
 32   

 
00320688  

  
S^(P|S|D)   

  
-  

 

 
 33   

 
00330008  

  
~S   

  
NOTSRCCOPY  

 

 
 34   

 
003406C4  

  
S^(P|(S&D))   

  
-  

 

 
 35   

 
00351864  

  
S^(P|~(S^D))   

  
-  

 

 
 36   

 
003601A8  

  
S^(P|D)   

  
-  

 

 
 37   

 
00370388  

  
~(S&(P|D))   

  
-  

 

 
 38   

 
0038078A  

  
P^(S&(P|D))   

  
-  

 

 
 39   

 
00390604  

  
S^(P|~D)   

  
-  

 

 
 3A   

 
003A0644  

  
S^(P^(S^D))   

  
-  

 

 
 3B   

 
003B0E24  

  
~(S&(P|~D))   

  
-  

 

 
 3C   

 
003C004A  

  
P^S   

  
-  

 

 
 3D   

 
003D18A4  

  
S^(P|~(S|D))   

  
-  

 

 
 3E   

 
003E1B24  

  
S^(P|(~S&D))   

  
-  

 

 
 3F  

 
003F00EA 

  
~(P&S)  

  
- 

 



 3F   003F00EA  ~(P&S)   -  
 
 40   

 
00400F0A  

  
P&S&~D   

  
-  

 

 
 41   

 
00410249  

  
~(D|(P^S))   

  
-  

 

 
 42   

 
00420D5D  

  
(S^D)&(P^D)   

  
-  

 

 
 43   

 
00431CC4  

  
~(S^(P&~(S&D)))   

  
-  

 

 
 44   

 
00440328  

  
S&~D   

  
SRCERASE  

 

 
 45   

 
00450B29  

  
~(D|(P&~S))   

  
-  

 

 
 46   

 
004606C6  

  
D^(S|(P&D))   

  
-  

 

 
 47   

 
0047076A  

  
~(P^(S&((P^D)))   

  
-  

 

 
 48   

 
00480368  

  
S&(P^D)   

  
-  

 

 
 49   

 
004916C5  

  
~(P^(D^(S|(P&D))))   

  
-  

 

 
 4A   

 
004A0789  

  
D^(P&(S|D)   

  
-  

 

 
 4B   

 
004B0605  

  
P^(~S|D)   

  
-  

 

 
 4C   

 
004C0CC8  

  
S&~(P&D)   

  
-  

 

 
 4D   

 
004D1954  

  
~(S^((P^S)|(S^D)))   

  
-  

 

 
 4E   

 
004E0645  

  
P^(D|(P^S))   

  
-  

 

 
 4F   

 
004F0E25  

  
~(P&(~S|D))   

  
-  

 

 
 50   

 
00500325  

  
P&~D   

  
-  

 

 
 51   

 
00510B26  

  
~(D|(~P&S))   

  
-  

 

 
 52   

 
005206C9  

  
D^(P|(S&D))   

  
-  

 

 
 53  

 
00530764 

  
~(S^(P&(S^D)))  

  
- 

 



 53   00530764  ~(S^(P&(S^D)))   -  
 
 54   

 
005408A9  

  
~(D|~(P|S))   

  
-  

 

 
 55   

 
00550009  

  
~D   

  
DSTINVERT  

 

 
 56   

 
005601A9  

  
D^(P|S)   

  
-  

 

 
 57   

 
00570389  

  
~(D&(P|S))   

  
-  

 

 
 58   

 
00580785  

  
P^(D&(P|S))   

  
-  

 

 
 59   

 
00590609  

  
D^(P|~S)   

  
-  

 

 
 5A   

 
005A0049  

  
P^D   

  
PATINVERT  

 

 
 5B   

 
005B18A9  

  
D^(P|~(S|D))   

  
-  

 

 
 5C   

 
005C0649  

  
D^(P|(S^D))   

  
-  

 

 
 5D   

 
005D0E29  

  
~(D&(P|~S))   

  
-  

 

 
 5E   

 
005E1B29  

  
D^(P|(S&~D))   

  
-  

 

 
 5F   

 
005F00E9  

  
~(P&D)   

  
-  

 

