Enigma of Estoeric Nothingness

DirectX 3D Graphics Programming Bible

Preface

Part I: The Fundamentals
Chapter 1: The PC as a Graphics Machine
Chapter 2: Graphics Representation and Modeling

Chapter 3: 3D Image Transformations
Chapter 4: 3D Rendering

Chapter 5: Computer Animation

Chapter 6: Windows API Programming

Part Il: DirectDraw

Chapter 7: DirectDraw Fundamentals

Chapter 8: DirectDraw Configuration and Setup

Chapter 9: Direct Access to Video Memory

Chapter 10: Blitting and Blit-time Transformations

Chapter 11: Rendering Bitmaps in DirectDraw

Chapter 12: Animation Techniques

Chapter 13: Animation Programming

Part Ill: 3D Graphics with Direct3D
Chapter 14: Introducing Direct3D

Chapter 15: Fundamentals of Retained Mode Programming

Chapter 16: System-Level Operations

Chapter 17: Device-Level Operations

Chapter 18: Viewport-Level Operations

Part IV: Direct3D Programming

Chapter 19: Local Frame Operations

Chapter 20: Frame Attributes and Scene-Level Controls

Chapter 21: Mesh-Level Operations

Chapter 22: Textures and Materials

Chapter 23: Decals and Mipmaps
Chapter 24: Lights and Shadows
Chapter 25: 3D Animation

Part V: Appendices

Appendix A: Windows and DirectX Structures

Appendix B: Ternary Raster Operation Codes

Appendix C: DirectX Templates

Bibliography
Color Plates

DirectX 3D Graphics Programming Bible

Julio Sanchez

Maria P. Canton

Published by

IDG Books Worldwide, Inc.
An International Data Group Company
919 E. Hillsdale Blvd., Suite 400

Foster City, CA 94404

www . idgbooks.com (IDG Books Worldwide Web site)

Copyright © 2000 IDG Books Worldwide, Inc. All rights reserved. No part of this book, including
interior design, cover design, and icons, may be reproduced or transmitted in any form, by any
means (electronic, photocopying, recording, or otherwise) without the prior written permission of
the publisher.

Distributed in the United States by IDG Books Worldwide, Inc.

Distributed by CDG Books Canada Inc. for Canada; by Transworld Publishers Limited in the
United Kingdom; by IDG Norge Books for Norway; by IDG Sweden Books for Sweden; by IDG
Books Australia Publishing Corporation Pty. Ltd. for Australia and New Zealand; by TransQuest
Publishers Pte Ltd. for Singapore, Malaysia, Thailand, Indonesia, and Hong Kong; by Gotop
Information Inc. for Taiwan; by ICG Muse, Inc. for Japan; by Intersoft for South Africa; by Eyrolles
for France; by International Thomson Publishing for Germany, Austria, and Switzerland; by
Distribuidora Cuspide for Argentina; by LR International for Brazil; by Galileo Libros for Chile; by
Ediciones ZETA S.C.R. Ltda. for Peru; by WS Computer Publishing Corporation, Inc., for the
Philippines; by Contemporanea de Ediciones for Venezuela; by Express Computer Distributors for
the Caribbean and West Indies; by Micronesia Media Distributor, Inc. for Micronesia; by Chips
Computadoras S.A. de C.V. for Mexico; by Editorial Norma de Panama S.A. for Panama; by
American Bookshops for Finland.

For general information on IDG Books Worldwide's books in the U.S., please call our Consumer
Customer Service department at 800-762-2974. For reseller information, including discounts and
premium sales, please call our Reseller Customer Service department at 800-434-3422.

For information on where to purchase IDG Books Worldwide's books outside the U.S., please
contact our International Sales department at 317-596-5530 or fax 317-572-4002.

For consumer information on foreign language translations, please contact our Customer Service
department at 800-434-3422, fax 317-572-4002, or e-mail rights@idgbooks.com.

For information on licensing foreign or domestic rights, please phone +1-650-653-7098.

For sales inquiries and special prices for bulk quantities, please contact our Order Services
department at 800-434-3422 or write to the address above.

For information on using IDG Books Worldwide's books in the classroom or for ordering
examination copies, please contact our Educational Sales department at 800-434-2086 or fax 317-
572-4005.

For press review copies, author interviews, or other publicity information, please contact our Public
Relations department at 650-653-7000 or fax 650-653-7500.

For authorization to photocopy items for corporate, personal, or educational use, please contact
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, or fax 978-750-4470.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE
USED THEIR BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR
MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTIONS
CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ACCURACY AND
COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED
HEREIN ARE NOT GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR
RESULTS, AND THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE
LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING
BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

Trademarks: All brand names and product names used in this book are trade names, service
marks, trademarks, or registered trademarks of their respective owners. IDG Books Worldwide is
not associated with any product or vendor mentioned in this book.

Credits

Acquisitions Editors
Greg Croy

John Osborn

Project Editor

Matthew E. Lusher

Technical Editor

Susan Schilling

Copy Editor

Mildred Sanchez

Media Development Specialist

Jason Luster

Permissions Editor

Lenora Chin Sell

Media Development Manager

Stephen Noetzel

Project Coordinators
Linda Marousek
Danette Nurse

Joe Shines

Graphics and Production Specialists
Robert Bilhmayer

Jude Levinson

Michael Lewis

Victor Pérez-Varela

Dina F Quan

Book Designer

Drew R. Moore

lllustrators
Brian Drumm

Mary Jo Richards

Proofreading and Indexing

York Production Services

Cover lllustration Contributor

David B. Mattingly

Cover lllustration

Peter Kowaleszyn, MBD Design, SF

About the Authors

Julio Sanchez is an associate professor of Computer Science at Minnesota State University,
Mankato. Julio is the author of 17 books in the field of computer programming, five of which have
been translated into foreign languages. He also teaches courses and seminars in C++, Windows,
and Java programming at Minnesota State University.

Maria P. Canton is the president of Skipanon Software, a programming and consulting company
that has been in business since 1983. She is also a faculty member at Minnesota State University,
Mankato. Maria is the principal author of one book and the coauthor of 13 other titles in the field of
computer programming.

Preface

This book covers 3D graphics programming in Windows, using DirectX, and coding in C++. It
assumes that you have a basic understanding of C++. Although many applications could profit
from object-oriented constructs, we do not use them in this book in order to avoid the additional
complications. The book includes one chapter (Chapter 6) on the fundamentals of Windows API
programming, but it alone may be insufficient for someone who is totally unfamiliar with this topic.
Readers with no previous Windows programming experience may need to devote some time to
acquiring these skills before plunging into the details of 3D graphics. We recommend our own
book titled Windows Graphics Programming, published by M & T Books. This title was designed to
provide the necessary skills in Windows graphics without overwhelming the reader with too many
complications and details. Nevertheless, any good book on Windows API programming would
serve this purpose, such as the ones by Petzold, Rector and Newcomer, and Schildt. Their titles
can be found in the Bibliography.

This book is for you if you wish to learn Windows 3D graphics and to apply it to the development of
computer games, simulations, or any form of 3D, high-performance, multimedia programming. The
road is not an easy one; there is much to learn. 3D is rightly called the "rocket science" of
programming. However, the rewards of working on the cutting edge of this technology are
enormous.

What Is in the Book

In this book we approach Windows programming at its most basic level, that is, using the Windows
Application Programming Interface (API). We do not use the Microsoft Foundation Class Library
(MFC) or other wrapper functions that are furnished as part of commercial development
environments. Microsoft's MFC is an object-oriented framework that encapsulates many of the
functions in the API. It is intended for use with Developer's Studio App Wizard, which facilitates
creating a program skeleton for a Windows application. But the MFC interface introduces a
processing overhead that slows down execution and limits program functionality. Graphics
programs in general, and 3D applications in particular, cannot afford this overhead. Furthermore,
DirectX provides no special support for MFC; therefore, its use offers no advantages to the
graphics programmer.

Please note that although we do not use the wrapper functions of the MFC, we do rely heavily on
the other tools that are part of the Visual C++ development package. These include resource
editors for creating menus, dialog boxes, icons, bitmaps, and other standard program components.
There are no advantages to hand-coding these program elements.

Part | of this book is devoted to the fundamentals of 3D graphics. Here we present the tools and
resources of PC graphics programming and introduce the reader to various graphics
representations, image modeling techniques, mathematical transformations, data rendering
operations, and animation. The material for this part was selected based on the minimal
knowledge required for understanding and using DirectX 3D graphics. The theoretical topics and
the mathematics have been reduced to the bare essentials. By presenting this material first, we
avoid the distraction of having to explain theoretical concepts when discussing programming
topics. This first part also contains a chapter on the fundamentals of Windows API programming.

Part Il covers DirectDraw. DirectDraw is the 2D graphics environment in DirectX. We devote
considerable space to DirectDraw programming for two reasons. The first one is that 3D graphics

in DirectX are based on DirectDraw; a 3D application executes in the DirectDraw environment. The
second reason is that few commercial applications are exclusively 3D. Most programs use 3D
functions to model some of the objects, whereas others, such as backgrounds and sprites, are
rendered in 2D graphics. Mastering 2D in DirectDraw is an essential skill for the DirectX 3D
programmer.

Parts Il and |V are devoted to 3D graphics programming in DirectX retained mode. Part Il
introduces 3D graphics and discusses retained mode programming at the system, device, and
viewport levels. Part IV discusses programming techniques at the lower levels of the retained mode
interface. We do not discuss immediate mode programming, but not because we consider it
unimportant. Our reason for not including immediate mode was a simple matter of space. To
present a bare-bones discussion of DirectX immediate mode would have required substantially
reducing and diluting the rest of the material. The result would have been a book that visited many
topics superficially, but no one subject in depth. Because we believe that retained mode is the most
reasonable development environment at the application level, as well as the easiest way to learn
3D graphics programming, we concentrated on it. Other factors that influenced our choice are
mentioned in the following section.

Direct3D: Past and Future

In more than one sense 3D graphics programming is not for the faint-hearted. We believe that at
present, any Windows 3D programming tool, facility, or development environment, should have a
warning label stating that it is work in progress. If, as a programmer, you need to operate in a
stable, well-defined, consistently evolving platform, then 3D graphics should not be your chosen
field.

Although 2D graphics in DirectX always take place in DirectDraw, the 3D DirectX interface
changes so much and so frequently that, for many programmers, it is a challenge just to keep up
with the updates. When we began writing this book Microsoft's DirectX 5 was recently released.
We finished it under DirectX 7. Each of these DirectX versions (5, 6, and 7) contained major
expansions, additions, and corrections to the previous ones. Furthermore, each consecutive
version of the DirectX SDK seemed to reflect a new vision of the 3D graphics paradigm.

At this time the future of 3D graphics in DirectX remains undefined. For DirectX 8, originally
planned for release in the first half of the year 2000, Microsoft announced a completely new
development environment, which was code-named Fahrenheit. The Fahrenheit product was being
developed as a joint venture with Silicon Graphics Corporation. Silicon Graphics is the creator of
OpenGL, a 3D environment that has gained considerable prevalence in graphics workstations.
Early this year, Silicon Graphics pulled out of the Fahrenheit project. Microsoft has not yet said if it
will continue to develop Fahrenheit on its own, or if the project will be scrapped. What will be in
DirectX 8 is now a mystery.

All of this generated considerable uncertainty regarding the future of the retained mode and
immediate mode interfaces of DirectX. Will Fahrenheit replace retained mode, immediate mode,
neither, or both? Because we are not even sure that there will be a Fahrenheit product, or what
else DirectX 8 may contain, any answer is pure guesswork. This state-of-affairs in 3D development
environments and tools will continue to affect DirectX for many years to come. The fact that
Windows is a Microsoft product further complicates matters. Currently DirectX contains three 3D
development environments: retained mode, immediate mode, and the DirectX foundation. In the
near future the product now called Fahrenheit may be added to the list. Not long after the release
of a 3D toolkit or environment, programmers start creating software based on the new interface.
These new products are marketed with the expectation that they will continue to execute in future
versions of the operating system. As a consequence Microsoft is compelled to provide support for
all interfaces or development environments, even after they become outdated, or even obsolete.
This all means that a new 3D graphics paradigm does not replace the existing ones because the
old interfaces have to be kept operational so as not to break commercial code. In the near future a
DirectX 3D programmer may be able to work under retained mode, immediate mode, DirectX
foundation, or Fahrenheit—all of this not mentioning other 3D development tools that exist outside
of DirectX, such as OpenGL or the proprietary APls of the various chip manufacturers.

Out of this quagmire of options and development tools we selected DirectX retained mode. Some
may question the validity of this choice. In DirectX 7, Microsoft announced that retained mode is
now in a maintenance phase. This statement is interpreted to mean that Microsoft lost interest in
the future development in retained mode. Another fact is that many professional DirectX 3D
programmers work in immediate mode, and recommend it as a more powerful alternative. Although
this is true, it is also undeniable that immediate mode complicates 3D programming by several
orders of magnitude. Furthermore, there is no assurance that the next release of DirectX will not
place immediate mode in a maintenance phase. Retained mode, on the other hand, is easier to
learn and use. The fact that it is not being constantly tinkered with at this stage could be seen as an
asset, rather than a drawback. We have no doubts that Windows and DirectX must continue to

support retained mode for years to come. Not being able to cover both retained mode and
immediate mode in a single volume we preferred the one that is easier to learn and, perhaps, a
more stable alternative.

About the Sample Programs

How to use code listing in programming books is a controversial topic. On the one hand you see
books with little or no code listings, or with short code snippets that miss so many details that they
turn out to be virtually useless as programming samples. On the other hand there are books that
list entire programs, often so complicated that the reader gets lost in innumerable details unrelated
to the point at hand. Most programmers appreciate the value of a code sample that compiles and
runs as described. In many cases this is all you need to understand a programming technique or to
apply it in your own code. Our approach in this book consists of listing in the text the processing
routines and code fragments that are necessary for illustrating the point being discussed. The CD-
ROM furnished with the book contains entire programs, which can be re-compiled by the reader in
order to assert their validity.

The book's CD-ROM contains all the programs, projects, and templates discussed in the book.
Each project is located in its own directory and contains all the files necessary for recreating the
samples using Visual C++ versions 5 or 6. The executables were created using the Debug
configuration of Microsoft Developer Studio. The authors or the publisher make no copyright claims
regarding the code listings, which you are free to copy, edit, or reuse in any way you see fit.

Portability Issues

It must be clearly understood that DirectX is an interface, for which the graphics hardware must
provide implementation. Microsoft furnishes some services and facilities that graphics hardware
vendors can use to test their product's compliance with the standard, but there is no compulsory
protocol. Neither is there a formal certificate that assures a programmer or a user that a hardware
device is totally compatible with DirectX. Furthermore, a particular hardware product may support
certain DirectX functions and not others. The result is revival of the device-dependency ghosts that
Windows was designed to eliminate in the first place.

The DirectX 3D programmer should be ready to tackle many hardware-related problems. Hardware
compatibility issues have determined that most high-end 3D applications are developed for a
specific subset of graphics cards. It is virtually impossible to create a full-featured 3D program that
executes flawlessly in every video card on the market. Even the simple demonstration programs
developed for this book have shown compatibility problems when tested in five popular video cards.
Ensuring that the 3D application executes correctly in the targeted hardware is one of the
programmer's most difficult, and often exasperating, tasks.

Contacting the Authors

Although we can't promise to solve every software- or hardware-related problem that arises from

this book, we will take a look at them. You can contact the authors at the following email
addresses:

julio.sanchez@mankato.msus.edu

cantom@mail.mankato.msus.edu

Acknowledgments

It has been said that it takes a village to raise a child; to produce a technical book takes a good-
sized town. The process is long, arduous, and requires many talents, in addition to the technical
knowledge of the authors and editors. A book begins with a sketchy idea, which is then refined,
adapted, and polished. The process goes through many phases and stages before it becomes a
bound title on the bookstore shelf. In this project we are very fortunate to have the collaboration of
may talented professionals. John Osborn and Greg Croy, the acquisitions editors, were invaluable
resources by serving as a sounding board for our ideas and providing many of their own. Matt
Lusher, the project editor, directed and supervised the production process and furnished many
useful comments and suggestions. Susan Schilling was our technical editor. She detected technical
inconsistencies and pointed out better ways in whidh the approach some of the most difficult topics.
The book owes much to her talents. Mildred Sanchez (no relation to the author) did the copyediting.
Her corrections and suggestions made the book more consistent and readable. We also thank
Linda Marousek, production coordinator, and Brian Drumm, graphics processor for the project.

Chapter 1: The PC as a Graphics Machine

Overview

This chapter contains a smorgasbord of introductory topics that relate to graphics on the PC. The
idea is to provide a historical summary of the evolution of PC graphics, an overview of the state-of-
the-art, and a short list of related technologies and fields of application. Our rationale for including
this material is the difficulty in understanding the characteristics of current PC graphics systems
without knowing how and why they came into existence. Many of the PC graphics hardware
components in use today evolved through a series of changes, some of which were influenced by
concerns of backward compatibility.

History and Evolution

Today, a typical computer is equipped with a high-resolution display, a graphics card or integral
video system, and an operating system that supports a graphical user interface (GUI). Graphics
are now the norm, but this was not always the case; for several decades computer input and
output was text-based and machines were equipped with teletype terminals and line printers. It
was in the 1960s that television technology was adapted to producing computer output on a
cathode ray tube (CRT).

Sometimes, the transition from text-based systems into interactive graphics was slow. Today we
watch in amazement a video clip taken in the early 1960s of Doug Englebart demonstrating a
graphical user interface based on mouse input and CRT graphics. It took fifteen years for this
system to become commercially available in the Apple Lisa, predecessor to the Macintosh.

Cathode ray tube technology

Computers were not the first machines to use the cathode ray tube (CRT) for graphic display. The
oscilloscope, a common laboratory apparatus, performs operations on an input signal to display
the graph of the electric or electronic wave on a fluorescent screen. In computer applications the
technologies most used for CRT displays can be classified into three groups: storage tube, vector
refresh, and raster-scan.

In its simplest form, the CRT display consists of a glass tube whose interior is coated with a
specially formulated phosphor; when struck by an electron beam, it remains fluorescent for up to
one hour. This technology, usually called a storage tube display, is used as a display and as a
storage device. Flooding the tube with a voltage turns the phosphor to its dark state, which erases
the image. One limitation is that specific screen areas cannot be erased individually. Because of
this, the entire CRT surface must be redrawn to make a small change in a displayed image.
Furthermore, the storage tube display has no color capabilities and contrast is low. For these
reasons, in spite of its inherent simplicity, storage tube displays are seldom used in computers and
never in microcomputers.

In contrast with the storage tube display, the vector-refresh display uses a short-persistence
phosphor whose coating must be reactivated by an electron beam at the rate of 30 to 50 times per
second. In addition to the cathode ray tube, a vector-refresh system requires a display file and a
display controller. The display file is a memory area that holds the instructions for drawing the
objects to be displayed. The display controller reads this information from the display file and
transforms it into digital commands and data, which are sent to the CRT. Figure 1-1 shows the
fundamental elements of a vector-refresh display system.

alactron Y

DISPLAY COMTROLLER

R

dedlection

il phospior

coating

Figure 1-1: Vector-refresh display

The main disadvantages of the vector-refresh CRT are its high cost and limited color capabilities.
For these reasons vector-refresh displays have not been used in the PC, although they have been
used in radar applications and in some of the early video games.

During the 1960s, several important advances took place in television technology that made
possible the use of mass-produced components in display devices for computer systems. At that
time Conrac Corporation developed a computer image processing technology, known as raster-
scan graphics, which took advantage of the methods of image refreshing used in television
receivers, as well as other television standards and components. In a raster-scan display the
electron beam follows a horizontal line-by-line path, usually starting at the top-left corner of the
CRT surface. The scanning cycle takes place 50 to 70 times per second. At the start of each
horizontal line the controller turns on the electron beam. The beam is turned off during the
horizontal and vertical retrace cycles. The scanning path is shown in Figure 1-2.

i N
X J————— T v
e — - image

= SEaming
T ——— amm==== hexizgntal
B il relrace
......... S = = S - -
—am hoameaas P - . vertical
S Sammmmmmmen S o rerace
s =
- >

Figure 1-2: Path of the electron beam in a raster-scan system

A raster-scan display surface is divided into a pattern of individual dots, usually called pixels. The
term pixel was derived from the words picture and elements. An area of RAM is reserved in the
computer's memory space to record the state of each individual screen pixel. The simplest
possible storage scheme corresponds to a black and white display system where each pixel

corresponding pixel as white. If the memory bit is cleared, the pixel is left dark. The area of
memory reserved for the screen display is frequently called the frame buffer or the video buffer,
and the entire video system is said to be memory-mapped. Figure 1-3 shows the elements of a
memory-mapped video system.

Videso memary

Videx
cantrallir

Figure 1-3: Memory-mapped video system

A memory-mapped color video system requires a more elaborate scheme. In color systems the
CRT is equipped with an electron gun for each color that is used in activating the pixels. The most
common approach is to use three color-sensitive guns: one for the red, one for the green, and one
for the blue components. Color data must be stored separately in memory for each of the three
colors, either in individual memory maps, or in predefined units of storage. For example, if one
memory byte is used to encode the pixel's color attributes, three bits could be assigned to encode
the red color, two bits to encode the green color, and three bits for the blue color.

One possible mapping of colors to pixels is shown in color plate 1. In this example we have
arbitrarily divided one memory byte into three separate bit fields which encode the three-color
values that determine each individual screen pixel. The individual bits are designated with the
letters R, G, and B, respectively. Since eight combinations can be encoded in a three-bit field, the
blue and red color components could each have eight levels of intensity. Because we have used a
two-bit field to encode the green color, it can only be represented in four levels of intensity. The
total number of combinations that can be encoded in eight bits is 256, which, in this case, is also
the number of different color values that can be represented in one memory byte. The color code
is transmitted by the display controller hardware to a digital-to-analog converter (DAC), which, in
turn, transmits the color video signals to the CRT.

All video systems used in the PC are of the memory-mapped, raster-scan type. The advantages of
a raster-scan display are low cost, color capability, and easy interaction with the operator. One
major disadvantage is the grainy physical structure of the display surface. Among other
aberrations, this causes lines that are not vertical, horizontal, or at exactly 45 degrees, to exhibit a
staircase effect, shown in Figure 1-4.

Figure 1-4: Staircase effect in a raster-scan system

Figure 1-4: Staircase effect in a raster-scan system

Raster-scan systems also have limitations in implementing animation. Two factors contribute to
this problem: first, all the screen pixels within a rectangular area must be updated with each image
change. Second, the successive images that create the illusion of motion must be flashed on the
screen at a fast rate to ensure smoothness. These constraints place a large processing load on
the microprocessor and the display system hardware, in any display system.

PC video technologies

In 1981 IBM introduced the first model of its microcomputer line. The original machines were
offered with either a monochrome display adapter (MDA), or a graphics system named the
color/graphics monitor adapter (CGA). IBM's notion was that users who intended to use the PC for
text operations exclusively would purchase a machine equipped with the MDA video system, while
those requiring graphics would buy one equipped with the CGA card. In reality, the CGA video
system provided only the most simple and unsophisticated graphics functions. The color card was
also plagued with interference problems that created a screen disturbance called "snow."
However, the fact that the original IBM Personal Computer was furnished with the optional CGA
card signaled that IBM considered video graphics an important part of microcomputing.

At present, PC video hardware includes an assortment of systems, cards, monitors, and options
manufactured and marketed by many companies. In the following pages we briefly discuss the
history and evolution of the better-known PC video systems. Systems that were short-lived or that
gained little popularity, such as the PCJr, the IBM Professional Graphics Controller, the Multicolor
Graphics Array, and the IBM Image Adapter A, are not discussed.

Monochrome Display Adapter

The MDA is the original alphanumeric display card designed and distributed by IBM for the
Personal Computer. Originally, it was sold as the Monochrome Display and Printer Adapter
because it included a parallel printer port. It could display the entire range of alphanumeric and
graphic characters in the IBM character set, but did not provide graphics functions. The MDA was
compatible with the IBM PC, PC XT, and PC AT, and some of the earlier models of the PS/2 line. It
could not be used in the PCJr, the PC Convertible, or MicroChannel PS/2 machines. The MDA
required a monochrome monitor of long-persistence (P39) phosphor. The video hardware was
based on the Motorola 6845 CRT controller. The system contained 4K of on-board video memory,
mapped to physical address BOOOOH.