 
 60   

 
00600365  

  
P&(S^D)   

  
-  

 

 
 61   

 
006116C6  

  
~(D^(S^(P|(S&D))))   

  
-  

 

 
 62   

 
00620786  

  
D^(S&(P|D))   

  
-  

 

 
 63   

 
00630608  

  
S^(~P|D)   

  
-  

 

 
 64   

 
00640788  

  
S^(D&(P|S))   

  
-  

 

 
 65   

 
00650606  

  
D^(~P|S)   

  
-  

 

 
 66   

 
00660046  

  
S^D   

  
SRCINVERT  

 

 
 67  

 
006718A8 

  
S^(D|~(P|S))  

  
- 

 



 67   006718A8  S^(D|~(P|S))   -  
 
 68   

 
006858A6  

  
~(D^(S^(P|~(S|D))))   

  
-  

 

 
 69   

 
00690145  

  
~(P^(S^D))   

  
-  

 

 
 6A   

 
006A01E9  

  
D^(P&S)   

  
-  

 

 
 6B   

 
006B178A  

  
~(P^(S^(D&(S|P))))   

  
-  

 

 
 6C   

 
006C01E8  

  
S^(P&D)   

  
-  

 

 
 6D   

 
006D1785  

  
~(P^(D^(S&(P|D))))   

  
-  

 

 
 6E   

 
006E1E28  

  
S^(D&(P|~S))   

  
-  

 

 
 6F   

 
006F0C65  

  
~(P&~(S^D))   

  
-  

 

 
 70   

 
00700CC5  

  
P&~(S&D)   

  
-  

 

 
 71   

 
00711D5C  

  
~(S^((S^D)&(P^D)))   

  
-  

 

 
 72   

 
00720648  

  
S^(D|(P^S))   

  
-  

 

 
 73   

 
00730E28  

  
~(S&(~P|D))   

  
-  

 

 
 74   

 
00740646  

  
D^(S|(P^D))   

  
-  

 

 
 75   

 
00750E26  

  
~(D&(~P|S))   

  
-  

 

 
 76   

 
00761B28  

  
S^(D|(P&~S))   

  
-  

 

 
 77   

 
007700E6  

  
~(S&D)   

  
-  

 

 
 78   

 
007801E5  

  
P^(S&D)   

  
-  

 

 
 79   

 
00791786  

  
~(D^(S^(P&(S|D))))   

  
-  

 

 
 7A   

 
007A1E29  

  
D^(P&(S|~D))   

  
-  

 

 
 7B  

 
007B0C68 

  
~(S&~(P^D))  

  
- 

 



 7B   007B0C68  ~(S&~(P^D))   -  
 
 7C   

 
007C1E24  

  
S^(P&(~S|D))   

  
-  

 

 
 7D   

 
007D0C69  

  
~(D&~(S^P))   

  
-  

 

 
 7E   

 
007E0955  

  
(P^S)|(S^D)   

  
-  

 

 
 7F   

 
007F03C9  

  
~(P&S&D)   

  
-  

 

 
 80   

 
008003E9  

  
P&S&D   

  
-  

 

 
 81   

 
00810975  

  
~((P^S)|(S^D))   

  
-  

 

 
 82   

 
00820C49  

  
~(P^S)&D   

  
-  

 

 
 83   

 
00831E04  

  
~(S^(P&(~S|D)))   

  
-  

 

 
 84   

 
00840C48  

  
S&~(P^D)   

  
-  

 

 
 85   

 
00851E05  

  
~(P^(D&(~P|S)))   

  
-  

 

 
 86   

 
008617A6  

  
D^(S^(P&(S|D)))   

  
-  

 

 
 87   

 
008701C5  

  
~(P^(S&D))   

  
-  

 

 
 88   

 
008800C6  

  
S&D   

  
SRCAND  

 

 
 89   

 
00891B08  

  
~(S^(D|(P&~S)))   

  
-  

 

 
 8A   

 
008A0E06  

  
(~P|S)&D   

  
-  

 

 
 8B   

 
008B0666  

  
~(D^(S|(P^D)))   

  
-  

 

 
 8C   

 
008C0E08  

  
S&(~P|D)   

  
-  

 

 
 8D   

 
008D0668  

  
~S(^(D|(P^S)))   

  
-  

 

 
 8E   

 
008E1D7C  

  
S^((S^D)&(P^D))   

  
-  

 

 
 8F  

 
008F0CE5 

  
~(P&~(S&D))  

  
- 

 



 8F   008F0CE5  ~(P&~(S&D))   -  
 
 90   

 
00900C45  

  
P&~(S^D)   

  
-  

 

 
 91   

 
00911E08  

  
~(S^(D&(P|~S)))   

  
-  

 

 
 92   

 
009217A9  

  
D^(P^(S&(P|D)))   

  
-  

 

 
 93   

 
009301C4  

  
~(S^(P&D))   

  
-  

 

 
 94   

 
009417AA  

  
P^(S^(D&(P|S)))   

  
-  

 

 
 95   

 
009501C9  

  
~(D^(P&S))   

  
-  

 

 
 96   

 
00960169  

  
P^S^D   

  
-  

 

 
 97   

 
0097588A  

  
P^(S^(D|~P|S)))   

  
-  

 

 
 98   

 
00981888  

  
~(S^(D|~(P|S)))   

  
-  

 

 
 99   

 
00990066  

  
~(S^D)   

  
-  

 

 
 9A   

 
009A0709  

  
(P&~S)^D   

  
-  

 

 
 9B   

 
009B07A8  

  
~(S^(D&(P|S)))   

  
-  

 

 
 9C   

 
009C0704  

  
S^(P&~D)   

  
-  

 

 
 9D   

 
009D07A6  

  
~(D^(S&(P|D)))   

  
-  

 

 
 9E   

 
009E16E6  

  
(S^(P|(S&D)))^D   

  
-  

 

 
 9F   

 
009F0345  

  
~(P&(S^D))   

  
-  

 

 
 A0   

 
00A000C9  

  
P&D   

  
-  

 

 
 A1   

 
00A11B05  

  
~(P^(D|(~P&S)))   

  
-  

 

 
 A2   

 
00A20E09  

  
(P|~S)&D   

  
-  

 

 
 A3  

 
00A30669 

  
~(D^(P|(S^D)))  

  
- 

 



 A3   00A30669  ~(D^(P|(S^D)))   -  
 
 A4   

 
00A41885  

  
~(P^(D|~(P|S)))   

  
-  

 

 
 A5   

 
00A50065  

  
~(P^D)   

  
-  

 

 
 A6   

 
00A60706  

  
(~P&S)^D   

  
-  

 

 
 A7   

 
00A707A5  

  
~(P^(D&(P|S)))   

  
-  

 

 
 A8   

 
00A803A9  

  
(P|S)&D   

  
-  

 

 
 A9   

 
00A90189  

  
~((P|S)^D)   

  
-  

 

 
 AA   

 
00AA0029  

  
D   

  
-  

 

 
 AB   

 
00AB0889  

  
~(P|S)|D   

  
-  

 

 
 AC   

 
00AC0744  

  
S^(P&(S^D))   

  
-  

 

 
 AD   

 
00AD06E9  

  
~(D^(P|(S&D)))   

  
-  

 

 
 AE   

 
00AE0B06  

  
(~P&S)|D   

  
-  

 

 
 AF   

 
00AF0229  

  
~P|D   

  
-  

 

 
 B0   

 
00B00E05  

  
P&(~S|D)   

  
-  

 

 
 B1   

 
00B10665  

  
~(P^(D|(P^S)))   

  
-  

 

 
 B2   

 
00B21974  

  
S^((P^S)|(S^D))   

  
-  

 

 
 B3   

 
00B30CE8  

  
~(S&~(P&D))   

  
-  

 

 
 B4   

 
00B4070A  

  
P^(S&~D)   

  
-  

 

 
 B5   

 
00B507A9  

  
~(D^(P&(S|D)))   

  
-  

 

 
 B6   

 
00B616E9  

  
D^(P^(D|(P&D)))   

  
-  

 

 
 B7  

 
00B70348 

  
~(S&(P^D))  

  
- 

 