The MDA is a pure alphanumeric display; the programmer cannot access the individual screen
pixels, but sees the video screen as a collection of character and attribute cells. The character
codes occupy the even-numbered bytes of adapter memory and the display attributes the odd-
numbered bytes. This special storage and display scheme was conceived to save memory space
and to simplify programming. Figure 1-5 shows the cell structure of the MDA video memory space
and the bitmap for the attribute cells.

Leqend;
& = characies cp

RAMIA Wiy Bliarrse
TRt B AT (RIS)

& = atiribiiis Ce

Mmocialcla CFOFH

111 1. 1. 1.1T'1
[7IE s[4 3021 [0] Awbute bitmag
L 1 1 1 1 L 1 1 1

i mgn III|I!IN|:|'
U = ncemal imensny

bidiriking
[mal biliiking

Figure 1-5: Memory mapping and attributes in the MDA adapter

Hercules Graphics Card

The original Hercules Graphics Card (HGC), released in 1982, emulates the monochrome
functions of the MDA, but also can operate in a graphics mode. Like the MDA, the HGC includes a
parallel printer port. Because of its graphics capabilities, the HGC became somewhat of a standard
for monochrome systems. The display buffer consists of 64K of video memory. In alphanumeric
mode the system sees only the 4K required for the text mode. However, when the HGC is in the
graphics mode, the 64K are partitioned as two 32K graphics pages located at physical addresses
BOOOOH to B7FFFH and B8000H to BFFFFH. Graphic applications can select which page is
displayed.

Color Graphics Adapter

The Color Graphics Adapter (CGA), released early in 1982, was the first color and graphics card
for the PC. The CGA could operate in seven modes, which included monochrome and color
graphics. The text characters are displayed in 16 shades of gray. Characters are double width and
40 can be fit on a screen line. Graphics mode number 6 provided the highest resolution, which was
640 horizontal by 200 vertical pixels.

One notable difference between the CGA and the MDA was the lower-quality text characters of the
color card. The reason for this is related to the size of the respective character cells, which is a box
of 9 X 14 screen pixels in the MDA, and a box of 8 X 8 pixels in the CGA. The resulting graininess
of the CGA text characters is so obvious that many users judged the card as unsuitable for text
operations.

The CGA was designed so that it could be used with a standard television set, although it
performed best when connected to an RGB color monitor. Timing and control signals were

four 4K areas, each of which holds up to 2000 characters with their respective attributes. The CGA
video memory pages are shown in Figure 1-6.

Coodor codas

[y
w
n
H
i

P

e

1 = hinking
U = not bnking

Figure 1-6: Memory mapping and attributes in the CGA color alpha modes

As in the MDA, video memory in the CGA text modes consists of consecutive character and
attribute bytes. (See Figure 1-6.) The mapping of the attribute bits in the black and white
alphanumeric modes is identical to the one used in the MDA. (See Figure 1-6.) However, in the
color alphanumeric modes the attribute bits are mapped differently. Figure 1-6 shows the bitmap
for the attribute cells in the color alpha modes.

The CGA is plagued with a disturbing screen interference, called snow. This irritating effect is
related to CGA's use of RAM chips (called dynamic RAMs) which are considerably slower than the
static RAMs used in the MDA card. In a CGA system, if the CPU reads or writes to the video buffer
while it is being refreshed by the CRT Controller, a visible screen disturbance takes place. The
only remedy is to synchronize screen updates with the vertical retrace signal generated by the
6845. This is only possible during a short time interval, barely sufficient to set a few pixels.
Therefore, graphics rendering is considerably slowed down by this synchronization requirement.
Furthermore, during screen scroll operations the display functions must be turned off while the
buffer is updated. This causes an additionally disturbing screen flicker.

Enhanced Graphics Adapter

The Enhanced Graphics Adapter (EGA) was introduced by IBM in 1984 as an alternative to the
much maligned CGA card. The EGA could emulate most of the functions and all the display modes
of both the CGA and the MDA. On the other hand, the EGA had a greater character definition in
the alphanumeric modes than the CGA, higher resolution in the graphics modes, and was not
plagued with the snow and flicker problems of the CGA. In addition, EGA could drive an Enhanced
Color Display with a graphics resolution of 640 X 350 pixels.

EGA introduced four new graphics resolutions, named the enhanced graphics modes. The new
modes were numbered 13 through 16. The highest graphics resolution was obtained in the modes
numbered 15 and 16, which displayed 640 X 350 pixels. The EGA used a custom video controller

6845 video controller directly did not work on the EGA. EGA was furnished with optional on-board
RAM in blocks of 64K. In the minimum configuration the card had 64K of video memory, and 256K
in the maximum one.

The EGA system had several serious limitations. In the first place, it supported write operations to
most of its internal registers, but not read operations. This made it virtually impossible for software
to detect and preserve the state of the adapter, which determined that EGA was unsuitable for
memory resident applications or for multitasking or multiprogramming environments, such as
Windows. Another limitation of the EGA card was related to its unequal definitions in the vertical
and horizontal planes. This problem was also present in the HGC and the CGA cards. In the case
of the EGA, with a typical monitor, the vertical resolution in graphic modes 15 and 16 is
approximately 54 pixels per inch and the horizontal resolution approximately 75 pixels per inch.
This gives a ratio of vertical to horizontal definition of approximately 3:4. Although not as bad as
the 2:3 ratio of the HGC, this disproportion still determines that a pixel pattern geometrically
representing a square is displayed on the screen as a rectangle and the pattern of a circle is
displayed as an ellipse. This geometrical aberration complicates pixel path calculations, which
must take this disproportion into account and make the necessary adjustments. The effect of an
asymmetrical pixel density is shown in Figure 1-7.

Asymmetrical poml density Symmatrical pisel density
R
i T, —
¥ k! - b
7l T T ~ N
s Y s ,
i ! ! *
i I 1l

!
f \

e

Figure 1-7: Asymmetrical and symmetrical video resolutions

PS/2 video systems

The PS/2 line of microcomputers was released by IBM in 1987. It introduced several new features,
including a new system bus and board connectors, named the MicroChannel architecture, a 3.5-
inch diskette drive with 1.44MB of storage, and an optional multitasking operating system named
0S/2. Machines of the PS/2 line came equipped with one of two new video graphics systems, with
a third one available as an option.

The new video standards for the PS/2 line were the Multicolor Graphics Array (MCGA), the Video
Graphics Array (VGA), and the 8514/A Display Adapter. The most notable difference between the

same pixel density horizontally and vertically. Symmetrical resolution simplifies programming by
eliminating geometrical aberrations during pixel plotting operations.

Video Graphics Array

Video Graphics Array (VGA) is the standard video display system for PS/2 computer models 50,
50z, 60, 70, and 80. IBM furnished VGA on the system board. VGA comes with 256K of video
memory, which can be divided into four 64K areas called the video maps or bit planes. The system
supports all the display modes of the MDA, CGA, and EGA cards of the PC family. In addition,
VGA introduced graphics mode number 18, with 640 X 480 pixel resolution in 16 colors. The
effective resolution of the text modes is 720 X 400. To display text in a graphics mode, three text
fonts with different box sizes could be loaded from BIOS into the adapter. VGA soon became
available as an adapter card for non-IBM machines and remains a PC video standard to this day.

8514/A Display Adapter

The 8514/A Display Adapter is a high-resolution graphics system designed for PS/2 computers
and was developed in the United Kingdom at the IBM Hursley Laboratories. The 8514/A system
comprises not only the display adapter, but also the 8514 Color Display and an optional Memory
Expansion Kit. The original 8514/A is compatible only with PS/2 computers that use the
MicroChannel bus; it is not compatible with the PC line, PS/2 models 25 and 30, or non-IBM
computers that do not use the MicroChannel architecture. Other companies developed versions of
8514/A that are compatible with the Industry Standard Architecture (ISA) or Expanded Industry
Standard Architecture (EISA) bus.

The 8514/A Display Adapter consists of two sandwiched boards inserted into the special
MicroChannel slot with the auxiliary video extension. The standard version comes equipped with
512K of video memory. The memory space is divided into four maps of 128K each. In the standard
configuration, the 8514/A displays 16 colors. However, if you install the optional Memory
Expansion Kit, video memory [is increased to 1MB of space, which is divided into eight maps,
extending the number of available colors to 256. The system is capable of four new graphics
modes not available in VGA. IBM named them the advanced function modes. One of the new
modes has 640 X pixels, and the remaining three modes have 1024 X 768 pixels. The 8514/A
does not directly support any of the conventional alphanumeric or graphics modes of the other
video standards because it executes only in the advanced function modes. In a typical system,
VGA automatically takes over when a standard mode is set. The image is routed to the 8514/A
monitor when an advanced function mode is enabled. An interesting feature of the 8514/A adapter
is that a system containing it can operate with two monitors. In this case the usual setup is to
connect the 8514 color display to the 8514/A adapter and a standard monitor to the VGA. Figure 1-
8 shows the architecture of a VGA/8514A system.

1 =
L Y
e | |
VGA | i 1 L
comraiiar | _ 111 o !
}._ o I I I Wlan 1
1 wiaa |11 DAL !
.............. [:
Hisdi —.| [H
ViGA
SRR
—| (L
| w.mlu,
| vy
L | I r S

BETAIA LR LT
|||||||| IS

[ELTH PRI

o Vg

-
—I

Figure 1-8: Architecture of a VGA/8514/A video system

An interesting feature of the 8514/A, which presaged things to come, is that it contains a dedicated
graphics chip that performs as a graphics coprocessor. Unlike previous systems, the system
microprocessor cannot access video memory in 8514/A; instead this function is left to the graphics
coprocessor. The greatest advantage of this setup is the improved performance of the graphics
subsystem when compared to one in which the CPU is burdened with writing text and graphics to
the video display. The 8514/A performs graphics functions through a high-level interface. The
furnished software package is called the Adapter Interface, or Al. There are a total of 59 drawing
functions in the Al, accessible through a software interrupt.

Approximately two years after the introduction of the 8514/A, IBM unveiled another high-
performance, high-priced graphics board, designated the Image Adapter/A. The Image Adapter/A
is compatible with the 8514/A at the Adapter Interface (Al) level but not at the register level.
Because of its high price tag and IBM's unveiling of the XGA shortly after its introduction, the
Image Adapter/A was short -lived.

Extended Graphics Array

In September 1990, IBM disclosed preliminary information on a new graphics standard designated
as the Extended Graphics Array, or XGA. The hardware was developed in the UK by the same
team that created the 8514/A. An adapter card and a motherboard version of the XGA standard
were later implemented. In 1992, IBM released a noninterlaced version of the XGA designated as
XGA-2 or XGA-NI (noninterlaced). The XGA adapter is compatible with PS/2 MicroChannel
machines equipped with the 80386 or 486 CPU. The system is integrated in the motherboard of
IBM Models 90 XP 486 and Model 57 SLC, and is furnished as an adapter board in the Model 95
XP 486. In 1992, Radius Inc. released the Radius XGA-2 Color Graphics Card for computers using
the ISA or EISA bus. Other companies developed versions of the XGA system for MicroChannel
and nonMicroChannel computers. XGA is found today in many laptop computers. Figure 1-9 is a
component diagram of the XGA system.

1
|
! E— S |
] |
- Serigiizer | I .
Hivin k- ! ' ! | A0
FARA £
| 0
Y XGA
manitar
— N Lraphics COprocessor L] - A]
.II'I!'I'I"!II'E farl Sorite contraller i =
CRT contraller 1 Altribane coeirolien i
Adapter RO
i i 1
Sysiem Bus

Figure 1-9: XGA component diagram

SuperVGA

SuperVGA refers to enhancements to the VGA standard developed by independent manufacturers
and vendors. The general characteristic of SuperVGA boards, as the name implies, is that they
exceed the VGA standard in definition, color range, or both. A typical SuperVGA graphics board is
capable of executing not only the standard VGA modes, but also other modes that provide higher
definition or greater color range than VGA. These are usually called the SuperVGA Enhanced
Modes.

Originally, the uncontrolled proliferation of SuperVGA hardware caused many compatibility
problems. Because of the lack of standardization, the VGA enhancements in the card produced by
one manufacturer were often incompatible with the enhancements in a card made by another
vendor. Many times this situation presented insurmountable problems to the graphics programmer
who would find that an application designed to take advantage of the enhancements in a particular
SuperVGA system would not execute correctly in another one. In an attempt to solve this lack of
standardization, several manufacturers of SuperVGA boards formed the Video Electronics
Standards Association (VESA). In October 1989, VESA released its first SuperVGA standard. This
standard defined several enhanced video modes and implemented a BIOS extension designed to
provide a few fundamental video services in a compatible fashion.

SuperVGA Architecture

All IBM microcomputer video systems are memory-mapped. The video memory space in VGA
extends from AOOOOH to BFFFFH, with 64K, starting at segment base AOOOH, which is devoted to
graphics and 64K, at segment base BOOOH, which is devoted to alphanumeric modes. This means
that the total space reserved for video operations is 128K. But the fact that systems could be set
up with two monitors, one in an alphanumeric mode and the other one in a color mode, actually
limited the graphics video space to 64K.

Not much video data can be stored in 64K. For example, if each screen pixel is encoded in one
memory byte, then the maximum screen data that can be stored in 65,536 bytes corresponds to a
square with 256 pixels on each side. But a VGA system set in 640 X 480 pixels resolution, using 1
data byte per pixel, requires 307,200 bytes for storing a single screen. VGA designers were able to
compress video data by implementing a latching scheme and a planar architecture. In VGA mode

compress video data by implementing a latching scheme and a planar architecture. In VGA mode
number 18, this enables a pixel to be encoded into a single memory bit, although it can be
displayed in 16 different colors. The magic consists of having four physical memory planes
mapped to the same address. This explains why VGA systems contain 256K of video memory, all
mapped to a 64K address space.

When the VGA was first released, engineers noticed that some VGA modes contained surplus
memory. For example, in modes with 640 X 480 pixels resolution the video data stored in each
map takes up 38,400 bytes of the available 64K. Notice that, in this case, the previously mentioned
VGA latching scheme allows the mapping of each pixel to an individual memory bit. This leaves
27,136 unused bytes. The original idea of enhancing the VGA system was based on using this
surplus memory to store video data. It is possible to have an 800 X 600 pixel display divided into
four maps of 60,000 bytes each, and yet not exceed the 64K allowed for each color map. To
graphics systems designers, a resolution of 800 X 600 pixels, in 16 colors, appeared as a natural
extension to VGA mode number 18. This new mode, later designated as mode 6AH by the VESA
SuperVGA standard, could be programmed in a similar manner as VGA mode number 18. The
enhancement, which could be achieved with minor changes in the VGA hardware, provided a 36
percent increase in the display area.

Memory banks

The memory structure for VGA 256-color mode number 19 is not based on a multiplane scheme,
but in a much simpler format that maps a single memory byte to each screen pixel. This scheme is
shown in Figure 1-10.

040 1[1 lIll-Il 'lIZI oo 1|'IIIII 11 Q
_ N bryte bowndary byte boundary —-=
(s essenEey
Wides memaory
b, A
IL T [!l:'

Figure 1-10: Byte-to-pixel video memory-mapping scheme

In byte-to-pixel mapping 256 color combinations can be encoded directly into a data byte, which
correspond to the 256 DAC registers of the VGA hardware. The method is straightforward and
uncomplicated; however, if the entire video space is contained in 64K, the maximum resolution is
limited to the 256 X 256 pixels previously mentioned. In other words, a rectangular screen of 320 X
200 pixels nearly fills the allotted 64K.

This determines that if the resolution for a 256-color mode exceeds 256 square pixels, it is
necessary to find other ways of mapping video memory into 64K of system RAM. The mechanism
adopted by the SuperVGA designers is based on a technique known as bank switching. In bank-
switched systems the video display hardware maps several 64K blocks of RAM to different

AOOOH. The entire process is reminiscent of memory page switching in the LIM
(Lotus/Intel/Microsoft) Extended Memory environment. Figure 1-11 schematically shows mapping
of several memory banks to the video space and the map selection mechanism for CPU
addressing.

Voo aros mappsd
Vo vk i | bank
selechor

[AOC0OH

'«'Il_'n'r_u:,
banks
(bank 1 selected)

[] AFFFFH

Figure 1-11: SuperVGA banked memory-mapping

In the context of video system architecture, the term aperture is often used to denote the
processor's window into the system's memory space. For example, if the addressable area of
video memory starts at physical address AOOOOH and extends to BOOOOH, you can say that the
CPU has a 64K aperture into video memory (10000H = 64K). In Figure 1-11 we see that the bank
selector determines which area of video memory is mapped to the processor's aperture. This is the
video display area that can be updated by the processor. In other words, in the memory-banking
scheme the processor cannot access the entire video memory at once. In the case of Figure 1-11
the graphics hardware has to perform five bank switches to update the entire screen.

Implementing 256-color extensions

The SuperVGA alternative for increasing definition beyond the VGA limit is a banking mechanism
similar to the one shown in Figure 1-11. This scheme, in which a memory byte encodes the 256
color combinations for each screen pixel, does away with the pixel masking complications of the
high-resolution VGA modes. On the other hand, it introduces some new complexities of its own,
such as the requirement of a bank selection device. In summary, the SuperVGA approach to
extending video memory on the PC has no precedent in CGA, EGA, or VGA systems. It is not
interleaved nor does it require memory planes or pixel masking. Although it is similar to VGA mode
number 19 regarding color encoding, VGA mode number 19 does not use bank switching.

VESA SuperVGA standard

The Video Electronics Standards Association was created with the purpose of providing a common
programming interface for SuperVGA extended modes. In order to achieve this, each
manufacturer furnishes a VESA SuperVGA BIOS extension. The BIOS can be in the adapter ROM
or furnished as loadable software. The first release of the VESA SuperVGA standard was
published in October 1, 1989 (version 1.0). A second release was published in June 2, 1990
(version 1.1). The current one is dated October 22, 1991 (version 1.2).

Graphics coprocessors and accelerators

A group of video systems based on dedicated graphics chips is perhaps the one most difficult to
characterize and delimit. These systems are usually defined as those in which graphics
performance is enhanced by means of a specialized graphics engine that operates independently
from the CPU. The enormous variations in the functionalities and design of graphics accelerators
and coprocessors make it impossible to list the specific features of these systems.

Historically speaking, one of the first full-featured dedicated graphics coprocessors used in the PC
was the TMS340 chip developed by Texas Instruments. The chip was introduced in 1986, and an
upgrade, labeled TMS34020, was introduced in 1990. The project was not a commercial success
and in 1993, Texas Instruments started discouraging the development of new products based on
the TMS340 chips. However, from 1988 to 1993 these coprocessors were incorporated into many
video products, including several high-end video adapters, some of which were capable of a
resolution of 1280 X 1024 pixels in more than 16 million colors. These products, called True color
or 24-bit color cards, furnished photographic-quality color for the first time on the PC. The quality of
the resulting systems was sufficient for image editing, prepress operations, desktop publishing,
and CAD applications.

Not all coprocessor-based graphics systems marketed at the time used the TMS 340. For
example, the Radius Multiview 24 card contained three 8514/A-compatible chips, while the
RasterOps Paintboard PC card was based on the S3. But, undoubtedly, TMS 340 dominated the
field of 24-bit color cards at the time. Of ten True-color cards reviewed on the January 1993 edition
of Windows Magazine, seven were based on the TMS 340.

The TMS 340 was optimized for graphics processing in a 32-bit environment. The technology had
its predecessors in Tl's TMS320 lines of digital signal processing chips. The following are the
distinguishing features of the TMS340 architecture:

1.The instruction set includes both graphics and general-purpose instructions. This made the
TMS340 a credible stand-alone processor.

2.The internal data path is 32-bits wide and so are the arithmetic registers. The physical address
range is 128MB.

3.The pixel size is programmable at 1, 2, 4, 8, 16, or 32 bits.

4.Raster operations include 16 Boolean and 6 arithmetic modes.

5.The chip contains thirty general-purpose 32-bit registers. This is approximately four times as
many registers as in an Intel 80386.

6.A 512-byte instruction cache allows the CPU to place several instructions in the TMS340 queue
while continuing to execute in parallel.

7.The coprocessor contains dedicated graphics instructions to draw single pixels and lines, and to
perform two-dimensional pixels array operations, such as pixBlts, area fills, and block transfers, as
well as several auxiliary graphics functions.

The commercial failure of the TMS 340-based systems was probably caused by the slow
development of commercial graphics applications that used the chip's capabilities. Systems based
on the TMS 340 sold from $500 to well over $1000 and they had little commercial software support.

on the TMS 340 sold from $500 to well over $1000 and they had little commercial software support.
However, their principal importance was that they demonstrated the PC's capability of high-quality,
high-performance graphics.

State-of-the-Art in PC Graphics

During the first half of the 1990s, PC graphics were mostly DOS-based. The versions of Windows
and OS/2 operating systems available lacked performance and gave programmers few options
and little control outside of the few and limited graphics services offered at the system level.
Several major graphics applications were developed and successfully marketed during this period,
including professional quality CAD, draw and paint, and digital typesetting programs for the PC.
But it was not until the introduction of 32-bit Windows, and especially after the release of Windows
95 that PC graphics took off as a mainstream force.

The hegemony of Windows 95 and its successors greatly contributed to the current graphics
prosperity. At the end of the decade DOS has all but disappeared from the PC scene and graphics
applications for the DOS environment are no longer commercially viable. By providing graphics
hardware transparency, Windows has made possible the proliferation of graphics coprocessors,
adapters, and systems with many dissimilar functions and fields of application. At the same time,
the cost of high-end graphics systems has diminished considerably. So much so that in late 1999 a
top-line PC graphics card equipped with the 3Dfx Voodoo Banshee, the NVidia RIVA TNT, the
MGA G200, or other cutting edge graphics coprocessors, along with 16MB of graphics memory,
costs from $100 to $150.

From the software side three major forces struggle for domination of PC graphics: DirectX,
OpenGL, and several game development packages of which Glide is the best known.

Graphics boards

PC graphics boards available at this time can be roughly classified by their functionality into 2D
and 3D accelerators, and by their interface into Peripheral Component Interconnect (PCl) and
Accelerated Graphics Port (AGP) systems. The 16-bit Industry Standard Architecture (ISA)
expansion bus is in the process of being phased out and few new graphics cards are being made
for it.

System bus

Table 1-1 compares the currently available PC system buses.

Table 1-1: Specifications of PC System Buses

Bus Width Clock Speed Data Rate

ISA 16 bits 8MHz (varies)

PCI 32 bits 33MHz 132MBps

AGP 1X 32 bits 66MHz 264MBps
AGP 2X 32 bits 133MHz 528MBps
AGP 4X 32 bits 266MHz 1024MBps

The PCI bus is present in many old-style Pentium motherboards, and graphics cards continue to
be made for this interface. It allows full bus mastering and supports data transfer rates in bursts of
up to 132MBps. Some PCI buses that use older Pentium 75 to 150 run at 25 or 30MHz, but the
vast majority operates at 33MHz. The 66MHz PCl is seen in specialized systems.

The AGP port is dedicated to graphics applications, quadruples PCI performance, and is state-of-
the-art. AGP technology is based on Intel's 440LX and 440BX chipsets used in Pentium Il and
Pentium Ill motherboards and on the 440 EX chipset designed for the Intel Celeron processors.

The great advantage of AGP over its predecessors is that it provides the graphics coprocessors
with a high bandwidth access system memory. This allows applications to store graphics data in
system RAM. The 3D graphics applications use this additional memory by means of a process
called direct memory execute (DIME) or AGP texturing to store additional image data and to
enhance rendering realism. However, because AGP systems do not require that graphics cards
support texturing, this feature cannot be taken for granted in all AGP boards. In fact, few graphics
programs to date actually take advantage of this feature.

Graphics coprocessors

Although it is easy to pick AGP as the best available graphics bus for the PC, selecting a graphics
coprocessor is much more complicated. Several among half a dozen graphics chips share the
foreground at this time. Among them are the Voodoo line from 3Dfx (Voodoo2 and Voodoo
Banshee), NVidia's RIVA processors, MGA-G200, and S3 Savage 3D chips. All of these chips are
used in top-line boards in PCIl and AGP forms. Other well-known graphics chips are 3D Labs
Permedia, S3's Virge, Matrox's MGA-64, and Intel's i740.