 B7   00B70348  ~(S&(P^D))   -  
 
 B8   

 
00B8074A  

  
P^(S&(P^D))   

  
-  

 

 
 B9   

 
00B906E6  

  
~(D^(S|(P&D)))   

  
-  

 

 
 BA   

 
00BA0B09  

  
(P&~S)|D   

  
-  

 

 
 BB   

 
00BB0226  

  
~S|D   

  
MERGEPAINT  

 

 
 BC   

 
00BC1CE4  

  
S^(P&~(S&D))   

  
-  

 

 
 BD   

 
00BD0D7D  

  
~((P^D)&(S^D))   

  
-  

 

 
 BE   

 
00BE0269  

  
(P^S)|D   

  
-  

 

 
 BF   

 
00BF08C9  

  
~(P&S)|D   

  
-  

 

 
 C0   

 
00C000CA  

  
P&S   

  
MERGECOPY  

 

 
 C1   

 
00C11B04  

  
~(S^(P|(~S&D)))   

  
-  

 

 
 C2   

 
00C21884  

  
~(S^(P|~(S|D)))   

  
-  

 

 
 C3   

 
00C3006A  

  
~(P^S)   

  
-  

 

 
 C4   

 
00C40E04  

  
S&(P|~D)   

  
-  

 

 
 C5   

 
00C50664  

  
~(S^(P|(S^D)))   

  
-  

 

 
 C6   

 
00C60708  

  
S^(~P&D)   

  
-  

 

 
 C7   

 
00C707AA  

  
~(P^(S&(P|D)))   

  
-  

 

 
 C8   

 
00C803A8  

  
S&(P|D)   

  
-  

 

 
 C9   

 
00C90184  

  
~(S^(P|D))   

  
-  

 

 
 CA   

 
00CA0749  

  
D^(P&(S^D))   

  
-  

 

 
 CB  

 
00CB06E4 

  
~(S^(P|(S&D)))  

  
- 

 



 CB   00CB06E4  ~(S^(P|(S&D)))   -  
 
 CC   

 
00CC0020  

  
S   

  
SRCCOPY  

 

 
 CD   

 
00CD0888  

  
S|~(P|D)   

  
-  

 

 
 CE   

 
00CE0B08  

  
S|(~P&D)   

  
-  

 

 
 CF   

 
00CF0224  

  
S|~P   

  
-  

 

 
 D0   

 
00D00E0A  

  
~(^(S|(P^D)))   

  
-  

 

 
 D1   

 
00D1066A  

  
P^(~S&D)   

  
-  

 

 
 D2   

 
00D20705  

  
~(S^(P&(S|D)))   

  
-  

 

 
 D3   

 
00D307A4  

  
S^((P^S)&(P^D))   

  
-  

 

 
 D4   

 
00D41D78  

  
(~(D&~(P&S))   

  
-  

 

 
 D5   

 
00D50CE9  

  
P^(S^(D|(P&S)))   

  
-  

 

 
 D6   

 
00D616EA  

  
~(D&(P^S))   

  
-  

 

 
 D7   

 
00D70349  

  
~(D&(P&S))   

  
-  

 

 
 D8   

 
00D80745  

  
P^(D&(P^S))   

  
-  

 

 
 D9   

 
00D906E8  

  
~(S^(D|(P&S)))   

  
-  

 

 
 DA   

 
00DA1CE9  

  
D^(P&~(S&D))   

  
-  

 

 
 DB   

 
00DB0D75  

  
~((P^S)&(S^D))   

  
-  

 

 
 DC   

 
00DC0B04  

  
S|(P&~D)   

  
-  

 

 
 DD   

 
00DD0228  

  
S|~D   

  
-  

 

 
 DE   

 
00DE0268  

  
S|(P^D)   

  
-  

 

 
 DF  

 
00DF08C8 

  
S|~(P&D)  

  
- 

 



 DF   00DF08C8  S|~(P&D)   -  
 
 E0   

 
00E003A5  

  
P&(D|S)   

  
-  

 

 
 E1   

 
00E10185  

  
~(P^(S|D))   

  
-  

 

 
 E2   

 
00E20746  

  
D^(S&(P^D))   

  
-  

 