CPU On-board facilities

Graphics, especially 3D graphics, is a calculation-intensive environment. The calculations are
usually simple and can be performed in integer math, but many operations are required to perform
even a simple transformation. Graphics coprocessors often rely on the main CPU for performing
this basic arithmetic. For this reason, graphics rendering performance is, in part, determined by the
CPU's mathematical throughput. Currently the mathematical calculating engines are the math unit
and the multimedia extension (MMX).

CPU with or without a built-in math unit. The versions with the math unit were designated with the
letters DX and those without it as SX. With the Pentium, the math unit hardware became part of
every CPU and the programmer need not be concerned about its presence. The math unit is a fast
and efficient numerical calculator that finds many uses in graphics programming. Because 486-
based machines can be considered obsolete at this time, our code can safely assume the
presence of the Intel math unit and take advantage of its potential.

In 1997, Intel introduced a version of their Pentium processor that contained 57 new instructions
and 8 additional registers designed to support the mathematical calculations required in 3D
graphics and multimedia applications. This additional unit was named the Multimedia Extension
(MMX). The Pentium Il and later processors all include MMX. MMX is based on the Single
Instruction Multiple Data (SIMD) technology, an implementation of parallel processing; it has a
single instruction operating on multiple data elements. In the MMX the multiple data is stored in
integer arrays of 64 bits. The 64 bits can divided into 8 bytes, four packed words, two
doublewords, or a single quadword. The instruction set includes arithmetic operations (add,
subtract, and multiply), comparisons, conversions, logical operations (AND, NOT, OR, and XOR),
shifts, and data transfers. The result is a parallel, simple, and fast-calculating engine quite suitable
for graphics processing, especially in 3D.

3D application programming interfaces

The selection of a PC graphics environment for our application is further complicated by the
presence of specialized application programming interfaces (APIs) furnished by the various chip
manufacturers. For example, 3Dfx furnishes the Glide API for their line of graphics coprocessors.
Glide-based games and simulations are popular within the 3D gaming community. An application
designed to take full advantage of the capabilities of the 3Dfx accelerators is often coded using
Glide. However, other graphics coprocessors cannot run the resulting code, which makes the
boards incompatible with the software developed using Glide. Furthermore, Glide and Direct3D are
mutually exclusive. When a Glide application is running, Direct3D programs cannot start and vice
versa.

OpenGL and DirectX

One 3D graphics programming interface that attained considerable support is OpenGL. OpenGL,
which stands for Open Graphics Language, originated in graphics workstations and is now part of
many system platforms, including Windows 95, 98, and NT, DEC's AXP, OpenVMS, and X
Window. This led some to believe that it will be the 3D graphics standard of the future.

At this time the mainstream of 3D graphics programming continues to use Microsoft's DirectX. The
main advantage offered by this package is portability and universal availability on the PC. DirectX
functionality is part of Windows 95, 98, 2000, and NT, and Microsoft provides a complete
development package that includes a tutorial, support code, and sample programs—free of charge.
Furthermore, developers are given license to provide DirectX runtime code with their products with
automatic installation that can be made transparent to the user.

Image Properties

A computer graphics image is a surrogate of reality used to convey visual information. The
surrogate is usually a light pattern displayed on a CRT monitor. Some of the characteristics of this
image can be scientifically measured, or at least, evaluated objectively. But the human element in
the perception of the graphic image introduces factors that are not easily measured. For example,
aesthetic considerations can help us decide whether a certain graphic image "looks better" than
another one, while another image can give us an eyestrain headache that cancels its technological
virtues.

Brightness and contrast

Luminance is defined as the light intensity per unit area reflected or emitted by a surface. The
human eye perceives objects by detecting differences in levels of luminance and color. Increasing
the brightness of an object also increases the acuity with which it is perceived. However, it has
been found that the visibility or legibility of an image is more dependent on contrast than on its
absolute color or brightness value.

The visual acuity of an average observer sustains an arc of approximately one minute (1/60 a
degree of angle). For this reason, the average observer can resolve an object that measures 5
one-thousands of an inch across on a CRT display viewed at a distance of 18 inches. However,
visual acuity falls rapidly with decreased luminance levels and with reduced contrast. This explains
why ambient light, reflected off the surface of a CRT, decreases legibility. Another peculiarity of
human vision is the decreasing ability of the eye to perceive luminance differences or contrasts as
the absolute brightness increases. This explains why the absolute luminance values between
object and background are less important to visual perception than their relative luminance, or
contrast.

Color

Approximately three-fourths of the light-perceiving cells in the human eye are color-blind, which
explains why luminance and contrast are more important to visual perception than color.
Nevertheless, it is generally accepted that color is a valuable enhancement to computer graphics.
This opinion is probably based on the popular judgment that color photography, cinematography,
and television are preferred over the black-and-white versions.

Resolution

The quality of a raster-scan CRT is determined by the total number of separately addressable
pixels contained per unit area. This ratio, called the resolution, is usually expressed in pixels-per-
inch. For example, a CRT with 8-inch rows containing a total of 640 pixels per row has a horizontal
resolution of 80 pixels per inch. By the same token, a CRT measuring 6 inches vertically and
containing a total of 480 pixels per column has a vertical resolution of 80 pixels per inch.
Previously in this chapter we discussed symmetrical and asymmetrical resolutions (see Figure 1-
7).

Aspect ratio

The aspect ratio of a CRT display is the relation between the horizontal and vertical dimensions.
For example, the CRT previously mentioned, measuring 8 inches horizontally and 6 inches

vertically, is said to have a 4:3 aspect ratio. An 8- by-8-inch display has a 1:1 aspect ratio. Figure
1-12 shows a CRT with a 4:3 aspect ratio.

S vy

Figure 1-12: CRT with a 4:3 aspect ratio

Graphics Applications

Applications of computer graphics in general and of 3D graphics in particular appear to be
limitless. The limitations seem to relate more to economics and to technology than to intrinsic
factors. It is difficult to find a sphere of computing that does not profit from graphics in one way or
another. This is true not only about applications but also about operating systems. In today's
technology, graphics is the reality of computing. The PC has evolved into a powerful graphics
machine, and graphics are no longer an option, but a standard feature that cannot be ignored.

Computer games

Since the introduction of Pac Man in the early 1980s, computer games have played an important
role in personal entertainment. More recently we have seen an increase in popularity of dedicated
computer-controlled systems and user-interaction devices, such as those developed by Nintendo,
Sony, and Sega. In the past three or four years, computer games have gone through a remarkable
revival. The availability of more powerful graphics systems and of faster processors, as well as the
ingenuity and talent of the developers, has brought about the increase in the popularity of this field.
Computer games are one of the leading sellers in today's software marketplace, with sales
supported by an extensive subculture of passionate followers. Electronic games are always at the
cutting edge of computer graphics and animation. A game succeeds or fails according to its
performance. It is in this field where the graphics envelope is pushed to the extreme. 3D graphics
technologies relate very closely to computer games. In fact, it can be said that computer games
have driven graphics technology.

Science, engineering, and technology

Engineering encompasses many disciplines, including architecture, and mechanical, civil, and
electrical, and many others. Virtually every field of engineering finds application for computer
graphics and most can use 3D representations. The most generally applicable technology is
computer-aided design (CAD), also called computer-aided drafting. CAD systems have replaced
the drafting board and the T-square in the design of components for civil, electrical, mechanical,
and electronic systems. A few years ago, a CAD system required a mainframe or minicomputer
with high-resolution displays and other dedicated hardware. Similar capabilities can be had today
with off-the-shelf PC hardware and software. Most CAD packages now include 3D rendering
capabilities.

These systems do much more than generate conventional engineering drawings. Libraries of
standard objects and shapes can be stored and reused. A CAD program used in mechanical
engineering stores nut and bolt designs, which can be resized and used as needed. The same
applies to other frequently used components and standard shapes. The use of color adds a visual
dimension to computer-generated engineering drawings, a feature that is usually considered too
costly and difficult to do manually. Plotters and printers rapidly and efficiently generate high-quality
hardcopies of drawings. 3D CAD systems store and manipulate solid views of graphics objects
and automatically generate perspective views and projections. Wire-frame and solid modeling
techniques allow the visualization of real-world objects and contours. CAD systems can also have
expertise in a particular field. This knowledge can be used to check the correctness and integrity of
a design.

In architecture and civil engineering, graphics systems find many applications. Architects used 3D
modeling for the display of the interior and exterior of buildings. A graphics technique known as ray
tracing allows the creation of solid models that show lighting, shading, and mirroring effects.

Computer graphics are used to predict and model system behavior. Simulation techniques allow
you to create virtual representations of practically any engineered system, be it mechanical,
electrical, or chemical. Mathematical equations are used to manipulate 3D representations and to
predict behavior over a period of simulated time. Graphics images, usually color-coded and often
in 3D, are used to display movement, and to show stress points or other dynamic features which,
without this technique, would have been left to the imagination.

Geographic Information Systems (GIS) use computers to manipulate and store geographic,
cartographic, and other social data used in the analysis of phenomena where geographical
location is an important factor. Usually, the amount of data manipulated in a GIS is much larger
than can be handled manually. Much of this data is graphics imagery in the form of maps and
charts. GIS systems display their results graphically. They find application in land use and land
management, agriculture, forestry, wildlife management, archeology, and geology. Programmable
satellites and instruments allow you to obtain multiple images that can be used later in producing
3D images.

Remote sensing refers to collecting data at a distance, usually through satellites and other
spacecraft. Today, most natural resource mapping is done using this technology. As the resolution
of remotely sensed imagery increases, and its cost decreases, many more practical uses will be
found for this technology.

Automation and robotics also find extensive use for computer graphics. Computer numerical
control (CNC) and Computer-assisted manufacturing (CAM) systems are usually implemented in a
computer graphics environment. State-of-the-art programs in this field display images in 3D.

Art and design

Many artists use computer graphics as a development and experimental platform, and some as a
final medium. It is hotly debated whether computer-generated images can be considered fine art,
but there is no doubt that graphics technology is one of the most powerful tools for commercial
graphics and for product design. As CAD systems have replaced the drafting board, draw and
paint programs have replaced the artist's sketchpad. The commercial artist uses a drawing
program to produce any desired effect with great ease and speed, and to experiment and fine-tune
the design. Computer-generated images can be stretched, scaled, rotated, filled with colors,
skewed, mirrored, resized, extruded, contoured, and manipulated in many other ways. Photo
editing applications allow scanning and transforming bitmapped images, which later can be
vectorized and loaded into the drawing program or incorporated into the design as bitmaps.

Digital composition and typesetting is another specialty field in which computer graphics has
achieved great commercial success. Dedicated typesetting systems and desktop publishing
programs allow the creation of originals for publication, from a brochure or a newsletter to a
complete book. The traditional methods were based on "mechanicals" on which the compositor
glued strips of text and images to form pages. The pages were later photographed and the printing
plates manufactured from the resulting negatives. Today, composition is done electronically. Text
and images are merged in digital form. The resulting page can be transferred into a digital
typesetter or used to produce the printing plates directly. The entire process is based on computer
graphics.

Business

In recent years a data explosion has taken place. In most fields, more data is being generated than
there are people to process it. Imagine a day in the near future in which fifteen remote sensing
satellites orbit the earth, each of them transmitting every fifteen minutes an image of an area that
covers 150 square miles. The resulting acquisition rate of an image per minute is likely to create
processing and storage problems, but perhaps the greatest challenge will be to find ways to use
this information. How many experts will be required simply to look at these images? Recently there
were only two or three remote sensing satellites acquiring earth images and it is estimated that no
more than 10 percent of these images ever were analyzed. Along this same line, businesses are
discovering that they accumulate and store more data than can be used. Data mining and data
warehousing are techniques developed to find some useful nugget of information in these
enormous repositories of raw data.

Digital methods of data and image processing, together with computer graphics, provide our only
hope of ever catching up with this mountain of unprocessed data. A business graph is used to
compress and make available a large amount of information, in a form that can be used in the
decision-making process. Computers are required to sort and manipulate the data and to generate
these graphs. The field of image processing is providing methods for operating on image data.
Technologies are being developed to allow computers to "look at" imagery and obtain useful
information. If we cannot dedicate a sufficient number of human experts to look at a daily heap of
satellite imagery, perhaps we will be able to train computers for this task.

Computer-based command and control systems are used in the distribution and management of
electricity, water, and gas, in the scheduling of railways and aircraft, and in military applications.
These systems are based on automated data processing and on graphics representations. At the
factory level they are sometimes called process controls. In small and large systems, graphics
displays are required to help operators and experts visualize the enormous amount of information
that must be considered in the decision-making process. For example, the pilot of a modern-day
commercial aircraft can obtain, at a glance, considerable information about the airplane and its
components as they are depicted graphically on a video display. This same information was much
more difficult to grasp and mentally process when it originated in a dozen or more analog
instruments.

Computer graphics also serve to enhance the presentation of statistical data for business.
Graphics data rendering and computer animation serve to make the presentation more interesting;
for example, the evolution of a product from raw materials to finished form, the growth of a real
estate development from a few houses to a small city, or the graphic depiction of a statistical trend.
Business graphics serve to make more convincing presentations of products or services offered to
a client, as a training tool for company personnel, or as an alternative representation of statistical
data. In sales, computer graphics techniques can make a company's product or service more
interesting, adding much to an otherwise dull and boring description of properties and features.

Simulations

Both natural and man-made objects can be represented in computer graphics. The optical
planetarium is used to teach astronomy in an environment that does not require costly instruments
and that is independent of the weather and other conditions. One such type of computer-assisted
device, sometimes called a simulator, finds practical and economic use in experimentation and
instruction. Simulators are further discussed in Chapter 5 in relation to animation programming.

Virtual reality

Technological developments have made possible a new level of user interaction with a computing
machine, called virtual reality. Virtual reality creates a digital universe in which the user is
immersed. This topic is discussed in Chapter 5 in relation to animation programming.

Artificial life

Artificial life, or ALife, has evolved around the computer modeling of biosystems. It is based on
biology, robotics, and artificial intelligence. The results are digital entities that resemble self-
reproducing and self-organizing biological life forms. Artificial life is discussed in Chapter 5.

Fractal graphics

Natural surfaces are highly irregular. For this reason, many natural objects cannot be represented
by means of polygons or smooth curves. However, it is possible to represent some types of natural
objects by means of a mathematical entity called a fractal. The word fractal was derived from
fractional dimensions. Fractals are discussed in Chapter 5.

Summary

In this first chapter we discussed a host of topics that are at the core of computer graphics and that
should be familiar to every PC graphics programmer. We discussed the history and evolution of
graphics on the PC, the best-known and most widely used PC video technologies, the state-of-the-
art in PC graphics, the various Application Programming Interfaces, image properties, and
applications of computer graphics. In Chapter 2 we consider how images and graphics image data
are represented and stored in a computer system, introducing the core notions of segments and of

polygonal modeling.

Chapter 2: Graphics Representation and Modeling

Overview

This chapter is an overview of the database and geometrical concepts that underlie computer
graphics. The material has been chosen so that it applies to the 3D rendering engines discussed in
the book. The specifics that refer to each of the major 3D rendering systems used on the PC,
Direct3D and OpenGL, are discussed in the corresponding chapters.

Types of Graphics Data

Computer images are classified into two general types: those defined as a pixel map and those
defined as one or more vector commands. In the first case we refer to raster graphics and in the
second case to vector graphics. Figure 2-1 shows two images of a cross, first defined as a bitmap,
and then as a set of vector commands.

T 6 5 4 3 2 10

o1 2 3 456 7
Image in bitmap Inluql_'- in wector commands
0BH, (&H, 04H, OFFH lime from o, ¥ b x?, yd
08H, ©=SH, 0dH, 0O8H lire freen %4, ¥0 b ®4, ¥

Figure 2-1: Raster and vector representation of a graphics object

On the left side image of Figure 2-1, the attribute of each pixel is encoded in the bitmap. The
simplest scheme consists of using a 0-bit in the bitmap to represent a white pixel and a 1-bit to
represent a black or colored pixel. Vector commands, on the other hand, refer to the geometrical
elements in the image. The vector commands in Figure 2-1 define the image in terms of two
intersecting straight lines. Each command contains the start and end points of the corresponding
line in a Cartesian coordinate plane that represents the system's video display.

An image composed exclusively of geometrical elements, such as a line drawing of a building, or a
machine part, can usually be defined by vector commands. On the other hand, a naturalistic
representation of a landscape may best be done with a bitmap. Each method of image encoding,
raster- or vector-based, has its advantages and drawbacks. One fact often claimed in favor of
vector representation is the resulting memory savings. For example, in a video surface of 600-by-
400 screen dots, the bitmap for representing two intersecting straight lines encodes the individual
states of 240,000 pixels. If the encoding is in a two-color form, as in Figure 2-1, then one memory
byte is required for each eight screen pixels, requiring a 30,000-byte memory area for the entire
image. This same image can be encoded in two vector commands that define the start and end
points of each line. By the same token, to describe in vector commands a screen image of
Leonardo's Mona Lisa would be more complicated and memory-consuming than a bitmap.

In the context of 3D graphics programming rasterized images are mostly used as textures and
backgrounds. 3D rendering is based on transformations that require graphics objects defined by
their coordinate points. Software operates mathematically on these points to transform the
encoded images. For example, a geometrically defined object can be moved to another screen
location by adding a constant to each of its coordinate points. In Figure 2-2 the rectangle with its
lower left-most vertex at coordinates x = 1, y = 2, is translated to the position x = 12, y = 8, by
adding 11 units to its x coordinate and 6 units to its y coordinate.

=2
t

Figure 2-2: Translating an object by coordinate arithmetic

In Chapter 3 we explore geometrical image transformations in greater detail.

Coordinate systems

The French mathematician Rene Descartes (1596-1650) developed a method for representing
geometrical objects. Descartes's system divides the plane with two intersecting lines, known as the
abscissa and the ordinate axis. Conventionally, the abscissa axis is labeled with the letter x and
the ordinate axis with the letter y. When the axes are perpendicular, we refer to the coordinate
system as rectangular; otherwise, it is said to be oblique. The origin is the point of intersection of
the abscissa and the ordinate axes. A point at the origin has coordinates (0, 0). When coordinates
are expressed in this manner, the first element inside the parentheses corresponds to the x-axis
and the second one to the y-axis. Therefore a point at (2, 7) is located at coordinates x=2, y=7.
Figure 2-3 shows the rectangular Cartesian plane.

guadrant Il quadrain |
[.1_ r:l'l [an |:|I:

arkgin
{0, 0

quaadrant 111 quadrant IV
(£ -¥) [, =]

Figure 2-3: Cartesian rectangular coordinate plane

Figure 2-3: Cartesian rectangular coordinate plane

In Figure 2-3 we observe that a point on the x-axis has coordinates (x, 0) and a point on the y-axis
has coordinates (0, y). The origin is defined as the point with coordinates (0, 0). The axes divide
the plane into four quadrants, usually labeled counterclockwise with Roman numerals | to IV. In the
first quadrant x and y have positive values. In the second quadrant x is negative and y is positive.
In the third quadrant both x and y are negative. In the fourth quadrant x is positive and y is
negative.

The Cartesian coordinates plane can be extended to three-dimensional space by adding another
axis, usually labeled z. A point in space is defined by a triplet that expresses its x, y, and z
coordinates. Here again, a point at the origin has coordinates (0, 0, 0), and a point on any of the
three axes has zero coordinates on the other two. In a rectangular coordinate system the axes are
perpendicular. Each pair of axis determines a coordinate plane: the xy-plane, the xz-plane, and the
yz-plane. The three planes are mutually perpendicular. A point in the xy-plane has coordinates (x,
y, 0), a point in the xz-plane has coordinates (x, 0, z), and so on. By the same token, a point not
located on any particular plane has non-zero coordinates for all three axes. Figure 2-4 shows the
Cartesian 3D coordinate plane.

ty

+Z

+¥

origin
(0,0, 0)

Figure 2-4: 3D Cartesian rectangular coordinates plane

The labeling of the axes in 3D space is conventional. In Figure 2-4 we could have labeled the x-
axis as z, and the z-axis as x without affecting the validity of the representation. In computer
graphics the most common labeling preserves the conventional labeling of the x- and y-axis in two-
dimensional space and adds the z-axis in the viewer's direction, as in Figure 2-4. This labeling
style is consistent with the notion of a video system in which image depth is thought to be inside
the CRT. However, adopting the axis labeling style in which positive x points to the right, and
positive y points upward, still leaves undefined the positive direction of the z axis. For example, we
could represent positive z-axis values in the direction of the viewer or in the opposite one. The
case in which the positive values of the z-axis are in the direction of the viewer is called a right-
handed coordinate system. The one in which the positive values of the z-axis are away from the
viewer is called a left-handed system. Left- and right-handed systems are shown in Figure 2-5.

¥ +

iaft-nanded A right-handsd

Figure 2-5: Left- and right-handed 3D coordinate systems

To remember if a system is left- or right-handed we can visualize which hand needs to be curled
over the z-axis so that the thumb points in the positive direction, as shown in Figure 2-5. In a left-
handed system the left hand with the fingers curled on the z-axis has the thumb pointing away
from the viewer. In a right-handed system the thumb points toward the viewer.

There is considerable variation in the axes labeling among 3D modeling systems. In some systems
the z-axis is represented horizontally, the y-axis in the direction of the viewer, and the x-axis is
represented vertically. In any case, the right- and left-handedness of a system is determined by
observing the axis that lays in the viewer's direction, independently of its labeling. Image data can
be easily ported between different axes labeling styles by applying a rotation transformation,
described in Chapter 3.

The 3D Cartesian coordinates planes are a 2D representation of a solid modeling system. In
Figure 2-6 we have modeled a rectangular solid with dimensions x=5, y =4, z= 3.

F
ra
N

Coordinates of paims

4 :II I

pl. @ 0 [

e M pd. & 0 0

§ pi. 3 0 3

p pé pl. 0 0 3
pi. 0 L] o

pi. 5§ 4 0

p pd pi. & 4 3
LM p2) ph. 0 L] 3

Figure 2-6: Vertex representation of a rectangular solid

The table of points, on the right side of the illustration, shows the coordinates for each of the
vertices of the solid figure. However, because the illustration is a 2D rendering of a 3D object, it is
not possible to use a physical scale in order to determine coordinate values from the drawing. For

example, vertices p1 and p4 have identical x and y coordinates; however, they appear at different
locations on the flat surface of the drawing. In other words, the image data stores the coordinates
points of each vertex in 3D space. How these points are rendered on a 2D surface depends on the
viewing system, sometimes called the projection. Projections and viewing systems are discussed

in Chapter 4.

An alternative visualization of the 3D rectangular Cartesian coordinate system is based on planes.
In this case each axes pair determines a coordinate plane, named the xy-plane, the xz-plane, and
the yz-plane. Like the axes, the coordinate planes are mutually perpendicular. In this manner, the z
coordinate of a point p is the value of the intersection of the z-axis with a plane through p that is
parallel to the yx-plane. If the planes intersect the origin, then a point in the xy-plane has zero
value for the z coordinate, a point in the yz-plane has zero value for the x coordinate, and a point
in the xz-plane has zero for the y coordinate. Figure 2-7 shows the three planes of the 3D
Cartesian coordinate system.

i Xy plane £
| A (for 7 =)
Y o <z
xy- plane 1
[for z =0)

nE. E
/

X

Figure 2-7: Coordinate planes in the rectangular Cartesian system

We have transferred to Figure 2-7 points p6 and p7 of Figure 2-6. Point p6 is located on xy-plane
1, and point p7 in xy-plane 2. The plane labeled xy-plane 2 can be visualized as xy-plane 1 which
has been slid along the z-axis to the position z = 3. This explains why the x and y coordinates of
points p6 and p7 are identical, as in the table of Figure 2-6.

Representing geometrical objects

Much of 3D graphics programming relates to representing, storing, manipulating, and rendering
vector-coded geometrical objects. In this sense, the problem of representation precedes all others.
Many representational forms are used in 3D graphics; most are related to the rendering algorithms
used in a particular package. In addition, representational forms determine data structures,
processing cost, final appearance, and editing ease. The following are the most frequently used:

1.Polygonal representations are based on reducing the object to a set of polygonal surfaces. This
approach is the most popular one due to its simplicity and ease of rendering.