 
 E3   

 
00E306EA  

  
~(P^(S|(P&D)))   

  
-  

 

 
 E4   

 
00E40748  

  
S^(D&(P^S))   

  
-  

 

 
 E5   

 
00E506E5  

  
~(P^(D|(P&S)))   

  
-  

 

 
 E6   

 
00E61CE8  

  
S^(D&~(P&S))   

  
-  

 

 
 E7   

 
00E70D79  

  
~((P^S)&(P^D))   

  
-  

 

 
 E8   

 
00E81D74  

  
S^((P^S)&*S^D))   

  
-  

 

 
 E9   

 
00E95CE6  

  
~(D^(S^(P&~(S&D))))   

  
-  

 

 
 EA   

 
00EA02E9  

  
(P&S)|D   

  
-  

 

 
 EB   

 
00EB0849  

  
~(P^S)|D   

  
-  

 

 
 EC   

 
00EC02E8  

  
S|(P&D)   

  
-  

 

 
 ED   

 
00ED0848  

  
S|(~(P^D)   

  
-  

 

 
 EE   

 
00EE0086  

  
S|D   

  
SRCPAINT  

 

 
 EF   

 
00EF0A08  

  
~P|S|D   

  
-  

 

 
 F0   

 
00F00021  

  
P   

  
PATCOPY  

 

 
 F1   

 
00F10885  

  
P|(~(S|D)   

  
-  

 

 
 F2   

 
00F20B05  

  
P|(~S&D)   

  
-  

 

 
 F3  

 
00F3022A 

  
P|~S  

  
- 

 



 F3   00F3022A  P|~S   -  
 
 F4   

 
00F40B0A  

  
P|(S&~D)   

  
-  

 

 
 F5   

 
00F50225  

  
P|~D   

  
-  

 

 
 F6   

 
00F60265  

  
P|(S^D)   

  
-  

 

 
 F7   

 
00F708C5  

  
P|(~(S&D)   

  
-  

 

 
 F8   

 
00F802E5  

  
P|(S&D)   

  
-  

 

 
 F9   

 
00F90845  

  
P|~(S^D)   

  
-  

 

 
 FA   

 
00FA0089  

  
P|D   

  
-  

 

 
 FB   

 
00FB0A09  

  
P|~S|D   

  
PATPAINT  

 

 
 FC   

 
00FC008A  

  
P|S   

  
-  

 

 
 FD   

 
00FD0A0A  

  
P|S|~D   

  
-  

 

 
 FE   

 
00FE02A9  

  
P|S|D   

  
-  

 

 
 FF   

 
00FF0062  

  
1   

  
WHITENESS  

 

 
    
 
   
 



Appendix C: DirectX Templates  
 
 Overview  
 

 
Templates used in the Microsoft's DirectX file format and retained mode programming, are 
described in the DirectX version 7 documentation. The following templates are listed in this 
appendix:  

 
 Header   

 
 MeshTextureCoords  

 

 Vector    MeshNormals   
 Coords2d    Coords2dMeshVertexColors   
 Quaternion    MeshMaterialList   
 Matrix4 X 4    Mesh   
 ColorRGBA    FrameTransformMatrix   
 ColorRGB    Frame   
 Indexed Color    FloatKeys   
 Boolean    TimedFloatKeys   
 Boolean2d    AnimationKey   
 Material    AnimationOptions   
 TextureFilename    Animation   
 MeshFace    AnimationSet   
 MeshFaceWraps  
 



Template: Header  
 
 UUID: <3D82AB43-62DA-11cf-AB39-0020AF71E433>  
   
 Member Name Type   
 major WORD  
 minor WORD   
 flags DWORD   
 
 Description  
 

 
Defines the application-specific header for the Direct3D retained mode usage of the DirectX file 
format. The retained mode uses the major and minor flags to specify the current major and minor 
versions for the retained mode file format.   

 



Template: Vector  
 
 UUID: <3D82AB5E-62DA-11cf-AB39-0020AF71E433>  
   
 Member Name Type   
 x FLOAT   
 y FLOAT   
 z FLOAT   
 
 Description  
 
 Defines a vector.  
 