2.0bjects can also be represented as bicubic parameteric patch nets. A patch net is a set of
curvilinear polygons that approximate the object being modeled. Although more difficult to
implement than polygonal representations, objects represented by parametric patches are more
fluid; this explains their popularity for developing CAD applications.

3.Constructive solid geometry (CSG) modeling is based on representing complex objects by
means of simpler, more elementary ones, such as cylinders, boxes, and spheres. This
representation finds use in manufacturing-related applications.

4.Space subdivision techniques consider the whole object space and define each point
accordingly. The best-known application of space subdivision technique is ray tracing. With ray
tracing processing is considerably simplified by avoiding brute force operations on the entire object
space.

Out of this list, we concentrate our attention on polygonal modeling, with occasional reference to
parametric patches.

Polygons and Polygonal Modeling

A simple polygon is a two-dimensional geometrical figure formed by more than two connected and
non-intersecting line segments. The connection points for the line segments are called the vertices
of the polygon and the line segments are called the sides. The fundamental requirements that the
line segments be connected and non-intersecting eliminates from the polygon category certain
geometrical figures, as shown in Figure 2-8.

. vertex
!

F,

r _ Side
| Iy
Fi) e P— —
A A | A -_—
F T | P~ \
P | LY s 1 A1 1
£ 1 Y ra L’ % 1
i Y | Y F Y -
- A LA
w ot
valid potygons invalid polygons

Figure 2-8: Valid and invalid polygons

Polygons are named according to their number of sides or vertices. A triangle, which is the
simplest possible polygon, has three vertices. A quadrilateral has four, a pentagon has five, and so
on. A polygon is said to be equilateral if all its sides are equal, and equiangular if all its angles are
equal. A regular polygon is both equilateral and equiangular. Figure 2-9 shows several regular
polygons.

A O OO

triangla guadnilataral pentagon hineagan elagan

Figure 2-9: Regular polygons

Polygons can be convex or concave. In a convex polygon the extension of any of its sides does
not cut across the interior of the figure. Optionally, we can say that in a convex polygon the
extensions of the lines that form the sides never meet another side. Figure 2-10 shows a convex
and a concave polygon.

COMYER CIINEANE

Figure 2-10: Concave and convex polygons

Specific software packages often impose additional restrictions on polygon validity in order to
simplify the rendering and processing algorithms. For example, OpenGL requires that polygons be
concave and that they be drawn without lifting the pen. In OpenGL, a polygon that contains a non-
contiguous boundary is considered invalid.

Triangular representations

Of all the polygons, the one most used in 3D graphics is the triangle. Not only is it the simplest of
the polygons, but all the points in the surface of a triangular polygon must lie on the same plane. In
other polygons this may or may not be the case. In other words, the figure defined by three
vertices must always be a plane, but four or more vertices can describe a figure with more than
one plane. When all the points on the figure are located on the same surface, the figure is said to
be coplanar. This is not the case in non-coplanar objects. Figure 2-11 shows coplanar and non-
coplanar polygons.

coplanar non-coplanar
polygan polygon

Figure 2-11: Coplanar and non-coplanar polygons

The coplanar property of triangular polygons simplifies rendering. In addition, triangles are always
convex figures. For this reason 3D software such as Microsoft's Direct3D rely heavily on triangular
polygons.

Polygonal approximations

Solid objects with curved surfaces can be approximately represented by means of polygonal
facets. For example, a circle can be approximated by means of a polygon. The more vertices in
the polygon, the better the approximation. Figure 2-12 shows the polygonal approximation of a
circle. The first polygon has eight vertices, while the second one has sixteen.

Figure 2-12: Polygonal approximation of a circle

A solid object, such as a cylinder, can be approximately represented by means of several
polygonal surfaces. Here again, the greater the number of polygons, the more accurate the
approximation, as shown in Figure 2-13.

e
— T
4 LY
' ,
\ /
—

P

o -

"]

\n_____ |7

Figure 2-13: Polygonal approximation of a cylinder

Edges

When objects are represented by polygonal approximations, often two polygons share a common
side. This connection between vertex locations that define a boundary is called an edge. Edge
representations of polygons simplify the database by avoiding redundancy. This is particularly
useful in models that share a large number of edges. Figure 2-14 shows a figure represented by
two adjacent triangular polygons that share a common edge.

s
g ———
—

L=

R

/ edge

““*x.
W

/
| Pl
i i
I \
/ \
™
f ¥ o
/ s
n |/
03~ 1/
I ~_ |/
~_1/
~¥
1n?
\PL

Figure 2-14: Polygon edge

In an edge representation the gray triangle in Figure 2-14 is defined in terms of its three vertices,
labeled p1, p2, and p3. The white triangle is defined in terms of its edge and point p4. Thus, points
p2 and p3 appear but once in the database. Edge-based image databases provide a list of edges
rather than of vertex locations. Figure 2-15 shows an object consisting of rectangular polygons.

Figure 2-15: Edge representation of polygons

In Figure 2-15 each vertical panel consists of six triangles, for a total of 30 triangles. If each
triangle were defined by its three vertices, the image database would require 90 vertices.
Alternatively, the image could be defined in terms of sides and edges. There are 16 external sides
which are not shared, and 32 internal sides, which are edges. Therefore, the edge-based
representation could be done by defining 48 edges. The rendering system keeps track of which
edges have already been drawn, avoiding duplication and the consequential processing
overheads, and facilitating transparency.

Polygonal mesh

In 3D graphics an object can be represented as a polygon mesh. Facets are used to approximate
curved surfaces; the more facets the better the approximation. Polygon-based modeling is
straightforward, and polygon meshes are quite suitable for using shading algorithms that diminish
the linearity that results from the straight-line representation. In the simplest form a polygon mesh
is encoded by means of the x, y, and z coordinates of each polygon vertex. Alternatively, polygons
can be represented by their shared sides, or edges. In either case, each polygon is an
independent entity that can be rendered as a unit. 3D renderers are often based on this strategy
as a means of shading and removing hidden surfaces. Figure 2-16 shows the polygon mesh
representation of a teacup and the resulting rendered image.

Figure 2-16: Rendering a polygon mesh representation of a teacup

The Graphics Primitives

Many graphics systems are imaging tools, therefore, they must be capable of performing
elementary graphics functions, such as drawing lines and geometric figures, displaying text
characters, and shading or coloring screen areas. The set of available image-creating operations
are called the output functions or graphics primitives of the system. A general- purpose graphics
library generally includes a collection of graphics primitives. A graphics application often includes
only those functions required for its specific purpose. A minimal, general-purpose 2D graphics
library may contains the following primitives:

1.Viewport primitives: clear the viewport, set the entire viewport to a color or attribute, save the
displayed image in memory, and restore a saved image.

2.Window primitives: set a rectangular screen area to a given color or attribute, save a rectangular
screen area in memory, and restore a saved rectangular screen area.

3.Attribute selection primitives: set the current drawing color, set the current fill color, set the
current shading attribute, set the current text color, set the current text font, set the current line
type (continuous, dotted, dashed, etc.), and set the current drawing thickness.

4.Geometrical primitives:draw a straight line, draw a circular arc, draw an elliptical arc, draw a
parabolic arc, draw a hyperbolic arc, and draw Bezier curves.

5.Image transformation primitives: scale, rotate, translate, and clip image.
6.Painting primitives: fill a closed figure with current fill color or shading attribute.
7.Bit block primitives: XOR text or bit block, AND text or bit block, and OR text or bit block.

The Windows API provide some of the listed functionality, except for the image transformation
functions mentioned in item Number 5.

Input functions

In addition to generating geometrical objects, a computer graphics system must usually be capable
of interacting with a human operator. The interaction typically takes place through an input device
such as a keyboard, a mouse, a graphical input tablet, or any other similar gadgetry. Input can be
roughly classified into two types: valuator and locator. Valuator input takes place when the data
entered is in alphanumerical form. For example, the coordinates of the end points of a line
constitute valuator input. Locator input takes place when the user interaction serves to establish
the position of a graphics object called the locator. A mouse-controlled icon produces locator input.

Valuator and locator input normally follow this sequence of input phases:

1.Input request phase: The graphics system goes into the input mode and prompts the user to
produce an input action.

2.Echo phase:As the user interacts with the input device, its actions are echoed by the graphics
system. For instance, the characters are displayed as they are typed, or an icon moves on the
screen as the mouse is dragged. Phases 1 and 2 are sometimes called the prompt-and-echo
phase.

3.Trigger phase: The user signals the completion of input by pressing a specially designated key
or a button on the input device. One way to conclude the input phase is to abort the operation,
usually by pressing the escape or break key or clicking a specific button.

4.Acknowledge phase: The graphics system acknowledges that the interaction has concluded by
disabling the input prompt and by notifying the user of the result of the input. In the case of locator
input the acknowledge phase often consists of displaying a specific symbol that fixes the locator
position. In the case of valuator input the acknowledge phase can make the cursor disappear.
Another action of the acknowledge phase is that the characters entered are reformatted and
redisplayed, or they are stored internally and erased from the CRT.

A general-purpose graphics library includes the following interaction primitives:
1.Valuator input primitives: input coordinate, input integer, input string, and input real number

2.l ocator selection primitives: select cursor type, such as crosshair, vertical bar, flashing
rectangle, or rubber band

3.Locator input primitives: enable and disable screen icon, move screen icon, select graphics item
on screen and menu item

Display file structure

A graphics application must be capable of storing and transforming graphics data. The logical
structure that contains this data is sometimes called the display file. One of the advantages of a
display file is that it allows the compact storage of graphics data and its transformation through
logical and mathematical operations. For example, an image may be enlarged by means of a
mathematical transformation of its coordinate points, called a scaling transformation. Or the
graphics object can be viewed from a different angle by means of a rotation transformation.
Another transformation, called translation, allows changing the position of a specific object.
Geometrical transformations are the subject of Chapter 3.

Before these manipulations can take place, the program designers must devise the logical
structure that encodes image data in a form that is convenient for the mathematical operations to
be performed. High-level graphics environments, graphical languages, and operating systems with
graphics functions provide pre-canned display file structures that are available to applications. The
programmer working in a customized environment, on the other hand, usually designs the display
file to best accommodate and manipulate the data at hand. The first step in defining this structure
usually consists of standardizing the screen coordinates.

A screen normalization schemes usually aims at maximum simplification. A common approach is
to select the top-left corner of the screen as the origin of the coordinate system and make all
locations positive, as shown in Figure 2-17.

F e %
r 1oL k'
T i wr
L ToA

(3 Tatal
Jun L
W
L 7]
LN F
. _—

Figure 2-17: Cartesian plane representation of the display surface

The range of values that can be represented in either axis is determined by the system's
resolution. If an application is to support a single display definition, it may be convenient to
normalize the screen coordinates to this range. However, this decision should be taken cautiously,
since equating the virtual to the physical device means that any future support for a system with a
different definition probably implies modifying the entire software package.

Screen normalization is necessary so that image data in the display file can be shown on a
physical device, but stored image data does not have to conform to the adopted screen
normalization. At display time the processing routines perform the image-to-pixel conversions. This
pixelation, sometimes called the window-to-viewport transformation, is described later in this
chapter and in Chapter 4.

Image data in the display file

How the image is stored in the display file depends on the image itself and on the operations to be
performed on its elements. Graphical images can be vectorized or bit-mapped. This requires a
decision on whether a particular image is to be stored as a set of vector commands, as a bitmap,
or as a combination of both. In many cases the nature of the image itself determines the most
suitable approach. For example, an application that manipulates geometrical figures, such as a
drawing program, probably stores image data in vector form. Some images, as is the case with
alphanumeric characters, can be represented either in vector form or as bitmaps. Postscript and
other conventions use vector representation of text characters in order to facilitate scaling.

There can be considerable variation in the encoding of a graphics object, whether it is represented
as a bitmap, as a set of vector commands, or as both. A straight line is defined by its two end-
points coordinates, or by its start point, angle, and length. A rectangle is defined by the coordinates
of its four vertices, or by the coordinates of two diagonally opposite vertices. In the case of a
rectangle, the first option allows the representation of parallelograms, but the second one is more
compact. There are also variations in the encoding of bit-mapped objects. If the object is unique,
its bitmap can be included in the display file. However, if the application is to manipulate several

objects with the same bitmap, then it may be preferable to encode a reference to the bitmap image
in the display file.

The design of the image data formats for a customized display file requires careful planning and
detailed design. Even then, changes usually become necessary in the program development
stage. Anticipation of change is one of the basic principles of good database design.

Display file commands

A graphics system must not only store image data, it must also be capable of manipulating this
data in order to generate and transform images. The set of orders that operate on image data is
called display file commands. The notion of a display file containing both data and processing
methods is consistent with the principles of object-oriented programming. As an illustration
consider a screen triangle represented by three straight lines. The display file contains the
coordinate points of the three lines as well as the commands to draw these lines, as shown in
Figure 2-18.

r 100 500 ™
et - "
5]:.
400
¥
M S
Display Fise
commands: image data:
] ¥ ES 'l
draw lina 100 50 500 50
draw line 500 50 500 400
drarww hane 500 100 100 50

Figure 2-18: Display file for a triangle

In Figure 2-18 the screen coordinates coincide with the display file coordinates, which is not usually
the case. More often graphics software must perform mapping operations and convert image data
to viewport coordinates at display time, as described in the following sections.

Image Mapping

The graphical image exists in a physical universe. The storage media is typically a memory or a
permanent digital recording, and the display media is a pixel-mapped video surface. In either case
there are certain concepts, terminology, and logical structures that find frequent use in image
mapping, storage, and retrieval.

Video buffer

The video buffer is the portion of system memory reserved for video display use. It is a system-
specific concept: the location and structure of the video buffer depends on the architecture of the
specific graphics hardware and on the operating system. In MS-DOS graphics programming the
video buffer architecture changes in the different display modes. For example, in VGA mode 18
the video buffer consists of four color planes, each plane storing a 640-by-480 pixel image, while in
mode 19 the video buffer consists of 320-by-200 pixels, each of which is mapped to a memory
byte that encodes the pixel's attribute. SuperVGA memory structures were mentioned in Chapter
1. In any case, the physical address of the MS-DOS video buffer in the graphics modes is AOOOOH.
Microsoft DirectX allows Windows graphics applications to obtain access to the video buffer. Direct
access to video memory in Windows programming is discussed in detail in Part |l.

The video buffer is also called the display buffer, the regen buffer (short for image regeneration
buffer), video memory, and the video display buffer. The term frame buffer is used occasionally,
and somewhat imprecisely. Most PC display systems allow access to the video buffer by the CPU
(programmer’s port) and by the display hardware (video controller's port). For this reason it is
described as a dual-ported system.

Image buffer

While the video buffer is a physical entity, the notion of an image buffer is a logical one. It is
usually associated with the virtual graphics device. Since the attributes of the virtual machine can
exceed those of the physical one, the dimensions and attribute range of the image buffer can
exceed those of the video buffer. In fact, an application can manage and manipulate more than
one image buffer. In DirectX image buffers are called surfaces. Image data in the image buffer is
usually represented in world coordinates using whatever units are meaningful in the program's
context. For example, an engineering application may store image data in meters, while an
astronomical program uses light years.

Window and viewport

The terms window and viewport are used often, and sometimes imprecisely, in computer graphics.
The fact that Microsoft's multitasking operating system for the PC is called Windows adds to the
confusion. Strictly speaking, a window is a rectangular area in the image buffer, also called a
world-coordinate window. A screen region is called a viewport. In this sense, an application
displays a portion of the image data by performing a window-to-viewport transformation. But
recently, the word window has been used as a loose synonym for viewport. This type of window is
sometimes qualified as window-manager window, to distinguish it from world-coordinate window.

In the PC world the word "window" is used, in the sense of a window-manager window, to denote a
screen area. This connotation is at least as common as the more correct term "viewport." In this

book we use either term, according to the topic's context. We refer specifically to "world-coordinate
window" and "window-manager window" when the clarification is necessary. Figure 2-19 shows
these terms and concepts.

- waorld-coordinate window

N
I

ii
[

fmane huffer faorld coordinabach

Figure 2-19: Window and viewport

Graphics Modeling Elements

Graphic modeling assumes that any picture, no matter how elaborate or ornate, can be
constructed out of relatively few, simple components. The term descriptor is often used to
represent an element in a drawing, which cannot be subdivided into simpler parts.

Descriptor

The descriptor concept is an abstraction adopted by the graphics system. Theoretically, any
geometrical figure except a point can be represented in a simplified form. A description is defined
as a collection of at least one descriptor. In general, a graphics model is the representation of
objects using literal or mathematical descriptions. In functional programming, the model is a
representation of the object, but does not include instructions on how to display it. In object-
oriented terms the model includes the data that defines the image and the methods that are used
in manipulating and rendering it. Whether object-oriented or not most graphics systems adopt this
last approach.

The specific format and syntax of the model and the available descriptors vary with each
development system or graphics language, and even in the specific implementations of these
packages. For example, a simple graphic modeling system could be based on the following
descriptors:

1.move (x,y) is a command to set the current location of the drawing pen at coordinates x,y.
2.line (x,y) is a command to draw a line from the current location to a location with coordinates x,y.

3.circle (r) is a command to draw a circle of radius r with its center positioned at the current
location of the drawing pen.

Description

A description can include as many descriptors as necessary to represent the figure. In some
graphics languages, descriptions are assigned a variable name. The following description encodes
the operations necessary to draw a circle enclosed by a square:

Dname (A)
move (0,0)
line (8,0) > line (8,8) > line (0,8) >line (0,0)
move (4,4)
circle (3)

A ends

In this case the operator Dname marks the start of a description and the operator ends signals its
end. Also note that the greater-than symbol (>) is used to separate descriptors in the same line, as
well as to indicate program flow. Notice that these symbols and structures are used by the authors

for the purpose of the current illustration, and that they do not correspond to the actual operators of
any graphics language or system.

The model of a graphics object may also specify transformations to be performed on its
description. These transformations are the usual operations of translation, rotation, scaling, or
others specific to the language or environment. Sometimes the transformed description is called a
graphical object. A possible scheme for representing transformations in a graphical language can
use parentheses, brackets, and capital letters, as in the following example of a translation of the
graphical description, labeled A, previously listed:

SHIFT (14,2) [A]

Figure 2-20 represents the description for the object (A) and the translation that results from the
SHIFT (x,y) [A] operator.

]
Y
', o
__f'j

/

! Cinarme &)
T e (0,0
lineez BLE) = line (BB = ling HLE) = line (2.0)
e [4.4)
cirche (1]
A ends
SHIFT [14.2) |4]

Figure 2-20: Descriptors and descriptions in a graphical language

The Display File

The data structure that serves to encode graphical images is called the display file. Because
descriptors and descriptions are the rational foundation for any modeling scheme, display file
design is based on the principles of graphics modeling. The first step in display file design is
usually determining the general structure of the filing system. The level of complexity of the display
file structure should be consistent with the requirements of the system or application. The
implementation of a full-featured graphical language requires several logical levels and sublevels
of image encoding. A specific application, on the other hand, can sometimes do without some of
these complications.

The most common elements of the display file are the image file, the image segment, and the
image descriptors.

Image file

Image files are subdivisions of a display file. Each image file encodes a single screen image.
Image file data, or data references, can be in the form of bitmaps, vector graphics, and text
elements. In some cases the image file also includes manipulating and rendering logic. Figure 2-
21 shows the results of displaying an image file that contains a bitmap, a vector-based rectangle,
and several text elements.

The Planet Saturn

Saturn's Rings

The rings were first seen by
Galilen in 1610, At the time he
Wrote "Saturn has ears.” It
was the Dutch astronomer
Huygens who first identified
the: rings.

Al first it seemed that Saturn
had a singka ring. It was in
1675 thal the Italian
astronomer Cassini spotted a
gap between the A and B
rings

Figure 2-21: Rendered image file

Storing bitmaps, vector-based graphics, and text data separately makes available the individual
components to other images. In Figure 2-21 the partial view of the planet Saturn is a portion of a
much larger image stored in the image buffer, represented in Figure 2-19. In this case the display
file need contain only a reference that allows identifying the rectangular tile of the image buffer that
is to be used in this particular screen. In addition, the image file contains information describing the
transformations, if any, to be performed on the data.

Text elements can be stored |n the imagg file rorrelsrewrhere,r according to their purpose, cqmplexity,

and extension. For example, if the use of text is limited to short messages that are part of the
graphics images, the most reasonable approach may be to store the text strings in the image file
itself. On the other hand, if the program uses and reuses extensive text areas it is more efficient to
store the text separately and include in the image file a reference to this location.

Image segments

An image segment is a portion of the image that can be considered as a graphic unit. Therefore,
the image file can contain more than one image segment. The portion of the image contained in
each segment is displayed as a single element. Figure 2-22 shows an image file consisting of two
separate segments: the mailbox segment and the flag segment. In the right-hand drawing the flag
segment has been rotated to the vertical position.

Figure 2-22: Image segments

Most graphics manipulations take place at the level of the image segment.

Image descriptors

The image descriptors are the basic elements of the encoding. They are also called display file
commands, and less appropriately, graphics primitives. A descriptor contains the instructions,
data, and data references necessary for displaying a graphical element. The descriptors in Figure
2-20 (move, line, and circle) are used to form the segment (or description) labeled (A). A segment
can contain one or more descriptors. For example, the segment for the mailbox in Figure 2-22
requires descriptors for the straight-line segments that form the top and bottom of the box and for
the arcs that form its ends. The segment for the mailbox flag can contain a single descriptor for a

polygon.

The components of a descriptor are the operation code and the operands. The operation code,
sometimes called opcode, is a mnemonic description of the operations to be performed. The terms
move, line, and circle in Figure 2-20 are opcodes. The operands are the data items required by the
opcode. In this example the operands follow the opcodes and are enclosed in parentheses or
brackets.

Summary

This chapter is an overview of the basic concepts and constructs that serve as a foundation to
computer graphics in general, and to 3D graphics in particular. The chapter's main purpose is to
acquaint the reader with types of graphics data and their most common representations, with
graphics modeling systems and techniques, and with the basic ideas of image mapping. In Chapter
3 we use this knowledge obtained here to explain the geometrical transformations that are at the
core of 3D graphics manipulations.

Chapter 3: 3D Image Transformations

Overview

Computer graphics rely heavily on geometrical transformations for the generation and animation of
2D and 3D imagery. In this chapter we introduce the essential transformations of translation,
rotation, and scaling. For didactical reasons the geometrical transformations are first presented in
the context of 2D imagery, and then expanded to 3D.

Coordinate Systems and Matrix Representations

In computer graphics you often need to manipulate vector images in order to transform them. For
example, an arrow indicating a northerly direction can be rotated 45 degrees clockwise to indicate
a northeasterly direction. If an image is defined as a series of points in the Cartesian plane, then
the rotation can be performed by a mathematical operation on the coordinates that define each
point. Similarly, if an image is defined as a series of straight lines connecting points in the plane,
as would be the case in the representation of an arrow, then the transformation applied to the
image points is also a transformation of the image itself.

The process is simplified further by storing the coordinates of each image point in a rectangular
array. The mathematical notion of a matrix as a rectangular array of values turns out to be quite
suitable for storing the coordinates of image points. After the coordinate points are stored in a
matrix, you can use standard operations of linear algebra to perform geometrical transformations
on the images. Figure 3-1 shows the approximate location of seven stars of the constellation Ursa
Minor, also known as the Little Dipper. The individual stars are labeled with the letters a through g.
The star labeled a corresponds to Polaris (the Pole star).

+d

Figure 3-1: Point representation of the stars in the constellation Ursa Minor (Little Dipper)

The coordinates of each star of the Little Dipper, shown in Figure 3-1, can be represented in
tabular form, as follows:

Star X Y

E 2 5
F 3 9
G 1 2

In 2D graphics the coordinate matrix is a set of x, y coordinate pairs, as shown in the preceding
example. 3D representations require an additional z-coordinate that stores the depth of each point.
3D matrix representations are discussed later in this chapter. In the following sections we explain
the matrix operations that are most useful in graphics programming.

Image transformations

An image can be changed into another one by performing mathematical operations on its
coordinate points. Figure 3-2 shows the translation of a line from coordinates (2,2) and (10,14) to
coordinates (10,2) and (18,14).

y
10, 14 18, 14
B X

Figure 3-2: Translation of a straight line

Notice that in Figure 3-2 the translation is performed by adding 8 to the start and end x-coordinates
of the original line. This operation on the x-axis performs a horizontal translation. A vertical
translation requires manipulating the y-coordinate. To translate the line both horizontally and
vertically you must operate on both coordinate axes simultaneously.

Matrix Arithmetic

Matrices are used in several fields of mathematics. In linear algebra matrices can hold the
coefficients of linear equations. When the equations are represented in this manner, they can be
manipulated (and often solved) by performing operations on the rows and columns of the matrix.
At this time we are interested only in matrix operations that are used to perform geometrical image
transformations. The most primitive of these—translation, rotation, and scaling—are common in
graphics and animation programming. Other less common transformations are reflection
(mirroring) and shearing.

We start by defining a matrix as a rectangular array usually containing a set of numeric values. It is
customary to represent a matrix by means of a capital letter. For example, the following matrix,
designated by the letter A, has three rows and two columns.

Example 1
10 22
A= 3 4
7 1

The size of a matrix is determined by its number of rows and columns. It is common to state matrix
size as a product of rows by columns. For example, matrix A, in Example (1), is a 3-by-2 matrix.

Scalar-by-matrix operations

A single numerical quantity is called a scalar. Scalar-by-matrix operations are the simplest
procedures of matrix arithmetic. Example 2 shows the multiplication of matrix A by the scalar 3.

Example 2
30 66
JA= 9 12
21 3

If a scalar is represented by the variable s, the product matrix sA is the result of multiplying each
element in matrix A by the scalar s.

Matrix addition and subtraction

Matrix addition and subtraction are performed by adding or subtracting each element in a matrix to
the corresponding element of another matrix of equal size. Example 3 shows matrix addition.
Matrix C is the algebraic sum of each element in matrices A and B.

Example 3

i s] — [

A + (5] = L
2 4 1 2 3 b
2 11 “3 | [19
J i ‘ fa J 19

=+ =

1 4 -1 -3 0 2
1 1 M M 1 1
I -1 U U I -1

The fundamental restriction of matrix addition and subtraction is that both matrices must be of
equal size, that is, they must have the same number of rows and columns. Matrices of different
sizes cannot be added or subtracted.

Matrix multiplication

Matrix addition and subtraction intuitively correspond to conventional addition and subtraction. The
elements of the two matrices are added or subtracted, one-to-one, to obtain the result. The fact
that both matrices must be of the same size makes the operations easy to visualize. Matrix
multiplication, on the other hand, is not the multiplication of the corresponding elements of two
matrices, but a unique sum-of-products operation. In this case, the elements of a row in the
multiplicand (first) matrix are multiplied by the elements in a column of the multiplier (second)
matrix. These resulting products are then added to obtain the final result. The process is best
explained by describing the individual steps. Consider the matrices in Example 4.

Example 4
5 10 2
1 3 5
A = B = 1 2 3
2 1 0
1 5 4

From the definition of matrix multiplication we deduce that if the columns of the first matrix are
multiplied by the rows of the second matrix, then each row of the multiplier must have the same
number of elements as each column of the multiplicand. Notice that matrices A and B in Example
4 meet this requirement. However, observe that product B X A is not possible, since matrix B has
three elements per row and matrix A has only two elements in each column. For this reason, in
Example 4, the matrix operation A X B is possible but B X A is undefined. The row by column
operation in A X B is performed as follows:

Example 5

First roww of & Columns of B Products Sum
i 3 3 ® I 3 i i = [3 ESh . a3

1 3 5l ® | 70 2 LA - | 10 @l - 1

w dh

i H H] LT i i bl 3

S i i A Caikimiis o B uiiicis S
1]] [& 1 1l [10 1 i n

i W = w2 5 @z i =

i2 1 i) u [2 1 4] [4 3 il i

The products matrix has the same number of columns as the multiplicand matrix and the same
number of rows as the multiplier matrix. In Example 6, the products matrix C has the same number
of rows as A and the same number of columns as B. In other words, C is a 2 X 3 matrix. The
elements obtained by the preceding operations appear in matrix C in the following manner:

Example 6

63 41 31
C =

11 22 7

You have seen that in relation to matrices A and B in the previous example, the operation A X B is
possible but B X A is undefined. This fact is often described by saying that matrix multiplication is
not commutative. For this reason, the product of two matrices can be different if the matrices are
taken in different order. In fact, in regards to nonsquare matrices, if the matrix product A X B is
defined, then the product B X A is undefined.

On the other hand, matrix multiplication is associative. This means that the product of three or more
matrices is equal independently of the order in which they are multiplied. For example, in relation to
three matrices, A, B, and C, youi can state that (A X B) X C equals A X (B X C). In the coming
sections you often find use for the associative and noncommutative properties of matrix
multiplication.

2D Geometrical Transformations

A geometrical transformation can be described as the conversion of one image onto another one
by performing mathematical operations on its coordinate points. Geometrical transformations are
simplified by storing the image coordinates in a rectangular array, called a matrix. In the following
sections, we describe the most common transformations: translation, scaling, and rotation. The
transformations are first described in terms of matrix addition and multiplication, and later
standardized so that they can be expressed in terms only of matrix multiplications.

Translation

A translation transformation is the movement of a graphical object to a new location by adding a
constant value to each coordinate point that defines the object. The operation requires that a
constant is added to all the coordinates in each plane, but the constants can be different for each
plane. For example, a translation takes place if the constant 5 is added to all x-coordinates and the
constant 2 to all y-coordinates of an object represented in a two-dimensional plane.

At the top of Figure 3-3 you see the graph and matrix of seven stars in the constellation Ursa
Minor. A translation transformation is performed by adding 5 to the x-coordinate of each star and 2
to the y-coordinate. The bottom part of Figure 3-3 shows the translated image and the new
coordinates.

- Origina
b* coordirates
of Slar H ¥
«C a] o
b 1 11
-] 4 1]
d L] 12
a 2 2
T° [9
b+ q 1 2
Iranslated
| comiinales
| b+ (wed, yed]:
sl Sl K ;
i £ a 1 £
b] 13
8 c] 1
i d 5 L)
o e 7 7
1 B 1
i “a q g 4

Figure 3-3: A translation transformation

In terms of matrix operations, the translation can also be viewed as follows:

...............

Medeaienal Tw 4
un I!:IIIII.'.H Hanremneu

coordinates Transiormation coordinaies
matrix A matrix B matrix C
LS ¥ Aoy ¥
0 i 5 2 5
-1 11 5 2 1 13
1 A 5 ? [1]

=
o

L
o

wn
—

7 K E 2 7 7
i o o i i i
2 (¥] [2] 11
= = = i] i
1 2 5 2 6 4

The transformation is expressed in the following matrix equation:
A+B=C

where A represents the original coordinates matrix, B the transformation matrix, and C the matrix
holding the transformed coordinates. Notice that the transfor-mation matrix holds the constants to
be added to the x- and y-coordinates. By definition of the translation transformation, because the
same value must be added to all the elements of a coordinate plane, it is evident that the columns
of the transformation matrix always hold the same numerical value.

Scaling

To scale is to apply a multiplying factor to the linear dimension of an object. A scaling
transformation is the conversion of a graphical object into another one by multiplying each
coordinate point that defines the object by a scalar. The operation requires that all the coordinates
in each plane are multiplied by the scaling factor, although the scaling factors can be different for
each plane. For example, a scaling transformation takes place when all the x-coordinates of an
object represented in a two-dimensional plane are multiplied by 2, and all the y-coordinates of this
same object are multiplied by 3. In this case the scaling operation is said to be asymmetrical.

In comparing the definition of the scaling transformation to that of the translation transformation
you notice that translation is performed by adding a constant value to the coordinates in each
plane, while scaling requires multiplying these coordinates by a factor. The scaling transformation
can be represented in matrix form by taking advantage of the properties of matrix multiplication.

Figure 3-4 shows a scaling transformation that converts a square into a rectangle.

b

Pl

ih
i =
-

Figure 3-4: A scaling transformation

The coordinates of the square in Figure 3-4 can be stored in a 4-by-2 matrix, as follows:

Coordinates
X y

Start point 0 0
2 0
End point 2 2
0 2

The transformation matrix holds the factors that must be multiplied by the x- and y-coordinates in
order to perform the scaling operation. Using the letters Sx to represent the scaling factor for the x-
coordinates, and the letters Sy to represent the scaling factor for the y-coordinates, the scaling
transformation matrix can be expressed as follows:

Sx 0
0 Sy

The transformation of Figure 3-4, which converts the square into a rectangle, is expressed in
matrix form as follows:

Dhrici
w15

coordinates nnrdinates
matrix Scaling matrig matrix
X ¥ Sx Sy x
0 0
2 0 2 0 4 0
Z Z] 3 q B
0 Z t]

The intermediate steps in the matrix multiplication operation can be obtained following the rules of
matrix multiplication described previously in this chapter.

Figure 3-5 shows the scaling transformation of the graph of the constellation Ursa Minor. In this
case, in order to produce a symmetrical scaling, the multiplying factor is the same for both axes. A
symmetrical scaling operation is sometimes referred to as a zoom.

Figure 3-5: Symmetrical scaling (zooming)

Rotation

A rotation transformation is the conversion of a graphical object into another one by moving all
coordinate points that define the original object, by the same angular value, along circular arcs with
a common center. The angular value is called the angle of rotation, and the fixed point that is
common to all the arcs is called the center of rotation. Notice that some geometrical figures are
unchanged by specific rotations. For example, a circle is unchanged by a rotation about its center,
and a square is unchanged if rotated by an angle that is a multiple of 90 degrees, provided that the
center of rotation is the intersection point of both diagonals.

The mathematical interpretation of the rotation is obtained by applying elementary trigonometry.
Figure 3-6 shows the counterclockwise rotation, through an angle r, of points located on the
coordinate axes at unit distances from the center of rotation.

o

Figure 3-6: Rotation of a point

The left-side drawing in Figure 3-6 shows the counterclockwise rotation of point p1, with
coordinates (1,0), through angle r. The coordinates of the rotated point (pr1) can be determined by
solving the triangle with vertices at O, p1 and pr1, as follows:

cos r = x/1, therefore x = cos r

sin r y/1l, therefore y = sin r

The coordinates of the rotated point pr2, shown on the right-side drawing in Figure 3-6, can be
determined by solving the triangle with vertices at O, p2 and pr2.

sin r -x/1, therefore x = - sin r

cos r = y/1, therefore y = cos r

Now the coordinates of the rotated points can be expressed as follows.

coordinates of prl = (cos r, sin r)

coordinates of pr2 (-sin r, cos r)

From these equations you can derive a transformation matrix, which, through matrix multiplication,
yields the new coordinates for the counterclockwise rotation about the origin, through angle r, as
shown in the following example:

cosr -sinr

sinr CoSsr

You are now ready to perform a rotation transformation through matrix multiplication. Figure 3-7
shows the clockwise rotation of the stars in the constellation Ursa Minor, through an angle of 60
degrees, with center of rotation at the origin of the coordi-nate axes.

Figure 3-7: Rotation transformation

Suppose that the coordinates of the four vertices of a polygon are stored in a matrix, as follows:
Coordinates

Xy
pl - 10 2

PR - 12 0
P - 142
ph - 12 4

The transformation matrix for clockwise rotation through angle r is as follows:

CoSsr sinr
-sinr COSr

Evaluating this matrix for a 60-degree rotation gives the following trigonometric functions.

0.5 0.867
0.867 0.5

Now the rotation can be expressed as a product of two matrices as shown in the following
example.

The intermediate steps in the matrix multiplication operation are obtained following the rules of
matrix multiplication described earlier in this chapter.

Originad Rotaticn mairix FRtaned

[) deees paygon

conrdinaes oo b 54 COOrdinoles
K i 13 ¥
nl = 10 2 J2T 987 o |
n? 12] w e [104 E o2
- I T

nl .] 2 ! 51T 134 .]

pd - 124 28 124 ~ e

Homogeneous coordinates

Expressing translation, scaling, and rotation mathematically, in terms of matrix operations, allows a
more efficient approach to graphical transformations. However, you notice that in the method
previously described rotation and scaling are expressed in terms of matrix multiplication, while
translation is expressed as matrix addition. It would be a valuable simplification if you could
express all three basic transformations in terms of the same mathematical operation. Fortunately,
it is possible to represent the translation transformation as matrix multiplication. The scheme
requires adding a dummy parameter to the coordinate matrices and expanding the transformation
matrices to 3 X 3. The following example shows the necessary manipulations where the
coordinates of a point can be expressed in a matrix.

Coordinates

£y
point — [§ 2]

This matrix can be expanded to three columns by using a dummy matrix parameter, labeled w. If w
is not to affect coordinates x and y in two-dimensional transformations, it must meet the following
requirement:

X=X*w,y=y*w

It follows that 1 is the only value that can be assigned to w so that it meets the condition in the
preceding example. This results in the matrix:

Coordinates
X y W

pont —= [5 2 1]

You can use the terms Tx and Ty to represent the horizontal and vertical units of a translation. A
transformation matrix for the translation operation can be expressed when you use homogenous

coordinates as follows:

| 1

irans

PN

on

—t

d

transformation
matrix

1 0 0
0 1 0
Ix Ty 1

You test these results by performing a translation of eight units in the horizontal direction (Tx = 8)
and zero units in the vertical direction (Ty = 0) of the point located at coordinates (5,2). The matrix
multiplication is expressed as follows:

1T 0 0 S+ 0+8 11
0 o+2+0 = 2 =[13 2 1]
E 0 1 0+a0+1

i
-

This operation shows the point at x = 5, y = 2 translated 8 units to the right, with destination
coordinates of x = 13, y = 2. Observe that the w parameter, set to 1 in the original matrix, remains
the same in the final matrix. For this reason, in actual processing operations the additional
parameter can be ignored.

Concatenation

To take full advantage of the system of homogeneous coordinates you must express all the
transformation matrices in terms of 3-by-3 matrices. The translation transformation can be
expressed using homogenous coordinates in the following matrix:

Translation
transformation
matrix
1 0 0
0 1 0
Tx Ty 1

The scaling transformation matrix can also be expanded to a 3-by-3 matrix as follows:

Scaling
transformation
matrix
Sx 0 0

At the same time, the translation transformation matrix for a counterclockwise rotation through
angle r can be converted to homogeneous coordinates as follows:

Rotation
transformation

matrix
cosr sinr 0
-sinr cosr 0

0 0 1

Notice that this rotation transformation assumes that the center of rotation is at the origin of the
coordinate system.

Matrix multiplication is associative. This means that the product of three or more matrices is equal,
no matter which two matrices are multiplied first. By virtue of this property, you are now able to
express a complex transformation by combining several basic transformations. This process is
generally known as matrix concatenation.

For example, in Figure 3-7 the image of the constellation Ursa Minor is rotated clockwise 60
degrees about the origin. But it is possible to perform this transformation using any arbitrary point
in the coordinate system as a pivot point. For instance, to rotate a polygon about any arbitrary
point pa, the following sequence of transformations is executed:

1.Translate the polygon so that point pa is at the coordinate origin.

2.Rotate the polygon.

3.Translate the polygon so that point pa returns to its original position.

In matrix form the sequence of transformations can be expressed as the following product:

1 0 0 cosr sinr 0 1 0 0
0 1 0 = -sinr cosr 0 = 0 1 0
Tx Ty 1 0 0 1 Tx Ty 1

Performing the indicated multiplication yields the matrix for a counterclockwise rotation, through
angle r, about point pa, with coordinates (Tx,Ty).

COs T sinr]
sinr CosT]
Tecosr + Ty sinr + Tx Tesinr Tycosr + Ty 1

Although matrix multiplication is associative, it is not commutative. Therefore, the order in which
the operations are performed can affect the results. A fact that confirms the validity of the matrix
representation of graphics transformations is that, graphically, the results of performing
transformations in different sequences can also yield different results. For example, the image
resulting from a certain rotation, followed by a translation transformation, may not be identical to
the one resulting from performing the translation first and then the rotation.

Figure 3-8 shows a case in which the order of the transformations determines a difference in the
final object.

AN
Py
// R
AN AN Y
A N SN - \
| P S h |
/.' St v \
AN AN SN
E, 2 5, AN I
\‘vj M A

Figure 3-8: Order of transformations

3D Transformations

Two-dimensional objects are defined by their coordinate pairs in 2D space. By extending this
model you can represent a three-dimensional object by means of a set of coordinate triples in 3D
space. Adding a z-axis that encodes the depth component of each image point produces a three-
dimensional coordinate system. The coordinates that define each image point in 3D space are a
triplet of x, y, and z values. Because the three-dimensional model is an extension of the two-
dimensional one, you can apply geometrical transformations in a similar manner as you did with
two-dimensional objects. Figure 3-9 shows a rectangular solid in 3D space.

M* pi
-
o 4 (;;
: {4
S R - B—— : ph "
r ‘_,I""

Figure 3-9: 3D representation of a rectangular solid

The solid in Figure 3-9 is defined by means of the coordinate triplets of each of its eight points,
which are represented by the labeled black dots. In tabular form the coordinates of each point are
defined as follows:

X y z
p1 0 0 2
p2 4 0 2
p3 4 2 2
p4 0 2 2
pS 0 0 0

p6 4 0 0

p7 4 2 0
p8 0 2 0

Point p5, which is at the origin, has values of zero for all three coordinates. Point p1 is located 2
units along the z-axis, therefore its coordinates are x = 0, y = 0, z = 2. Notice that if you disregard
the z-axis coordinates, then the two planes formed by points p1, p2, p3, and p4 and points p5, p6,
p7, and p8 would have identical values for the x- and y-axis. This is consistent with the notion of a
rectangular solid as a solid formed by two rectangles residing in 3D space.

3D translation

In 2D representations, a translation transformation is performed by adding a constant value to
each coordinate point that defines the object. This continues to be true when the point's
coordinates are contained in three planes. As in the case of a 2D object, the transformation
constant is applied to each plane to determine the new position of each image point. Figure 3-10
shows the translation of a cube defined in 3D space by adding 2 units to the x-axis coordinates, 6
units to the y-axis, and -2 units to the z-axis.

P Translation
constants
pl K=x+2
y=y+6
I=z7-2

Figure 3-10: Translation transformation of a cube

If the coordinate points of the eight vertices of the cube in Figure 3-10 were represented in a 3-by-
8 matrix (designated as matrix A) and the transformation constants in a second 8-by-3 matrix
(designated as matrix B), then you could perform the translation transformation by means of matrix
addition and store the transformed coordinates in a results matrix (designated as matrix C). The
matrix operation A + B = C operation would be expressed as follows:

Orininal
g

COOTWiAES T ATEIaTTAi B AMEAONTIED

rratric & matrix B cnardinates matric
oy I % ¥ x ¥ i
7 o= 1 b 2 2 & 2 § H ¥ - [
pl - 4 2 12 2 i 2 i B 0 - pi’
od . 0 2 12 2 B 2 2 2 0 = p’
ok — O 0O 0 2 B -2 2 & 2 - pi'
§F — 4 0 0 2 £ -2 [[2 —- ph
i & 2 6 2 f 2 a 3 2 —
il i d 0 i 7 7] 5 . pE

Here again, you can express the geometric transformation in terms of homogeneous coordinates.
The translation transformation matrix for 3D space would be as follows:

J

-
=

ransiation

-~
3

!

transformation
matrix
1 0 0

=

.
—_
-
]

=
-
=
=
s

=

0

=

Tx Ty 1z 1

The parameters Tx, Ty, and Tz represent the translation constants for each axis. As in the case of
a 2D transformation, the new coordinates are determined by adding the corresponding constant to
each coordinate point of the figure to be translated. If x', y', and z' are the translated coordinates of
the point at x, y, and z, the translation transformation takes place as follows:

X'=x+Tx
y'=y+Ty
zZ'=z+Tz

As in the case of 2D geometrical transformations, the transformed results are obtained by matrix
multiplication using the matrix with the object's coordinate points as the first product matrix, and
the homogenous translation transformation matrix as the second one.

3D scaling

A scaling transformation consists of applying a multiplying factor to each coordinate point that
defines the object. A scaling transformation in 3D space is consistent with the scaling in 2D space.
The only difference is that in 3D space the scaling factor is applied to each of three planes, instead
of the two planes of 2D space. Here again the scaling factors can be different for each plane. If this
is the case, the resulting transformation is described as an asymmetrical scaling. When the scaling
factor is the same for all three axes, the scaling is described as symmetrical or uniform. Figure 3-
11 shows the uniform scaling of a cube by applying a scaling factor of 2 to the coordinates of each
figure vertex.

Figure 3-11: Scaling transformation of a cube

The homogeneous matrix for a 3D scaling transformation is as follows:

3D scaling
transformation
matrix
SX 0 0 0
0 Sy 0 0
0 0 Sz 0

The parameters Sx, Sy, and Sz represent the scaling factors for each axis. As in the case of a 2D
transformation, the new coordinates are determined by multiplying the corresponding scaling factor
with each coordinate point of the figure to be scaled. If X', y', and z' are the scaled coordinates of
the point at x, y, and z, the scaling transformation takes place as follows:

X'=x*8x

y'=y*Sy

y'=y*Sy
z'=z2*8z

In homogeneous terms, the transformed results are obtained by matrix multiplication using the
matrix with the object's coordinate points as the first product matrix, and the homogeneous scaling
transformation matrix as the second one. When the object to be scaled is not located at the origin
of the coordinates axes, a scaling transformation will also result in a translation of the object to
another location. This effect is shown in Figure 3-12.

T o e e

pr

Figure 3-12: Scaling transformation of an object not at the origin

Assuming that point p1 in Figure 3-12 is located at coordinates x =2,y =2,z =-2, and that a
uniform scaling of 3 units is applied, then the coordinates of translated point p1' are as follows:

X y z
1 — [2 2 2]
p1* = 6 6 121

The result is that not only is the cube tripled in size, it is moved to a new position in the coordinates
plane as well. To scale an image with respect to a fixed position, it is necessary to first translate it
to the origin, apply the scaling factor next, and finally translate it back to its original location. The
necessary manipulations are shown in Figure 3-13.

Il /_I—V
Biguinge Transiabe

Ll
-
=

v

[l

|

I N

ke Ru-trorskaie 1o
initial kecation

Figure 3-13: Fixed-point scaling transformation

In terms of matrix operations a fixed-point scaling transformation consists of applying a translation
transformation to move the point to the origin, and then the scaling transformation, followed by
another translation to return the point to its original location. If you represent the fixed position of
the point as xf, yf, zf, then the translation to the origin is represented by the transformation:

Where T is any transformation applied to the points inside the parentheses. The transformation to
return the point to its original location is as follows:

I {xfr yr‘ zf]

Therefore, the fixed-point scaling consists of

f

(', [|

o, 2) e S(Sx,Sy.S2)eT(x .y .2")

and the homogeneous matrix is

Sk 0 0 0
0 Sy 0 0
0 0 S5z 0
(1-sax (1-syy' -5z 0

where S is the scaling matrix and T the transformation matrix, as previously described.

where S is the scaling matrix and T the transformation matrix, as previously described.

3D rotation

Although 3D translation and scaling transformations are described as simple extensions of the
corresponding 2D operations, the 3D rotation transformation is more complex than its 2D
counterpart. The additional complications arise from the fact that in 3D space, rotation can take
place in reference to any one of the three axes. Therefore an object can be rotated about the x-, y-
, Or z-axes, as shown in Figure 3-14.

et

I
{

Ly
",

Figure 3-14: Rotation in 3D space

In defining 2D rotation, we adopted the convention that positive rotations produce a clockwise
movement about the coordinate axes as shown by the elliptical arrows in Figure 3-14. Figure 3-15
shows the positive, x-axis rotation of a cube.

Figure 3-15: Positive, x-axis rotation of a cube

A rotation transformation leaves unchanged the coordinate values along the axis of rotation. For
example, the x-coordinates of the rotated cube in Figure 3-15 are the same as those of the figure
at the top of the illustration. By the same token, rotating an object along the z-axis changes its y-
and x-coordinates while the z-coordinates remain the same. Therefore, the 2D rotation
transformation equations can be extended to a 3D rotation along the z-axis, as follows:

z-axis, 3D rotation
transformation matrix

cosr sinr 0 0
-sinr cosr 0 0
0 0 1 0
0 0 0 1

Here again, r is the negative angle of rotation.