Template: Coords2d  
 
 UUID <F6F23F44-7686-11cf-8F52-0040333594A3>  
   
 Member Name Type   
 u FLOAT   
 v FLOAT   
 
 Description  
 
 A two-dimensional vector used to define a mesh's texture coordinates.  
 



 Template: Quaternion  
 
 UUID <10DD46A3-775B-11cf-8F52-0040333594A3>  
   
 Member Name Type   
 s FLOAT   
 v Vector   
 
 Description  
 
 Currently unused.  
 



Template: Matrix4 X 4  
 
 UUID <F6F23F45-7686-11cf-8F52-0040333594A3>  
   
 Member Name Type   
 matrix array FLOAT 16   
 
 Description  
 
 Defines a 4 X 4 matrix used as a frame transformation matrix.  
 



Template: ColorRGBA  
 
 UUID <35FF44E0-6C7C-11cf-8F52-0040333594A3>  
   
 Member Name Type  
 red FLOAT   
 green FLOAT   
 blue FLOAT   
 alpha FLOAT   
 
 Description  
 
 Defines a color object with an alpha component. Used for the face color in the material template 
definition.  

 



Template: ColorRGB  
 
 UUID <D3E16E81-7835-11cf-8F52-0040333594A3>  
   
 Member Name Type   
 red FLOAT   
 green FLOAT   
 blue FLOAT   
 
 Description  
 
 Defines the basic RGB color object.  
 



Template: Indexed Color  
 
 UUID <1630B820-7842-11cf-8F52-0040333594A3>  
   
 Member Name Type   
 index DWORD   
 indexColor ColorRGBA   
 
 Description  
 
 Consists of an index parameter and an RGBA color and is used for defining mesh vertex colors. 
The index defines the vertex to which the color is applied.  

 



 Template: Boolean  
 
 UUID <4885AE61-78E8-11cf-8F52-0040333594A3>  
   
 Member Name Type   
 DWORD true/false   
 
 Description  
 
 Defines a simple Boolean type. This template should be set to 0 or 1.  
 



Template: Boolean2d  
 
 UUID <4885AE63-78E8-11cf-8F52-0040333594A3>  
   
 Member Name Type   
 u Boolean   
 v Boolean   
 
 Description  
 
 Defines a set of two Boolean values used in the MeshFaceWraps template to define the texture 
topology of an individual face.  

 



Template: Material  
 
 UUID <3D82AB4D-62DA-11cf-AB39-0020AF71E433>  
   
 Member Name Type   
 faceColor ColorRGBA   
 power FLOAT   
 specularColor ColorRGB   
 emissiveColor ColorRGB   
 
 Description  
 

 
Defines a basic material color that can be applied to either a complete mesh or a mesh's individual 
faces. The power is the specular exponent of the material. Note that the ambient color requires an 
alpha component.  

 
 TextureFilename is an optional data object used by Direct3D Retained Mode. If this object is not 
present, the face is untextured.  

 



Template: TextureFilename  
 
 UUID <A42790E1-7810-11cf-8F52-0040333594A3>  
   
 Member Name Type   
 filename STRING   
 
 Description  
 
 Specifies the file name of a texture to apply to a mesh or a face. This template should appear within 
a material object.  

 



Template: MeshFace  
 
 UUID <3D82AB5F-62DA-11cf-AB39-0020AF71E433>  
   
 Member Name Type Optional Array Optional Data  
 Size Objects   
 nFaceVertexIndices DWORD None   
 faceVertexIndices array  
 DWORD nFaceVertexIndicies   
 
 Description  
 
 Used by the Mesh template to define a mesh's faces. Each element of the nFaceVertexIndices 
array references a mesh vertex used to build the face.  

 



Template: MeshFaceWraps  
 
 UUID <4885AE62-78E8-11cf-8F52-0040333594A3>  
   
 Member Name Type   
 nFaceWrapValues DWORD   
 faceWrapValues Boolean2d   
 
 Description  
 
 Used to define the texture topology of each face in a wrap. The value of the nFaceWrapValues 
member should be equal to the number of faces in a mesh.  