By performing a cyclic permutation of the coordinate parameters you can obtain the transformation
matrices for rotations along the x- and y-axis. In homogeneous coordinates they are as follows:

x-axis, 3D rotation
transformation matrix

1 0 0 0
0 CcoSsTr SinT 0
0 -sinr cosT 0

0 0 0 1

! 1 ry n
u I u U
cim e P n
S U LS u
n M n 1
u u u 1

Rotation about an arbitrary axis

You often need to rotate an object about an axis parallel to the coordinate axis but different from
the one in which the object is placed. In the case of the 3D fixed-point scaling transformation
shown in Figure 3-13, we performed a translation transformation to reposition the object in the
coordinates planes, performed the scaling transformation, and concluded by retranslating the
object to its initial location. Similarly, you can rotate a 3D object about an arbitrary axis by first
translating it to the required position on the coordinate plane, performing the rotation, and finally
relocating the object at its original position. For example, suppose you want to rotate a cube, with
one of its faces parallel to one of the principal planes, along its own x-axis. In this case you may
need to relocate the object so that the desired axis of rotation lies along the x-axis of the
coordinate system. When in this position, you can perform the rotation applying the rotation
transformation matrix for the x-axis. After the rotation, the object is repositioned to its original
location. The sequence of operations is shown in Figure 3-16.

i —
: ®)
4'; = Translane in
Intial Il_i_) [EOTE
Figure -
] : I__.r’ . — ot |
{ H ."._—I?‘
] I|| '\._‘ ------- J'_E;I
| ®

Fomiabe: /
S -
[Y in
744"1 [1, / .

Figure 3-16: Rotation about an arbitrary axis

In this case it is possible to see one of the advantages of homogeneous coordinates. Instead of

concatenation. Matrix concatenation was covered earlier in this chapter.

Coding Geometrical Transformations

Most graphics packages, including Microsoft DirectX 6, contain utilities for performing geometrical
transformations and matrix concatenation. The file named D3dutil.cpp in the DirectX package
includes primitives to perform 3D rotations, translations, and scaling operations. Three utilities are
provided in D3dutil.cpp for performing rotation transformations, one for each coordinate axis.

After the transformation matrices have been obtained, you can develop your own routines for
performing translation, rotation, scaling, and matrix concatenation transformations. The following
code sample contains code for the following functions:

1.The MatrixMult () function performs matrix multiplication. The first parameter is an array of
points holding x- and y-coordinates of a figure in 2D space. The second parameter is a 3-by- 3
matrix used as the multiplier. The third parameter is an array that holds the new point in
homogeneous coordinates.

2.The Transform () function applies a transformation to an array of x- and y-coordinate pairs in
homogeneous coordinates. The first parameter is a matrix containing the coordinates of the points
to be transformed. The second parameter is the matrix that is applied in performing the
transformation.

3.The TranslateFig () function demonstrates the use of the Transform () function by calling it
with a translation matrix as an argument.

//******************************k**************************

// code sample for 2D geometrical transformations

//******************************k**************************

// Matrix multiplication
void MatrixMult (double s[], double matrix[3][3],
double r[])

// First parameter holds the coordinates of a point.

// The second parameter is a 3 X3 transformation matrix.
// The third parameter is an array of vertices

// that result from the matrix multiplication,

// as follows:

// SOURCE MATRIX RESULT

// 1 100 |

// [sx sy 11 * | 01 0 | = [rx ry 1]
// 12 41 |

//

// Matrix multiplication operation:

/] rx
// ry = sy*0 + sy*1 + sy*4
//

// 1f sx = 10 and sy = 40

sx*1 + sx*0 + sx*2

// to perform a translation of x = 200 and y = 50
// SOURCE MATRIX

// 1100 |

// [10 40 11 * | 0 1 0 |

// 1200 50 1 |

// rx = 10*1 + 40*0 + 1*200 = 210
// ry 10*0 + 40*1 + 1*50 = 90

{
for(int col = 0; col < 3; col++)

{

r(col] = 0.0;

for (int row = 0; row < 3; rowt+)

{

r(col] = r[col] + s[row] * matrix[row][col];

}
}
}

// BRpply a transformation to a shape stored in an
// array of x and y coordinate pairs. tMatrix holds
// a 3 X3 transformation matrix

void Transform(int shapel][3], double tMatrix[3][3])
{

double oldPos[] = {0, 0, 1 };

{0, 0, 1 };

double newPos|[]

// Set up loop. A value of -1 forces loop termination

for(int i = 0; shapel[i] [0] != -1; 1i++)
{

0l1dPos[0] = shapel[i][0];

oldPos[1] = shapel[i]l[1l];

MatrixMult (oldPos, tMatrix, newPos);

shape[i][0] = (int) newPos[0];
shape[i][1l] = (int) newPos[1l];

// Translate shape

void TranslateFig(int shape[3][3], int xVal, int yVal)
{

double translateMat[][3] = {

{1, 0, 0},

{0, 1, 01},

{ xval, yval, 1 },

}i

Transform(shape, translateMat);

}

Coding Geometrical Transformations

Most graphics packages, including Microsoft DirectX 6, contain utilities for performing geometrical
transformations and matrix concatenation. The file named D3dutil.cpp in the DirectX package
includes primitives to perform 3D rotations, translations, and scaling operations. Three utilities are
provided in D3dutil.cpp for performing rotation transformations, one for each coordinate axis.

After the transformation matrices have been obtained, you can develop your own routines for
performing translation, rotation, scaling, and matrix concatenation transformations. The following
code sample contains code for the following functions:

1.The MatrixMult () function performs matrix multiplication. The first parameter is an array of
points holding x- and y-coordinates of a figure in 2D space. The second parameter is a 3-by- 3
matrix used as the multiplier. The third parameter is an array that holds the new point in
homogeneous coordinates.

2.The Transform () function applies a transformation to an array of x- and y-coordinate pairs in
homogeneous coordinates. The first parameter is a matrix containing the coordinates of the points
to be transformed. The second parameter is the matrix that is applied in performing the
transformation.

3.The TranslateFig () function demonstrates the use of the Transform () function by calling it
with a translation matrix as an argument.

//******************************k**************************

// code sample for 2D geometrical transformations

//******************************k**************************

// Matrix multiplication
void MatrixMult (double s[], double matrix[3][3],
double r[])

// First parameter holds the coordinates of a point.

// The second parameter is a 3 X3 transformation matrix.
// The third parameter is an array of vertices

// that result from the matrix multiplication,

// as follows:

// SOURCE MATRIX RESULT

// 1 100 |

// [sx sy 11 * | 01 0 | = [rx ry 1]
// 12 41 |

//

// Matrix multiplication operation:

/] rx
// ry = sy*0 + sy*1 + sy*4
//

// 1f sx = 10 and sy = 40

sx*1 + sx*0 + sx*2

// to perform a translation of x = 200 and y = 50
// SOURCE MATRIX

// 1100 |

// [10 40 11 * | 0 1 0 |

// 1200 50 1 |

// rx = 10*1 + 40*0 + 1*200 = 210
// ry 10*0 + 40*1 + 1*50 = 90

{
for(int col = 0; col < 3; col++)

{

r(col] = 0.0;

for (int row = 0; row < 3; rowt+)

{

r(col] = r[col] + s[row] * matrix[row][col];

}
}
}

// BRpply a transformation to a shape stored in an
// array of x and y coordinate pairs. tMatrix holds
// a 3 X3 transformation matrix

void Transform(int shapel][3], double tMatrix[3][3])
{

double oldPos[] = {0, 0, 1 };

{0, 0, 1 };

double newPos|[]

// Set up loop. A value of -1 forces loop termination

for(int i = 0; shapel[i] [0] != -1; 1i++)
{

0l1dPos[0] = shapel[i][0];

oldPos[1] = shapel[i]l[1l];

MatrixMult (oldPos, tMatrix, newPos);

shape[i][0] = (int) newPos[0];
shape[i][1l] = (int) newPos[1l];

// Translate shape

void TranslateFig(int shape[3][3], int xVal, int yVal)
{

double translateMat[][3] = {

{1, 0, 0},

{0, 1, 01},

{ xval, yval, 1 },

}i

Transform(shape, translateMat);

}

Applications of Geometrical Transformations

Geometrical transformations provide a convenient technique for creating consecutive images of a
graphical object. If the consecutive images are projected and erased at sufficient speed, they can
be used to create an illusion of movement or change, called animation.

Because of image retention, the animated images must be flashed at a rate of approximately 70
images per second to produce a smooth and realistic effect. Even when dealing with images of
moderate complexity, the task of creating and displaying them at this rate can impose an
extremely large processing load on the graphics system. Therefore, in animation programming
every device or stratagem that improves graphics performance is critically important. Performing
the image transformation by mathematically operating on matrices of coordinate points saves
considerable processing time and effort.

It is possible to combine more than one transformation in the creation of more refined animation
effects. For example, by combining translation and rotation transformations, a wheel can be made
to appear to roll on the screen. Or, by combining translation and scaling transformations, an object
can be made to disappear into the background. Figure 3-17 shows the application of scaling and
rotation to the image of an airplane in order to simulate it being approached in combat. The effect
could be enhanced by applying additional transformations to the background image.

Figure 3-17: Animation by rotation and scaling transformations

Summary

In Chapter 3, you see how geometrical transformations facilitate graphics representations 2D and
3D space. The transformation matrices developed in this chapter, coupled with matrix
concatenation operations, constitute the basic transformation tool of 3D graphics. These
techniques find frequent use in the remainder of the book. We covered the following fundamental

topics:
*Matrix arithmetic
2D transformations
*Homogenous coordinates
3D transformations
*Applications and code sample

In Chapter 4, we continue our overview of 3D graphics techniques with modeling and rendering,
introducing the plane as a polygonal modeling tool, and discussing splines, cameras, lights,
rendering algorithms, and texture mapping.

Chapter 4: 3D Rendering

Overview

Before you can view a graphics object, you must find a way of storing it in a computer-compatible
way, and before you can store an image, you must find a way of defining it. In other words, you
must be able to digitize it. Because the current state-of-the-art in computer displays is two-
dimensional, the solid image must be transformed so that it is displayed on a flat surface. The task
can be broken down into three separate chores: representing, encoding, and rendering.
Representing and encoding graphics images were discussed in previous chapters. Here we are
concerned with rendering.

Rendering a real-world solid, encoded in digital form, onto a flat display surface is indeed
complicated. Many books and hundreds of articles and research papers have been written on this
topic and as many algorithms have been developed, each with its own advantages and drawbacks.

Projections and Perspective

We start from the assumption that the computer screen is a planar surface. In Chapters 2 and 3
you learned how to represent and transform image data stored in the computer in numerical form.
The result is a data structure of coordinate points that defines the image, which can be translated,
scaled, and rotated by means of geometrical transformations. But this data structure cannot be
directly displayed on a flat screen. A similar problem is encountered by an engineer who needs to
represent a solid object on the flat surface of the drawing paper. In either case you must find ways
of rendering a solid onto a plane. Various approaches to this problem produce several types of
projections. Figure 4-1 shows the more common classification of projections.

—
| emmcnens |
L »
— |
s e]
| 1 1 = | | P |
| o I i I himps | |
o] [=]—
—| L] I [FEEY I
| Thra poam I |l-wﬂ1q. I

Figure 4-1: Projections classification

Projective geometry

Projective geometry is the field of mathematics that studies the transformations of objects during
projections. The following imaginary elements participate in every projection:

1.The observer's eye, also called the center of projection, or viewpoint
2.The object being projected

3.The plane or planes of projection

4.The visual rays that determine the line of sight, called the projectors

Figure 4-2 shows these elements.

projectors—

Frarboar o —
LR e -

projection —

Figure 4-2: Projection elements

From a geometrical point of view, the projection of a point on a plane is the point of intersection on
the plane of projection of a line that extends from the object's point to the center of projection.
Because this line is called the projector, you can also say that the projection of a point is the
intersection between the point's projector and the plane of projection. This definition can be refined
further by requiring that the center of projection not be located in the object nor in the plane of
projection. This constraint makes this type of projection a central projection.

The location of the center of projection in relation to the plane of projection and the object
determines the two main types of projections. When the center of projection is at a discrete
distance from the plane of projection the result is called a perspective projection. When the center
of projection is located at infinity, the projection is called a parallel projection. Figure 4-3 shows
perspective and parallel projections.

wrter ol projection
sl inifmicy

Farallel projection

Figure 4-3: Perspective and parallel projections

In a central projection the geometrical elements in the object plane are transformed into similar
ones in the plane of projection. In this case a line is projected as a line, a triangle as a triangle, and
a polygon as a polygon. Other properties are not preserved. For example, the length of line

hyperbola) retain the conic section property, but not necessarily the type. A circle can be projected
as an ellipse, an ellipse as a parabola, and so on. Figure 4-4 shows the perspective projection of a
circle as an ellipse.

''__,-»-‘
.—-FFFF-—
=
[
I — i
[— I o,
TN !)
- [| !
— -, = - I h l I" I"
e . W = d
| — ey,
[
L
o,
.,
e
.,
)

Figure 4-4: A circle projected as an ellipse

Parallel projections

Parallel projections have found extensive use in technical drafting, engineer-ing drawings, and
architecture. They are divided into two types: oblique and orthographic. The orthographic or right-
angle projection, which is the simplest of all, assumes that the direction of projection is
perpendicular to the projection plane. In this case the projectors are normal (perpendicular) to the
plane of projection. In the oblique projection the projectors are not normal to the plane of
projection.

A type of orthographic projection, called a multiview projection, is used often in technical drawings.
The images that result from a multiview projection are planar and true-to-scale. Therefore, the
engineer or draftperson can take measurements directly from a multiview projection. Figure 4-5
shows a multiview projection of an engineered object.

O

D aasaivicy sbaownars) 3 redjular wisws

Figure 4-5: Parallel, orthographic, multiview projection

The front, side, and top views shown in the drawing in Figure 4-5 are called the regular views.
There are three additional views not shown in the illustration, called the bottom, right-side, and rear
views. These are drawn whenever it is necessary to show details not visible in the regular views.
The Cartesian interpretation of the front view is the orthographic projection of the object onto the
xy-plane, the side view is the projection onto the yz-plane, and the top view is the projection onto
the xz-plane. Sometimes, these views are called the front-elevation, side-elevation, and top- or
plan-elevation.

Although each multiview projection shows a single side of the object, it is often convenient to show
the object pictorially. The left-side drawing in Figure 4-5 shows several sides of the object in a
single view, thus rendering a pictorial view of the object. The orthographic-axonometric projections
are pictorial projections often used in technical applications.

The term axonometric originates in the Greek words "axon" (axis) and "metrik" (measurement). It
relates to the measurements of the axes used in the projection. In Figure 4-1 the axonometric
projections are further classified into isometric, dimetric, and trimetric. Isometric means "equal
measure," which determines that the object axes make equal angles with the plane of projection.
In the dimetric projection two of the three object axes make equal angles with the plane of
projection. In the trimetric, all three axes angles are different. Figure 4-6 shows the isometric,
dimetric, and trimetric projections of a cube.

¥ ¥
Isometric Dirnetric Trimtrie
La=Lb=Lc Lo=Lb Lazlb=dc
0¥ =0Y = 02 K =00y 0¥ 0¥ = OF

Figure 4-6: Isometric, dimetric, and trimetric projections

Perspective projections

The orthographic projections have features that make them useful in technical applications. The
multiview projections provide information to the technician, engineer, and the architect. The
axonometric projections shown in Figure 4-6 can be mechanically generated from multiview
drawings. In general, the main feature of the parallel projections is their information value. In the
world of 3D rendering the objection to the parallel projections is their lack of realism. For example,
Figure 4-7 shows two isometric cubes, labeled A and B, at different distances from the observer.
However, both objects have projected images of the same size. This is not a realistic
representation because cube B, farther away from the observer, should appear smaller than cube
A.

¢
¢

o & T |
[B e o |
| ™ ~ |
] T | |
-~ I] | s
e I I | e
-~ S |] | T
“ .1 - . I A T
| ™ P] -~
| | vy P
I i | sl
I I |
I I |
| I |
o] -~

Figure 4-7: Lack of realism in an isometric projection

A perspective projection attempts to improve the realism of the image by providing depth cues that
enhance relative positions, distances, and diminishing size. One of the most important depth cues
is the relative size of the object at different distances from the viewpoint. This effect can be
achieved by means of perspective projections. The perspective projections depend on a vanishing
point that is used to determine the object's relative size. Three types of perspective projections are
in use, according to the number of vanishing points. They are named one-point, two-point, and
three-point perspectives.

The number of vanishing points is determined by the positioning of the object in relation to the
plane of projection. If a cube is placed so its front face is parallel to the plane of projection, then
one set of edges converges to a single vanishing point. If the same cube is positioned so that one
set of parallel edges (usually, the vertical) is parallel to the picture plane and the other two sets are
not, then each of those two sets of parallel edges not parallel to the picture plane has a vanishing
point. Finally, if the cube is placed so that none of its principal edges are parallel to the plane of
projection, then there are three vanishing points.

In contrast to the parallel projections previously described, perspective projections have unique
characteristics. In a parallel projection you take a three-dimensional object and produce a two-
dimensional image. In a perspective projection you start with a three-dimensional object and
produce another three-dimensional object, which is modified to enhance its depth cues. This
means that a projection is a transformation, much like the rotation, translation, and scaling
transformations discussed in Chapter 3. Unlike rotation, translation, and scaling, a perspective
transformation distorts the shape of the object transformed. After a perspective transformation,
forms that were originally circles may turn into ellipses, parallelograms into trapezoids, and so
forth. It is this distortion that reinforces our depth perception.

One-point perspective

The simplest perspective projection is based on a single vanishing point. This projection is also
called single-point perspective. In the one-point perspective the object is placed so that one of its
surfaces is parallel to the plane of projection. Figure 4-8 shows a one-point perspective of a cube.

'.ani'\-\'."Iinl'I
W AR BanE dan ey

f . point

| T

— - I - g
1 o
1 -
|
1 A

] 1~
aolsmrmrmguammagl
7
-~ rd
- rd

Figure 4-8: One-point perspective projection

One-point perspective projections are simple to produce and find many practical uses in
engineering, architecture, and computer graphics. One of the features of the one-point perspective
is that if an object has cylindrical or circular forms, and these are placed parallel to the plane of
projection, then the forms are represented as circles or circular arcs in the perspective. This can
be an advantage, considering that circles and circular arcs are easier to produce than ellipses or
other conics. Figure 4-9 is a one-point projection of a mechanical part that contains cylindrical and
circular forms.

vanishing

7 point
. o

-~

Figure 4-9: One-point projection of a part with cylindrical and circular forms

A special form of the one-point perspective projection takes place when the vanishing point is
placed centrally within the figure. This type of projection, which has limited use, is sometimes
called a tunnel perspective or tunnel projection. Because of the particular positioning of the object
in the coordinate axes, the depth cues in a tunnel projection are not very obvious. Figure 4-10
shows the tunnel projection of a cube.

", v
\“ ra
e mmme e
e A u
LI s om
: "a r -

H R H
[‘:l/ -

H B o [

H AL s
N & RS H
] ’ " [

u s “, .

i .

s S W, W
{ A
Smmmmmmmmmmmmmmam e
M -
. Y
- L
E " |

Figure 4-10: Tunnel projection of a cube

Two-point perspective

The depth cues in a linear perspective of a multifaced object can be improved by rotating the
object so that two of its surfaces have vanishing points. In the case of a cube this is achieved if it is
rotated along its y-axis, so that lines along that axis remain parallel to the viewing plane, but those
along the two other axes have vanishing points. Figure 4-11 shows a two-point perspective of a
cube.

|.'=_II'II5|'IiI'I-§
peairt
wanishing "‘
parird

-

Figure 4-11: Two-point perspective of a cube

Two-point perspective projections are the most commonly used in 3D graphics.

Three-point perspective

You create a three-point perspective by positioning the object so that none of its axes are parallel
to the plane of projection. Although, in this case, the visual depth cues are stronger than in the
two-point perspective, the resulting geomet-rical deformations are sometimes disturbing to the
viewer. Figure 4-12 is a three-point perspective projection of a cube.

warsting
point
1-Ams
warEng i 1 g
point .
.

Figure 4-12: Three-point perspective of a cube

Perspective as a transformation

The data that defines a three-dimensional object can be changed into another one that contains
enhanced depth cues by performing a mathematical transformation. In other words, a perspective
projection can be accomplished by means of a transformation. In calculating the projection
transformation it is convenient to define a 4 X 4 matrix so the transformation is compatible with the
ones used for rotation, translation, and scaling described in Chapter 3. In this manner you can use
matrix concatenation to create matrices that simultaneously perform one or more geometrical
transformations, as well as a perspective projection.

The simplest approach for deriving the matrix for a perspective projection is to assume that the
projection plane is normal to the z-axis and located at z = d. Figure 4-13 shows the variables for
this case.

y
Projection
plane
X
P(x. y. 7)
, Py, ¥p, d)
£
V4 d

Figure 4-13: Perspective projection of point P

Point Pp, in Figure 4-13, is the perspective projection of point P. According to the predefined
constraints for this projection, you already know that the z-coordinate of point Pp is d. To
determine the formulas for calculating the x- and y-coordinates you can take views along either
axis, and solve the resulting triangles, as shown in Figure 4-14.

i ¥ Plu, ¥ 1

¥

-
B Frojection
e plane
— g —

View along the y axis

1
p—— d —
- ! .
T Projection
o __‘_Elli:'h.*
¥ e
¥ I IR

Viesw along the € axis

Figure 4-14: Calculating x- and y-coordinates of Pp

Because the gray triangles in Figure 4-14 are similar, you can establish the following ratios:

A _ X
d Z
and

Solving for xp and yp produces the equations:

X Y

X
P~ 2/d I = z/d

Because the distance d is a scaling factor in both equations, the division by z has the effect of
reducing the size of more distant objects. In this case the value of z can be positive or negative,
but not zero, because z = 0 defines a parallel projection. These equations can be expressed in

matrix form, as follows:

T e by 5
LS LIE S LIveE
bl I e
T e ol Fal g e e
LidarnsiuninaLon
PR TR
Hidilix
1 n n n
i U U U
n 1 N N
L V]] L L

[
{
{

o o
oo
o O

The Rendering Pipeline

One possible interpretation considers the rendering process as a series of transformations that
take the object from the coordinate system in which it is encoded, into the coordinate system of the
display surface. This process, sometimes referred to as the rendering pipeline, is described as a
series of spaces through which the object migrates in its route from database to screen. One
model of the rendering pipeline is shown in Figure 4-15.

1 World space
| Local Lransion malion

View
Werirkl transformation

p———
space |

—_— SEFEsen

translormation

B | onstermenon

space |

Figure 4-15: The rendering pipeline

Local space

Objects are usually easier to model if they are positioned conveniently in the coordinate plane. For
example, when you place the bottom-left vertex of a cube at the origin of the coordinate system,
the coordinates are all positive values, as in Figure 4-16.

+7 Local space coordinates

N ¥ I

/ pl. 0]

. pr. & a]

Pl P pl. & Q 3

5 v pd. 0 1 3

pi. 0 4 1]

pb. 3§ 4 1]

i & pr. 5 43

% K pB L 4 3
p

Figure 4-16: Local space coordinates of a cube with vertex at the origin

This scheme, called the local space or modeling coordinates system, facilitates numerical
representation and transformations. When objects are represented by polygons, the modeling
database usually includes not only the object coordinates points but the normals to the polygon
vertices and the normal to the polygon itself. This information is necessary to perform many of the
rendering transformations discussed in this chapter.

World space

The coordinate system of the scene is called the world space, or world coordinate system. Objects
modeled in local space usually have to be transformed into world space at the time they are placed
in a scene. For example, a particular scene may require a cube placed so that its left-bottom
vertex is at coordinates x = 2, y = 3, z = 0. The process requires applying a translation
transformation to the cube defined in local space. In addition, lighting conditions are usually
defined in world space. After the light sources are specified and located, shading and other
rendering transformations can be applied to the polygons so as to determine how the object
appears under the current illumination. Surface attributes of the object, such as texture and color,
may affect the shading process. Figure 4-17 shows the world space transformation of a cube
under unspecified illumination conditions and with undefined texture and color attributes.

Wkl spaca conrdnats
] [} F)

]
i
1
i

g
B L L S

BLEREBRLERS

o

Figure 4-17: World space transformation of the cube in_Figure 4-16

Eye space

Note in Figure 4-17 that the image is now in world space, and that some shading of the polygonal
surfaces has taken place; however, the rendering is still far from complete. The first defect that is
immediately evident is the lack of perspective. The second one is that all of the cube's surfaces are
still visible. The eye space, or camera coordinate system, introduces the necessary
transformations to improve rendering to a desired degree. Perspective transformations require
knowledge of the camera position and the projection plane. The second of these is not known until
you reach the screen space phase in the rendering pipeline. Therefore, determining the projection
plane must be postponed until you reach this stage.

The notions of eye and camera positions can be taken as equivalent, although the word "camera”
is used more often in 3D graphics. The camera can be positioned anywhere in the world space
and pointed in any direction. Once the camera position is determined, it is possible to eliminate
those elements of the scene that are not visible. In the context of polygonal modeling, this process
is generically called backface elimination.

Backface elimination

Backface elimination

One of the most important rendering problems that must be solved at this stage of the pipeline is
the elimination of the polygonal faces that are not visible from the eye position. In the simplest
case, entire polygons that are not visible are removed at this time. This operation is known as
culling. When dealing with a single convex object, as is a cube, culling alone solves the backface
elimination problem. However, if there are multiple objects in a scene, where one object may
partially obscure another one, or in the case of concave objects, then a more general backface
elimination algorithm must be used.

A solid object composed of polygonal surfaces that completely enclose its volume is called a
polyhedron. In 3D graphics a polyhedron is usually defined so that the normals to its polygonal
surfaces point away from its center. In this case, you can assume that the polygons whose
normals point away from the eye or camera are blocked by other, closer polygons, and are thus
invisible. Figure 4-18 shows a cube with rods normal to each of its six polygonal surfaces. Solid
arrows indicate surfaces whose normals point in the direction of the viewer. Dotted arrows indicate
surfaces whose normals point away from the viewer and can, therefore, be eliminated.

Figure 4-18: Backspace culling of a polyhedron

A single mathematical test can be used to determine if a polygonal face is visible. The geometric
normal to the polygonal face is compared with a vector from the polygon center to the camera or
eye position. This is called the line-of-sight vector. If the resulting angle is greater than 90 degrees,
then the polygonal surface faces away from the camera and can be culled. Figure 4-19 shows the
use of polygonal surface and line-of-sight vectors in culling.

» .. .
/A’ viewpoint

.
o 7
&5
&
t =
] = F
Q
M
— i
1™ L '
| ™ rd M S
0 s N
A0 /1 F 7
[| A
— 3 | P
I | Y P
I | o | j<4U
A | e S
|)
A | -
j S
M
T

Figure 4-19: Line-of-sight and surface vectors in culling

When the position of the camera is determined in the scene, it is possible to perform the backface
elimination. Figure 4-20 shows the cube of Figure 4-17 after this operation.

+y +Z

light

+X

Figure 4-20: Eye space transformation of the cube in Figure 4-17

Screen space

The image, as it exists at this point of the rendering pipeline, is a numerical repre-sentation of the
object. The previous illustrations, such as Figure 4-20, should not be taken literally because the

image has not been displayed yet. The last step of the rendering pipeline is the transformation
onto screen space.

cube defined by points p1, p2, p6, and p5, the result will be a one-point perspective. If you position
the camera so that only the vertical edges of the cube remain parallel to the viewer, the result will
be a two-point perspective. Similarly, you can reposition the object for a three-point perspective. In
addition, the perspective transformation requires determining the distance to the plane of
projection, which is known at the screen space stage of the rendering pipeline.

Screen space is defined in terms of the viewport. The final transformation in the rendering pipeline
consists of eliminating those elements of the eye space that fall outside the boundaries of the
screen space. This transformation is known as clipping. The perspective and clipping
transformations are applied as the image reaches the last stage of the rendering pipeline. Figure
4-21 shows the results of this stage.

Eye-space

s
s

Clipping rectangle

Figure 4-21: Screen space transformation of the cube in Figure 4-20

Other pipeline models

The model of the rendering pipeline described here is not the only one in use. In fact, practically
every 3D graphics package or development environment describes its own version of the rendering
pipeline. For example, the model used in Microsoft's Direct 3D is based on a transformation
sequence that starts with polygon vertices being fed into a transformation pipeline. The pipeline
performs world, view, projection, and clipping transformations before data is sent to the rasterizer
for display. These other versions of the rendering pipeline are discussed in the context of the
particular systems to which they refer.

Lighting

Lighting of a three-dimensional object determines its rendered realism to a great degree. In fact,
some solid objects are virtually impossible to represent without lighting effects. For example, a
billiard ball could not be convincingly rendered as a flat disk. Figure 4-22 shows the enhanced
realism that results from lighting effects on a solid object.

Figure 4-22: Lighting enhances realism

Rendering lighting is one of the most computationally expensive operations of 3D graphics. You
often have to consider not the ideal lighting effects on a scene, but the minimum acceptable levels
of lighting that will produce a satisfactory rendering. The value of this "acceptable level" depends
on the application. An interactive program that executes in real-time, such as a flight simulator or a
computer game, usually places stringent limitations on lighting effects. For the PC animation
programmer it often comes down to a tradeoff between the smoothness of the animation and the
quality of the scene lighting. On the other hand, when developing applications that are not so
sensitive to execution speed, such as a paint program, you are able to grant a greater time slice to
lighting operations, even at some sacrifice of speed of execution.

Two related models are usually mentioned in the context of lighting: the reflection model and the
illumination model. The reflection model describes the interaction of light within a surface. The
illumination model refers to the nature of light and its intensity distribution. Both are important in
developing rendering algorithms that take lighting into account.

lHlumination models

The intensity and distribution of light on the surface of an object are determined both by the
characteristics of the light itself and by the texture of the object. A polished glass ball and a velvet-
covered one show different lighting under the same illumination. The subject of textures is covered
later in this chapter. At this point you are concerned with the light source and its characteristics.

The simplest illumination model, and one that you must sometimes accept for the sake of
performance, is one with no external light source. In this case each polygon that forms the object is
displayed in a single shade of its own color. The result is a flat, monochromatic rendering in which
self-luminous objects are visible by their silhouette only. One exception is if the individual polygons
that form the object are assigned different colors or shades. The circular disk on the left side of
Figure 4-22 is an example of rendering without lighting effects.

An object can receive two types of illumination: direct and indirect. This, in turn, relates to two
basic types of light sources: light-emitting and light reflecting. The illumination that an object

receives from a light-emitting source is direct. The illumination received from a light-reflecting
source is indirect. Consider a polished sphere in a room illuminated by a single light bulb. If no
other opaque object is placed between the light bulb and the sphere, then most of the light that
falls on the sphere is direct. Indirect light, proceeding from reflection of other objects, may also
take part in illuminating the sphere. If an opaque object is placed between the light bulb and the
sphere, then the sphere is illuminated indirectly, which means, by reflected light only. Figure 4-23
shows a polished sphere illuminated by direct and indirect lighting, and by a combination of both.

—

£

Dhriact aind st
iighiing

Dhrwct Egihning

Figure 4-23: Sphere illuminated by direct and indirect lighting

Light sources can also differ by their comparative size. A small light source, such as the sun, is
considered a point source. A rather extensive light source, such as a battery of fluorescent light, is
considered an extended source. Reflected light is usually an extended source. Here again, the
lighting effect of a point or extended source is modified by the object's texture. Figure 4-24 shows
a polished sphere illuminated by a point and an extended source.

Poirt source Extended source

Figure 4-24: Sphere illuminated by a point and an extended light source

Reflection

Excluding luminescent objects, most of the lighting effects result from reflection. In this context
ambient illumination is defined as light that has been scattered to such a degree that it is no longer
possible to determine its direction. Backlighting produces ambient illumination, as is the case in the

second sphere in Figure 4-23. Ambient light and matte surfaces produce diffuse reflection. Point
sources and polished surfaces produce specular reflection. Variations in the light source, and
surface textures, produce unlimited variations between pure diffuse and pure specular reflection.

where | is the intensity of illumination and k is the ambient reflection coefficient, or reflectivity, of
the surface. Notice that this coefficient is a property of the material from which the surface is made.
In calculations, k is assigned a constant value in the range 0 to 1. Highly reflective surfaces have
values near 1. When this is the case, reflected light has nearly the same effects as incident light.
Surfaces that absorb most of the light have reflectivities near 0.

The second element in determining diffuse reflection is the angle of illumination, or angle of
incidence. A surface perpendicular to the direction of incident light reflects more light than a
surface at an angle to the incident light. For a point source, the calculation of diffuse reflection can
be made according to Lambert's cosine law, which states that the intensity of reflected light is
proportional to the cosine of the angle of incidence. Figure 4-25 shows this effect.

—t

o

_.rl"—' W Point
|:| source

Figure 4-25: Reflected light depends on the angle of incidence

—
" ———
Reflective \) e
— Y

-

surfaces

Diffuse reflection is also called Lambertian reflection because it obeys Lambert's cosine law. It is
associated with matte, dull surfaces such as rubber, chalk, and cloth. The degree of diffusion
depends on the material and the illumination. Given the same texture and lighting conditions, the
diffuse reflection is determined solely by the angle of incidence. In addition, the type of the light
source and atmospheric attenuation can influence the degree of diffusion. The spheres in Figure 4-
26 show various degrees of diffuse reflection.

Figure 4-26: Spheres showing diffuse reflection

Specular reflection

Specular reflection is observed in naturally shiny or polished surfaces. llluminating a polished
sphere, such as a billiard ball, with a bright white light, produces a highlight of the same color as
the incident light. Color plate 2 shows specular reflection on the surface of a teapot. Notice that the
reflected highlights are the color or the incident light, not that of the surface material.

Specular reflection is also influenced by the angle of incidence. In a perfect reflector the angle of
incidence, which is the inclination of the light source to the surface normal, is the same as the
angle of reflection. Figure 4-27 shows the angles in specular reflection.

Surface
normal

Reflection Light
angle source

View
angle

Figure 4-27: Specular reflection

In Figure 4-27 you see that in specular reflection, the angle of incidence (is the same as the angle
of reflection. In the case of a perfect reflector, specular reflection is visible only when the viewer is
located at the angle of reflection, in other words, when (= 0. Objects that are not perfect reflectors

exhibit specular reflection over a range of viewing positions about the angle of reflection. Polished

surfaces have a narrow reflection angle while dull surfaces have a wider one.

Phong illumination model

In 1975, Phong Bui-Toung described a model for nonperfect reflectors, such as the teapot in color
plate 2. The Phong model, which is widely used in 3D graphics, assumes that specular reflectance
is great in the direction of the reflection angle, and decreases as the viewing angle increases. The
Phong model sets the intensity of reflection according to the function

I=cos" a

where n is called the material's specular reflection exponent. For a perfect reflector n would be
infinite and the falloff would be instant. Normal values of n range from 1 to several hundreds,
depending on the reflectivity of the surface material. The shaded areas in Figure 4-28 show Phong
reflection for a shiny and a dull surface. The larger the value of n, the faster the falloff and the
smaller the angle at which specular reflection is visible. A polished surface is associated with a
large value of n, while a dull surface has a small value of n.

Surface
M

oy
Lighi

T
o N, I SONCE
|
|
|

|

RN Py
o P
s, b P

B o A

Shiny sartacs (lame n
™ :.I; E .Iulu?'r
TS, | i
| Ay | aonmn i
rowm N l - A T
- Y < f a2
Tl N & I]
TR s \ u
RS [% F
4/ ~—
e e
Dl Ayiface Hmsll mf

Figure 4-28: Values of n in the Phong model of specular reflection

The Phong model enjoys considerable popularity because of its simplicity and because it provides
sufficient realism for many applications. However, it also has some important drawbacks:

1.All light sources are assumed to be points.

2.Light sources and viewers are assumed to be at infinity.

3.Diffuse and specular reflections are modeled as local components.

4.The decrease of reflection around the reflection vector is empirically determined.
5.Highlights are rendered white, regardless of the color of the surface.
The following limitations have been pointed out for the Phong model:

1.Because highlights are rendered white, no matter the color of the material, the Phong model
does not render plastics and other colored solids very well.

2.The Phong model does not generate shadows. Therefore, objects in a scene do not interact with
each other and appear floating and lifeless.

3.0bject concavities are often rendered incorrectly. This means that the model often produces
specular highlights in concave areas that should not have them.

Shading

In computer graphics the word shading refers to the application of a reflection model over the
surface of an object. Because graphics objects are often represented by polygons, a brute force
shading method can be based on calculating the normal to each polygon surface, and then
applying an illumination model, such as Phong's, to that point.

Flat shading

The simplest shading algorithm for a polygonal object is to use an illumination model to determine
the corresponding intensity value for the incident light, and then shade the entire polygon
according to this value. This type of shading, also known as constant shading or constant intensity
shading, is easy to implement. Flat shading produces satisfactory results when the following
conditions apply:

1.The subject is illuminated by ambient light and there are no surface textures or shadows

2.In the case of curved objects when the surface changes gradually and the light source and
viewer are far from the surface

3.In general, when there are large numbers of plane surfaces

Figure 4-29 shows three cases of flat shading of a conical surface. The more polygons there are,
the better the rendering.

18 Polygons 16 Polygons T2 Polygons

Figure 4-29: Flat shading

Interpolative shading

The fundamental limitation of flat shading is that each polygon is rendered in a single color. Very
often the only way to improve the rendering is to increase the number of polygons, as shown in
Figure 4-29. An alternative shading scheme is based on using more than one shade in each
polygon by interpolating the values calculated for the vertices to the polygon's interior points. This
type of manipulation, called interpolative or incremental shading, is capable of producing, under
some circumstances, a more satisfactory shade rendering with a smaller number of polygons in
the model. Two incremental shading methods, called Gouraud and Phong shading are almost
ubiquitous in 3D rendering software.

Gouraud shading

This shading algorithm was described by H. Gouraud in 1971. It is also called bilinear intensity
interpolation. Gouraud shading is best explained in the context of the scan-line algorithm used in
hidden surface removal. Scan-line processing is discussed in greater detail later in this chapter; for
now, assume that each pixel is examined according to its horizontal (scan-line) placement, usually
left-to-right. Figure 4-30 shows a triangular polygon with vertices at A, B, and C.

&
P,
L
/ T,
! .,
l'll ‘X\. SO s
R [B B . & S
i A .
L = L N
T
Iy -
/ - c
Ky I
S -
F-

Rendared polygon

Figure 4-30: Intensity interpolation in Gouraud shading

The intensity value at each of these vertices is determined from the reflection model. As scan-line
processing proceeds, the intensity of pixel p71 is determined by interpolating the intensities at
vertices A and B, according to the formula

Yoo Ye . Ya- Yo

| . =
Yo~ Ys Ya- Y&

pl

In Figure 4-30, the intensity of p7 is closer to the intensity of vertex A than that of vertex B. The
intensity of p2 is determined similarly by interpolating the intensities of vertices A and C. After the
boundary intensities for the scan line are determined, any pixel along the scan line is calculated by
interpolating, according to the following formula:

Xpy = X3 X

- X
p1
+IF}2

p3

p2

The process is continued for each pixel in the polygon, and for each polygon in the scene.
Gouraud shading calculations are usually combined with a scan-line hidden surface removal
algorithm and performed at the same time.

Gouraud shading also has limitations. One of the most important ones is the loss of highlights on
surfaces and highlights that are displayed with unusual shapes. Figure 4-31 shows a polygon with
an interior highlight. However, because Gouraud shading is based on the intensity of the pixels
located at the polygon edges, this highlight is missed. In this case pixel p3 is rendered by
interpolating the values of p7 and p2, which produces a darker color than the one required.

Another error associated with Gouraud shading is the appearance of bright or dark streaks, called
Mach bands.

Figure 4-31: Highlight rendering error in Gouraud shading

Phong shading

Phong shading is the most popular shading algorithm in use today. This method was developed by
Phong Bui-Toung, the author of the illumination model described previously. Pong shading, also
called normal-vector interpolation, is based on calculating pixel intensities by means of the
approximated normal vector at the point in the polygon. Although more calculation-expensive,
Phong shading improves the rendering of bright points and highlights that are miss-rendered in
Gouraud shading.

Ray tracing

Other shading models have been developed and find occasional use in 3D graphics. The ones
discussed to this point, Phong and Gouraud shading, as well as others of intermediate complexity,
are not based on the physics of light, but on the way that light interacts with objects. Although the
notion of light intensity is used in these models, it is not formally defined. Physically based
methods, although much more expensive computationally, can produce more accurate rendering.
One such method, called ray tracing, is based on backtracking the light rays from the center of
projection (viewing position) to the light source.

computer graphics researchers began applying ray-tracing techniques in the production of very
high quality images, at a very high processing expense. Ray tracing is a versatile and powerful
rendering tool. It incorporates the processing done in reflection, hidden surface removal, and
shading operations. Its only objection is its processing cost. When execution time is not a factor,
ray tracing produces superior results, better than any other rendering scheme. This fact has led to
the general judgment that ray tracing is currently the best implementation of an illumination model.

Color plate 3 shows two renderings of a coffee cup. The one on the left is obtained through
incremental shading, and the one on the right, through ray tracing. Note the reflection of the cup's
handle that is visible on the ray-traced image. In a simple reflection model, only the interaction of a
surface with the light source is considered. For this reason, when a light ray reaches a surface
through interaction with another surface, or when it is transmitted through a partially transparent
object, or by a combination of these factors, the rendering fails. This is the case with the reflection
of the cup handle in color plate 3. Color plate 4 shows how ray tracing captures the reflected image
of a blue cube on the surface of a polished red sphere.

Other rendering algorithms

So far we have discussed rendering algorithms that relate to projection, culling and hidden surface
removal, illumination, and shading. In this section we look at other rendering methods that
complement or support the ones already mentioned. Note that we have selected a few of the
better-known schemes. In making this selection we emphasize the algorithms used in the graphics
programming packages discussed in the text.

Scan-line operations

In computer graphics the term scan-line processing or scan-line algorithms refers to a general-
processing method whereby each successive pixel is examined in row-by-row (scan-line) order.
You already have seen scan-line processing in Gouraud shading. Scan-line methods are used in
filling the interior of polygons also. Most rendering engines use some form of scan-line processing.
Usually, several algorithms are incorporated into a scan-line routine. For example, as each pixel is
examined in the scan-line routine, hidden-surface removal, shading, and shadow generation logic
are applied to determine how it should be rendered. The result is a considerable saving compared
to the time it would take to apply each rendering operation independently.

Scan-line hidden surface removal

A scan-line algorithm called the image space method is often used for removing hidden surfaces in
a scene. This method is actually a variation of the scan-line polygon-filling algorithm. The
processing requires that the image database contain the coordinate points for each polygon
vertex. This is usually called the edge table. Figure 4-32 shows two overlapping triangles whose
vertices (A, B, C, D, E, and F) are stored in the edge table.

B et N Tt | 1 [}

""/" ===+ scan line 2

/

- scan line 3

Figure 4-32: Scan-line algorithm for hidden surface removal

The scan-line algorithm uses a binary flag to indicate whether a pixel in the scan line is inside or
outside a surface. Each surface on the scene is given one such flag. As the left-most boundary of
a surface is reached, the flag is turned on. At the surface's right-most boundary, the flag is turned

off. When a single surface flag is on, the surface is rendered at that pixel. Scan line 1 in Figure 4-
32 has some pixels in which the flag is on for triangle ABC. Scan line 2 in Figure 4-32 also poses
no problem because a single surface has its flag on at one time. In scan line 3 the flag for triangle
ABC is turned on at its left-most boundary. Before the surface's right-most boundary is reached,
the flag for triangle DEF is turned on. When two flags are on for a given pixel, the processing
algorithm examines the database to determine the depth of each surface. The surface with less
depth is rendered, and all the other ones are removed. As the scan-line processing crosses the
boundary defined by edge BC, the flag for triangle ABC is turned off. From that point on, the flag
for triangle DEF is the only one turned on; therefore, its surface is rendered.

Scan-line shadow projections

Ray-tracing algorithms can be implemented so as to generate shadows; however, other rendering
methods require a separate handling of shadows. Sometimes, it is convenient to add shadow
processing to a scan-line routine. To do this, the image database must contain a list of polygons
that may mutually shadow each other. This list, called the shadow pairs, is constructed by
projecting all polygons onto a sphere located at the light source. Only polygon pairs that can
interact are included in the shadow pairs list. The list saves considerable processing effort by
eliminating those polygons that cannot possibly cast a shadow on each other.

The actual processing is similar to the scan-line algorithm for hidden surface removal. Figure 4-33
shows two polygons, labeled A and B. In this case you assume a single light source placed so that
polygon A casts a shadow on polygon B. The shadow pairs in the database tell us that polygon B
cannot shadow polygon A, but polygon A can shadow polygon B. For this reason, polygon A is
rendered without further query in scan line 1. In scan line 2, polygon B is shadowed by polygon A.
Therefore, the pixels are modified appropriately. In scan line 3, polygon B is rendered.

E—— N —— S —————————— p e -
I
= scan line 2
e e SEAC 2 3
//
~
/
Shadow of polygon A

on polygon B

Figure 4-33: Scan-line algorithm for shadow projection

Figure 4-34 shows two renderings of the same scene. The one on the left side is done without
shadow projection. The one on the right side is rendered using a shadow projection algorithm.

1‘II

-i)
I

E .
|

i

\

Figure 4-34: Shadow rendering of multiple objects in a scene

Z-buffer algorithm

Developed by Catmull in 1975, the z-buffer or depth buffer algorithm for eliminating hidden
surfaces has become a staple in 3D computer graphics. The reason for its popularity is its
simplicity of implementation.

The algorithm's name relates to the fact that the processing routine stores in a buffer the z-
coordinates for the (x, y) points of all objects in the scene. This is the z-buffer. A second buffer,
sometimes called the refresh buffer, is used to hold the intensities for each pixel. In processing, all
positions in the z-buffer are first initialized to the maximum depth value, and all positions in the
refresh buffer to the background attribute. At each pixel position, each polygon surface in the
scene is examined for its z-coordinate value. If the z-coordinate for the surface is less than the
value stored in the z-buffer, then the value in the z-buffer is replaced with the one corresponding to
the surface being examined. At this point the refresh buffer is also updated with the intensity value
for that pixel. If the z value for the surface is greater than the value in the z-buffer, then the point is
not visible and can be ignored.

Figure 4-35 shows the z-buffer algorithm operation. Three surfaces, a square, a circle, and a
triangle, are located at various depths. When the z-buffer is initialized the pixel shown in the
illustration is assigned the depth of the background surface, SO. The surface for the circle is
examined next. Because S2 is at less depth than S0, the value S2 replaces the value SO in the z-
buffer. Now S2 is the current value in the z-buffer. Next, the value for the triangular surface S7 is
examined. Because S1 has greater depth than S2, it is ignored. However, when S3 is examined it
replaces S2 in the buffer, because it is at less depth.

Loy
- | I ——
+y] background
o
L
51
A L+
s2 ;
\f"’"“‘-\
Fas BN
] [w 1 ™
23 L]
LY A
L, —
™,
‘m
¥
¥
.r".-’. a
. Py
A
A

Figure 4-35: Z-buffer algorithm processing

Textures

The surface composition of an object influences how the surface reflects light. The reflectivity of a
surface is taken into account when calculating illumination effects. Textures were completely
ignored in early 3D packages. At that time all surfaces were assumed to have identical refection
properties. The results were scenes that appeared unnatural because of their uniformity. Since
then, textures have been steadily gaining popularity. All of the 3D development systems discussed
in this book support textures, in one form or another.

In the PC, the simplest and most common implementation of textures is with bitmaps. Because of
this, the notion of texture refers only to the color pattern of the surface, and not to its degree of
smoothness. Texture bitmaps are easy to apply to objects and are rendered as a surface attribute.
In addition, texture blending and light mapping with textures provide additional enhancements to the
rendering. The specifics of texture rendering are discussed in the context of the individual 3D
packages.

Summary

In this chapter we examined the problems associated with rendering a graphics object. In doing
this, we looked at projections and perspective, followed the rendering pipeline, and studied the
fundamentals of lighting and illumination and shading. In the process we discussed some of the
fundamental algorithms of 3D graphics: Gouraud and Phong shading, scan-line processing, and the
z-buffer method for hidden surface removal, among others. We also mentioned textures and
shadow processing. In Chapter 5, we discuss animation techniques, one of the most difficult,
intriguing, and rewarding topics of 3D graphics programming.