 



Template: MeshTextureCoords  
 
 UUID <F6F23F40-7686-11cf-8F52-0040333594A3>  
   
 Member Name Type Optional Array  
 Size   
 nTextureCoords DWORD   
 textureCoords array nTextureCoords  
 Coords2d   
 
 Description  
 
 Defines a mesh's texture coordinates.  
 



Template: MeshNormals  
 
 UUID <F6F23F43-7686-11cf-8F52-0040333594A3>  
   
 Member Name Type Optional Array Size   
 nNormals DWORD   
 normals array Vector nNormals   
 nFaceNormals DWORD   
 faceNormals array nFaceNormals  
 MeshFace   
 
 Description  
 

 
Defines normals for a mesh. The first array of vectors is the normal vectors, and the second array is 
an array of indexes specifying which normals should be applied to a given face. The value of the 
nFaceNormals member should be equal to the number of faces in a mesh.  

 



Template: MeshVertexColors  
 
 UUID <1630B821-7842-11cf-8F52-0040333594A3>  
   
 Member Name Type Optional Array Size   
 nVertexColors DWORD   
 vertexColors array nVertexColors   
 IndexedColor   
 
 Description  
 
 Specifies vertex colors for a mesh, instead of applying a material per face or per mesh.  
 



Template: MeshMaterialList  
 
 UUID <F6F23F42-7686-11cf-8F52-0040333594A3>  
   
 Member Name Type Optional Data Objects   
 nMaterials DWORD Material   
 nFaceIndexes DWORD   
 FaceIndexes array DWORD nFaceIndexes   
 
 Description  
 
 Used in a mesh object to specify which material applies to which faces. The nMaterials member 
specifies how many materials are present, and materials specify which material to apply.  

 



Template: Mesh  
 
 UUID <3D82AB44-62DA-11cf-AB39-0020AF71E433>  
   
 Member Name Type Optional Array Optional Data Size Objects   
 nVertices DWORD (see list)   
 vertices array Vector nVertices   
 nFaces DWORD   
 faces array nFaces   
 MeshFace   
 
 Description  
 
 Defines a simple mesh. The first array is a list of vertices, and the second array defines the faces 
of the mesh by indexing into the vertex array.  

 
 Optional Data Objects  
 
 The following optional data elements are used by Direct3D Retained Mode.  
 
 MeshFaceWraps If not present, wrapping for both u  
 and v defaults to false.   
 MeshTextureCoords If not present, there are no  
 texture coordinates.   
 MeshNormals If not present, normals are  
 generated using the GenerateNormals  
 API.   
 MeshVertexColors If not present, the colors default  
 to white.   
 MeshMaterialList If not present, the material  
 defaults to white.   
 



Template: FrameTransformMatrix  
 
 UUID <F6F23F41-7686-11cf-8F52-0040333594A3>  
   
 Member Name Type   
 frameMatrix Matrix4x4   
 
 Description  
 
 Defines a local transform for a frame (and all its child objects).  
 



Template: Frame  
 
 UUID <3D82AB46-62DA-11cf-AB39-0020AF71E433>  
   
 Member Name Optional Data Objects   
 None (see list)   
 
 Description  
 
 Defines a frame. Currently, the frame can contain objects of the type Mesh and a 
FrameTransformMatrix.  

 
 Optional Data Objects  
 
 The following optional data elements are used by Direct3D retained mode.  
 
 FrameTransformMatrix If this element is not present, no   
 local transform is applied to the  
 frame.   
 Mesh Any number of mesh objects that  
 become children of the frame.  
 These objects can be specified  
 inline or by reference.   
 



Template: FloatKeys  
 
 UUID <10DD46A9-775B-11cf-8F52-0040333594A3>  
   
 Member Name Type  
 nValues DWORD   
 values array FLOAT nValues   
 
 Description  
 
 Defines an array of floating-point numbers and the number of floats in that array. This is used for 
defining sets of animation keys.  

 



Template: TimedFloatKeys  
 
 UUID <F406B180-7B3B-11cf-8F52-0040333594A3>  
   
 Member Name Type   
 time DWORD   
 tfkeys FloatKeys   
 
 Description  
 
 Defines a set of floats and a positive time used in animations.  
 



Template: AnimationKey  
 
 UUID <10DD46A8-775B-11cf-8F52-0040333594A3>  
   
 Member Name Type Optional Array Size   
 keyType DWORD   
 nKeys DWORD   
 keys array nKeys  
 TimedFloatKeys  
 
 Description  
 
 Defines a set of animation keys. The keyType member uses the integers 0, 1, and 2 to specify 
whether the keys are rotation, scale, or position keys, respectively.  

 



 Template: AnimationOptions  
 
 UUID <E2BF56C0-840F-11cf-8F52-0040333594A3>  
   
 Member Name Type   
 openclosed DWORD   
 positionquality DWORD   
 
 Description  
 

 
Enables setting the Direct3D retained mode animation options. The openclosed member can be 
either 0 for a closed or 1 for an open animation. The positionquality member is used to set the 
position quality for any position keys specified and can either be 0 for spline positions or 1 for linear 
positions. By default, an animation is closed.  

 



Template: Animation  
 
 UUID <3D82AB4F-62DA-11cf-AB39-0020AF71E433>  
   
 Member Name Optional Data Objects   
 None (see list)   
 
 Description  
 
 Contains animations referencing a previous frame. It should contain one reference to a frame and 
at least one set of AnimationKeys. It also can contain an AnimationOptions data object.  

 
 Optional Data Objects  
 
 The following optional data elements are used by Direct3D retained mode.  
 
 AnimationKey An animation is meaningless  
 without AnimationKeys.   
 AnimationOptions If this element is not present,  
 an animation is closed.   
 



Template: AnimationSet  
 
 UUID <3D82AB50-62DA-11cf-AB39-0020AF71E433>  
   
 Member Name Optional Data Objects   
 none Animation   
 
 Description  
 

 
Contains one or more Animation objects and is the equivalent to the Direct3D retained mode 
concept of animation sets. This means each animation within an animation set has the same time at 
any given point. Increasing the animation set's time will increase the time for all the animations it 
contains.  
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 Color Plates  
 

 

  
 

 
Color Plate 1: The illustration demonstrates bit-to-color mapping in a raster-scan system, which is 
discussed in Chapter 1. In this example, we have arbitrarily divided one memory byte into three 
separate bit fields, which encode the three-color values that determine each individual screen 
pixel. 

   
 

 

  
 

 
Color Plate 2: The screen snapshot shows specular reflection on the surface of the teapot. Notice 
that the reflected highlights are the color of the incident light, not that of the surface material (see 
Chapter 4 for more information). The teapot in this example is a model for nonperfect reflectors as 
described by Phong Bui-Toung. 

   
 



 

  
 

 
Color Plate 3: The screen snapshot in this example shows two renderings of a coffee cup. The 
one on the top is obtained through incremental shading, and the one on the bottom, through ray 
tracing, which is discussed in Chapter 4. 

   
 

 

  
 
 Color Plate 4: Reflected object imaged in ray tracing 

   



 

  
 
 Color Plate 5: Screen snapshot of the DD Access Demo project program 

   
 

 

  
 
 Color Plate 6: The screen snapshot shows a coffee cup to which a red marble texture has been 
applied. The various methods used to apply textures are discussed in Chapter 14. 

   



 

  
 

 
Color Plate 7: In this example, the screen snapshot shows three versions of a teapot image in 
which the intensity of the ambient light has been increased from 0.1 to 0.8 for all three primary 
colors. The effect of changing the ambient light intensity is discussed in Chapter 15. 

   
 

 

  
 
 Mesh color value not assigned 

   
 

 

  
 
 Mesh color value (0.0,0.7,0.0) 

   
 

 Color Plate 8: If you attempt to render a mesh without setting it to a color attribute the result is an 
image in shades of gray, as shown in the top part of the example above (see Chapter 15 for more 



information). The image in the lower part of this example shows the object rendered after the mesh 
is asigned the color value (0.0,0.7,0.0). 

   
 

 

  
 
 Color Plate 9: Building an object by loading individual meshes 

   
 

 

  
 
 Color Plate 10: Textured sphere 

   
 

 

  
 
 Color Plate 11: Metallic and plastic materials (D3DRM Textures Demo program)  
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