Chapter 5: Computer Animation

Overview

This chapter is about computer animation. A few years ago, real-time, convincing animation was
not possible on a PC machine. Over the past five or six years, improvements in processing speed
and rendering capabilities have made PC animation a reality. Today, a PC programmer can
simulate movement on the computer screen in a realistic, effective, and pleasant way. Several
screen objects can be manipulated simultaneously over a panoramic background, producing
lifelike actions that are comparable to cinematography and cartoon animation. The spectacular
growth of PC computer games and simulations that has taken place in the past few years is a
direct result of this technological watershed.

The details of PC animation programming are left for Part Il of the book. At this time we discuss
mostly the fundamental principles.

Cartoon Animation

Computer animation originated in cartoons and is closely related to them. Many of the
technologies used in the production of cartoons are directly applicable to computer animation. The
original cartoon techniques are based on the work of Walt Disney, Hanna-Barbera, and others.
The standard method consists of photographing a series of progressive drawings. The
photographs are then developed as color transparencies and animation achieved by successively
projecting the transparencies on the screen.

Historical note

In 1831, a Frenchman named Joseph Antoine Plateau was able to create the illusion of movement
by means of a machine, which he called a phenakistoscope. The device consisted of a disk with a
series of progressive drawings and a viewing window. When the disk was rotated, the viewer
would see the drawings in rapid sequence, which created an illusion of movement. Three years
later, an Englishman named Horner modified the phenakistoscope into a device, which he called
the zoetrope. The zoetrope consisted of a drum with drawings on its inner walls. A series of slits
allowed the viewer to see the different drawings as the drum rotated. Emile Reynaud, another
Frenchman, further refined the zoetrope by replacing the viewing slits with mirrors. This device
was named the praxisnoscope.

The first movie theater was founded by Emile Reynaud in 1892. It was called the Theater Optique.
The first animated film was produced in 1906. By 1913, several American companies were
regularly producing cartoons for the thriving motion picture theaters. Felix the Cat, by Pat Sullivan,
is possibly the best-known cartoon character of this era. Walt Disney, who is usually considered
the father of animated cartoons, produced a Mickey Mouse film in 1928. This was the first cartoon
to incorporate sound. Donald Duck and other characters followed shortly thereafter. Snow White
and the Seven Dwarfs was the first feature film—length cartoon.

Drawing techniques

Computers play an important role in the commercial production of cartoons. They are used in the
coloring of drawings and in the generation of intermediate images, an operation called in-
betweening or tweening. Drawing, coloring, and in-betweening are tedious and time-consuming
operations when performed by hand. The organiza-tional elements in the production of an
animated cartoon can be seen in Figure 5-1.

| SYNOPSIS I

P
| SCENARID |
I — |

STORYBOARD

-~ e,
—— —_—
| sequences | | sequences |
I SCENES I | scEmes |

SHOTS SHOTS SHOTS

Figure 5-1: Production sequence for a cartoon

In a cartoon the story is developed in three progressively refined steps, shown in Figure 5-1. The
synopsis is a short summary of the story, usually in less than one page. The scenario describes
the story more completely and it includes details of characters and scenery. The storyboard is a
series of drawings and captions that capture the most important moments depicted in the film.
From the storyboard it is possible to derive the film sequences. Each sequence refers to a film
action and consists of one or more scenes. Typically, scenes are associated with a particular
location, or with one or more characters. The units of cartoon execution are the individual shots
that compose each scene. The production of each animated scene is performed by artists called
animators who layout, design, and draw the key images in each scene. At this time the sound track
for the cartoon must have already been defined because the motion of the animated figures takes
place in relation to dialog and music. Note that computer games are often developed following the
synopsis-scenario-storyboard sequence that is used in cartoons.

In the production of the actual cartoon drawings the artists use two key positions, called frames, as
reference. Figure 5-2 shows the drawings used in a cartoon scene in which a dagger appears to
travel from the hand of an imaginary thrower to a target. The key frames are the start frame and
the end frame. The drawings that are necessary to animate the movement between both key
frames are the in-between frames. In cartoon animation in-betweening is a routine task usually
performed by assistants to the animators.

starl Trame and frama

in-hetwsaan ITames

N} -

Figure 5-2: In-betweening in cartoon animation

The number of progressions between the start frame and the end frame of a sequence depends
on the time assigned to the frame and the display rate. For example, if the animation is to take 1.5
seconds, and the display rate is 24 frames per second, then 36 frames are required for the
animation, of which 34 are in-between frames.

Photographic techniques

The progressive drawings simulate movement, and photographic manipulations are used to
enhance the effects. Because the drawings for cartoons are made on a transparent plastic film, the
clear portions of the drawing are invisible to the camera. The equipment used in the production of
cartoons is a specialized motion picture camera called a multiplane. The animation surface
consists of several glass layers at varying distances from the camera lens. Figure 5-3 is a diagram
of a multiplane camera.

iy

transparent

-I’J'—'l_‘j. T layers
S i S 0
Py ety -
..--"'J '; L r
o : " background

Figure 5-3: Diagram of a multiplane camera

The multiplane camera is used in creating special effects. The camera can be moved horizontally
to pan an image, or moved along the optic axis to enlarge or reduce the apparent size of an object
(zooming). Rotating the camera creates an effect called spin. Several fade and dissolve effects are
used to provide a soft transit between scenes. The fade-in is a progressive transition of the image
from black, and the fade-out is a transition to black. The fade-in is typically used at the start of a
scene and the fade-out at the conclusion.

In multiplane animation the image is separated into several elements according to their distance
from the viewer. For example, in animating the scenery visible from a moving train it is possible to
divide the image into several strips, as shown in Figure 5-4.

snp i siip &

sinp3

Figure 5-4: A multiplane image

The landscape in Figure 5-4 is animated by moving the three image strips at differ-ent rates under
the multiplane camera. In this case the image strip that depicts the setting sun is scrolled
downward. At the same time, the strip depicting the mountain range is moved horizontally, at a slow
rate, while the strip with the telephone poles is moved at a faster rate. The resulting animation
simulates what a person traveling in a train or automobile would see as the sun slowly sets behind
a mountain range. Notice that the length of the images is proportional to their rate of movement
during animation. The multiple plane animation technique is quite suited to computer animation.

Computer Animation

A computer can assume one of two roles in implementing animation: it can assist in the creation of
animated imagery (computer-assisted animation) or it can generate and portray the animated
action (real-time animation). The most time-consuming and tedious task of computer-assisted
cartoon animation is the generation of the many intermediate images required by the process
(tweening). During this phase a computer plays the following roles:

1.During the drawing stage the computer is used to scan and digitize image elements and to
create drawings or parts of drawings.

2.In the animation process the computer is used to generate in-betweens and to color the
drawings.

3.During the photography stage the computer controls the multiplane camera and assists in the
creation of special effects.

4.In the production stage the computer is used in editing and in adding sound to the animated film.

Every day animators find new uses for computers; new technologies are developed which create
novel possibilities and applications in animated graphics. Computer technology is used in the
creation of spectacular special effects based on the digitization of screen objects, which are later
manipulated by the software. Original efforts in this type of computer-assisted animation first
appeared in the films TRON, produced by Walt Disney Studios, in Return of the Jedi, by Lucasfilm,
and The Last Starfighter. In recent years animation by image digitization has become a standard
manipulation.

Real-time animation

Real-time animation is found in arcade machines, simulators and trainers, elec-tronic games,
including Nintendo and Sega, and in interactive simulations and computer games. In real-time
animation the computer is both an image generator and a display media.

Animation is based on the physiology of the human eye—brain complex. The basic fact is that the
image of an object persists in the brain for a brief period of time after it no longer exists in the real
world. This phenomenon, called visual retention, is related to the chemistry of the retina and to the
structure of cells and neurons in the eye. Smooth animation is achieved in cinematography and
television by consecutively displaying images at a faster rate than the period of visual retention.
This operation, by which a new image replaces the old one before the period of retention has
expired, creates in our minds the illusion of movement.

Visual retention lasts a few hundredths of a second. Experiments set the critical image update rate
for smooth animation between 22 and 30 images per second, depending on the individual. Modern
day moving picture films are recorded and displayed at a rate of 24 images per second.
Commercial television takes place at a slightly faster rate, that is, at 30 images per second. In
general, the threshold rate, subject to individual variations, is usually estimated at 18 images per
second. This means that if the consecutive images are projected at a rate slower than this
threshold, the average individual perceives jerkiness. When the image rate equals or exceeds this
threshold, our brains merge the images together and we sense a smoothly animated action.

Assuming that animation must take place at an image rate of 20 per second, then each image
must be updated and rendered in 1/20th of a second. Some rendering routines require that the old
image is erased from the display before a new one is drawn, otherwise the animation leaves a
visible track of objects on the video display. For this reason the image update sequence is a series
of redraw, erase, redraw operations, which means that the critical display rate must be calculated
from one redraw cycle to the next one. The allotted time for the redraw phase is one-half the image
rate, in this case, 1/40th of a second.

All of this explains why computer animation is often a battle against time. The animation
programmer resorts to every known trick and stratagem in order to squeeze the maximum
performance out of the image update and rendering routines. Occasionally the programmer cannot
overcome the system's limitations, and the result is a bumpy and coarse animation that is but a
remote likeness of cinematography and television.

Frame-by-frame animation

In frame-by-frame animation the computer generates the required images, which are recorded or
stored for playback at a later time. This playback can take place in the same machine that
generated the image set or in another machine or media. For example, a computer can be used to
manipulate the image strips in Figure 5-4 so as to generate a set of 100 progressive pictures. As
the images are generated, they are recorded on videotape, or any other compatible media. When
the image set is complete, the animation can be viewed by playing back the tape. Alternatively, the
images can be stored in computer memory played back from this storage. In frame-by-frame
animation the rendering is not time-critical because the image creation step does not have to take
place in real-time.

Interactive animation

Interactive animation refers to computer objects that are moved at the user's will. At present, the
most common interactive devices in the PC are the mouse, the joystick, and the command center.
In general, the notion of interactive animation includes any technology in which the user exercises
some level of control over computer-animated action. By today's standards the ultimate level of
interactive animation is called virtual reality, discussed later in this chapter.

Unpredictability

Conventionally, the computer simulation of movement is based on programmable or predictable
stages. In this manner, the cartoon animator knows beforehand (from the storyboard) all the
actions and interactions that will be portrayed in the final rendition. In most implementations of
virtual reality, every possible result can be predicted from the user's interaction with the device.
Therefore, we can say that the system is deterministic.

However, many natural systems are not deterministic. Biology students often observe that colonies
of bacteria developing in an identical media show different patterns of growth. This is because
many factors cannot be determined beforehand in a complex biological system. Random or
unpredictable elements influence the evolution of a biosystem. One modern theory states that the
disappearance of the dinosaurs was caused by the collision of an asteroid with the earth. If this
hypo-thesis is true, then a small change in the trajectory of the asteroid would have made it miss
our planet, and the evolution of life on earth would have followed an entirely different path.

Statistics can be used to describe the unpredictable behavior of a biosystem. In the gene exchange
process it is often possible to determine, according to their location in the chromosome, that certain
genes are more or less likely to be transmitted. However, anything less than absolute certainty
implies some degree of randomness or unpredictability. If a computer were to simulate the
reproduction of a biosystem it would have to take into consideration these random or unpredictable

factors.

Animation Techniques

If computer animation is roughly equated with the screen simulation of movement, the
methodology for producing the animated effect can be described as a set of motion control
techniques. Allan and Mark Watt, in their book Advanced Animation and Rendering Techniques,
refer to procedural, representational, stochastic, and behavioral as the main categories of the
animation hierarchy.

From a programmer's viewpoint, animation is implemented by applying one of many low-level
methods of motion simulation and control. Some of these methods have been passed on to us by
cartoon animators, while others are digital in nature; therefore, unique products of the computer
environment.

The computer animator is confronted by many limitations and constraints. Often the animation is
produced by means of mathematical transformations on the parameters that define one or more
screen images. It is possible to perform image rotation, translation, scaling, and other
transformations, by geometrical means. Because movement is a function of time, the laws of
physics are often taken into account. For example, in representing a falling object the animator
may use the formula that expresses acceleration in a gravitational field to determine the rate of in-
betweening that most naturally represents the action. On the other hand, artistic considerations
can determine an intentional variation from the physical laws of motion.

Tweening and morphing

The cartoon animator proceeds from two key positions, known as frames, and creates a set of in-
between drawings, as in Figure 5-2. The entire sequence is photographed and projected to create
an illusion of movement. The depiction of animated action by creating and projecting a set of in-
between drawings is often called tweening; the intermediate drawings are the tweens. Computer
animators have successfully borrowed the tweening technique from cartoon animators.
Furthermore, in a computer environment the machine can often aid in the creation of the in-
between frames by performing geometrical transformations on the key frames.

The tweening required for representing the flight of the dagger shown in Figure 5-2 is obtained by
rotating and translating the initial frame. In this case, the animation image set can be produced by
mathematical manipulations of a single file.

Another animation technique that originated in cartoons is morphing. The term relates to the notion
of a metamorphosis: a transformation in shape, form, or substance that takes place by biological
change or by magic and sorcery. Morphing techniques are now extensively used in motion
pictures. We are all familiar with the image of an actor transforming into a wolf or a cat. Figure 5-5
shows the morphing of a circle into a square.

snrt oo st frame

N

O

o —
]
e e e e

Figure 5-5: Morphing animation

Path-of-motion calculations

The rules for path-of-motion calculations in animation depend on the image file encoding and on
the transformation to be performed. In morphing, the intermediate frames are determined
according to different rules than in tweening. The morphing transformation of a circle into a square
shown in Figure 5-5 cannot be made by rotation and translation alone, as is the case in the
tweening shown in Figure 5-2. Figure 5-6 shows the path, along a vector that is at a 45-degree
angle with the horizontal, that a point on the circle would follow in the process of morphing into a
square.

w1 V2 V3

Figure 5-6: Path-of-motion in a morphing transformation

In Figure 5-6 you see that points along different vectors follow a different motion path. For this
reason, morphing usually requires more complicated processing than other geometrical
transformations. Notice that the path-of-motion along vector v71 requires three intermediate steps in

necessary, while there is no motion along vector v3. Path-of-motion calculations in tweening and

morphing are often based on polygonal rendering, discussed in previous chapters. This
approximation is shown in Figure 5-7.

Figure 5-7: Polygonal approximation in morphing

Color-shift animation

The animator manipulates the color attribute of screen objects to create the illusion of movement
or change. One common application of this technique is fading. An object or scene is faded-in
when its color is progressively changed so as to make it slowly appear on the screen. A cross-
dissolve operation takes place when one scene or object is faded-out while another one is faded-
in. Figure 5-8 shows fade-in of a rectangle and fade-out of a circle.

® e ®@ © O
I H =

Figure 5-8: Fade-in and fade-out

Sometimes fade operations can be implemented by progressively changing the hue or saturation
of one or more objects, or of the entire scene. A screen fade-out can be accomplished by
progressively increasing the white saturation of all the objects until the entire screen is white. In
some PC display modes, modifying the color palette itself, instead of the color attributes of
individual objects, can perform the fade operations. Palette animation, as these methods are

sometimes called, is relatively easy to implement and often generates satisfactory results at a low
processing cost.

Color animation is also used in other creative manipulations. For example, increasing the black,
red, and orange color saturation of selected screen objects can mimic a sunset scene. Or the
illusion of movement can be enhanced by having the object leave tracks of its image with a

illusion of movement can be enhanced by having the object leave tracks of its image with a
decreasing color saturation. This effect, sometimes called a motion blur, is depicted by the
bouncing ball shown in Figure 5-9.

Il T
. r T I |
- - L Iy |
[" || 5 I
- = = -
e |[® | O J
I ™ I ™ fr
|| - || - .
Il | i []
Il I - (.
[10 |
- - - 5 |
_ L 4 w J|
- - @&] |
. - 4 -~ ~ |l e |
a - o |
4 P 1 ~ =l |
- !'1._z - I I
5 { | |
L d | S I

Figure 5-9: Motion blur

Background animation

A computer game or real-time simulation contains two different types of graphics objects:
backgrounds and sprites. The backgrounds consist of larger bitmaps over which the action takes
place. For example, in a flight simulator program there can be several background images
representing views from the cockpit. These may include landscapes, seascapes, and views of
airports and runways used during takeoff and landing. A computer game that takes place in a
medieval castle may have backgrounds consisting of the various castle rooms and corridors on
which the action takes place. Sprites are small objects represented in two or three dimensions. In
the flight simulator program, the sprites are other aircraft visible from the cockpit and the cabin
instruments and controls that are animated during the simulation. In the computer game the sprites
are medieval knights that do battle in the castle, as well as the objects animated during the battle.
The methods discussed so far refer mostly to sprite animation. But backgrounds can also be
animated, usually with very effective results. Panning and zooming are two popular techniques for
background animation.

Panning

The design, display, and manipulation of background images in a graphics application are
relatively straightforward. One of the most common methods consists of creating backgrounds that
are larger than the viewport and using clipping and blit-time transformations to generate panning
and zoom effects. Figure 5-10 shows a bitmapped scene, a portion of which is selected by a
rectangular viewport.

P

s
i
1

;
5

P
l

“II i

i

!
[
|

Figure 5-10: Source rectangles in panning animation

In panning, the portion of the image mapped to the viewport is changed a few pixels at a time. In
Figure 5-10, the progression from the portion of the image enclosed by the solid rectangle to the
one enclosed by the dashed rectangle could take over one hundred steps. The result appears as if
the camera were slowly moved from the start position to the final one. In actual programming,
panning effects are easy to produce and are effective and natural.

Zoom

Zooming is another background animation that is implemented at display time. In zooming, the
image size is progressively reduced or enlarged, while the correspond-ing portion of the image
bitmap is stretched or compressed to fill the viewport. The effect simulates progressively changing
the magnification of a viewing instrument, such as binoculars or a telescope. Figure 5-11 shows
the source rectangles in the original bitmap, which, in this case, are expanded to fit the viewport.
Like panning, zoom animation can be programmed simply and effectively.

Figure 5-11: Source rectangles in zoom animation

Notice that the dimension of the rectangles in zoom animation must take into account the aspect
ratio of the viewport. This is necessary so that the image is not deformed by the required
compression and stretching operations.

XOR animation

To animate a screen object, its image must be erased from the current screen position before
being redrawn at the new position. In this respect animation programmers sometimes speak of a
draw-erase-redraw cycle. If the object is not erased, the consecutive images leave a visible track
on the display surface. In lateral translation an object appears to move across the screen, from left
to right, by progressively redrawing and erasing its screen image at consecutively larger x
coordinates. In this case erasing the old screen object is at least as time-consuming as drawing
the new one. In either case, each pixel in the object must be changed.

Several techniques have been devised for performing the draw-erase-redraw cycle required in
animation. The most obvious method is to save that portion of the screen image that is to be
occupied by the object. Redisplaying the saved image can then erase the object. The problem with
this double blit manipulation is that it requires a preliminary, and time-consuming, read operation to
store the screen area that is to be occupied by the animated object. Therefore, the draw-erase-
redraw cycle is performed by a video-to-RAM blit (save screen), RAM-to-video blit (display object),
and a RAM-to-video blit (restore screen).

An interesting method of erasing and redrawing the screen is based on the properties of the logical
exclusive (XOR) operation. The action of the logical XOR is that a bit in the result is set if both
operands contain opposite values. Consequently, XORing the same value twice restores the
original contents, as in the following case:

10000001B
XOR mask 10110011B

00110010B
XOR mask 10110011B

10000001B

In this example the final bitmap (10000001B) is the same as the original one. This property of the
logical XOR makes it a convenient and fast way for consecutively drawing and erasing a screen
object. Its main advantage is that it does not require a previous read operation to store the original
screen contents. This results in a faster and simpler read-erase cycle. The XOR method is
particularly useful when more than one animated object can coincide on the same screen position
because it ensures that the original screen image is always restored.

The biggest disadvantage of the XOR method is that the resulting image depends on the
background. In other words, each individual pixel in the object displayed by means of a logical

example, the following XOR operation produces a red object (in RGB format) on a bright white
screen background:

R GB
background = 1 1 1 (white)
XOR mask = 0 1 1

image = 1 0 0 (red)

However, if the same XOR mask is used over a green background the resulting pixel is blue, as in
the following example:

R G B
background = 0 1 0 (bright green)
XOR mask = 0 1 1

image = 0 0 1 (blue)

The effect whereby an object's color changes as it moves over different back-grounds can be an
advantage or a disadvantage in graphics applications. For example, a marker symbol
conventionally displayed may disappear as it moves over a background of its same color, whereas
a marker displayed by means of a logical XOR is likely to be visible over many different
backgrounds. On the other hand, the color of a graphics object could be an important
characteristic. In this case any changes during display operations would be objectionable.

Figure 5-12 graphically shows how the XOR operation changes the attributes of a sprite as it is
displayed over different backgrounds.

Figure 5-12: XOR rendering

Most video graphics systems and processors directly support the XOR operation. By using the
XOR function the graphics programmer can move the sprite symbol simply by defining its new
coordinates. In this case the hardware takes care of erasing the old marker and restoring the
underlying image.

Rendering in animation

In creating the image set the animator is often confronted with modeling problems. As the number
of dimensions of the representation and the complexity of the objects increase, so do the
difficulties in obtaining the in-between images and the complications in performing the
mathematical transformations required for the animation. In general, two-dimensional objects are
easier to model than three-dimensional ones, symmetrical objects are easier than asymmetrical
ones, and geometrical entities are easier than living organisms, although there are exceptions to
these general rules.

The modeling of realistic living organisms introduces additional difficulties. Higher animals and
human forms, in particular, present challenging rendering problems. In this case the models are
complex and muscle action is difficult to predict and imitate. Several techniques have been
developed to model the human body in three dimensions. Stick figures, surfaces, and volume
models have all been used with moderate success. Stick figures, in particular, provide a
simplification during the early development stages by reducing the complexity of animating a
human body. Figure 5-13 is a stick figure of a man.

gl

Figure 5-13: Stick figure of a man

[
\

N

N,
N

AN
N
:ll-'—--.-—"""'-II

| S ——
g—
-
-
—
>
l:..-"" =

But even in the most schematic representations of the human body, developing the image set
involves the interaction of several limbs and joints. Figure 5-14 shows the animation of a stick
figure to simulate a walking man.

4 (% 7
i i
71
* u: (’i\. 4=

Figure 5-14: Stick figure animation

Figure 5-14: Stick figure animation

Several techniques and algorithms have been developed for the computer modeling of human
motion. In one methodology (Labanotation) the body is described as sets of limbs and joints. Each
joint is specified in terms of axes that can be oriented in various ways. Joint movements are
described by operations that fall into several categories. A special symbol represents each class of
operation. This approach makes possible the study and representation of human motion in an
abstract way.

Applications of Computer Animation

The applications of computer animation practically coincide with the applications of computer
graphics. For instance, computer graphics are often used in business to draw charts of economic
and financial functions. The usual purpose of these charts and graphs is to facilitate the
understanding of complex phenomena and to aid in decision making. These purposes are
enhanced when the graphs and charts are animated so as to represent historical changes or future
trends of the depicted data. The use of animation in business computing is made evident by the
fact that standard business software tools, such as Microsoft's PowerPoint, now support animation.

Simulators and trainers

Many natural or man-made objects and environments can be represented artificially in a
satisfactory manner. For many years we have used optical planetariums to illustrate and teach
astronomy in an environment that does not require costly optical instruments and that is
independent of the weather and other meteoro-logical conditions. In the planetarium, the viewer
sits in a comfortable chair located in an air-conditioned amphitheater and watches the procession
of constellations and deep-sky objects, as well as the trajectory of the moon and the planets, over
a realistically depicted sky. The operator of the planetarium controls the rate of movement so that
the celestial transformations that take place over years or centuries can appear to occur in a few
seconds or in minutes. The operator can enlarge the magnification of a particular object so that the
viewer can appreciate in detail the rings of Saturn or the satellites of Jupiter. Furthermore, it is
possible in an artificial environment to reproduce the stellar objects and viewing conditions of any
particular date in history. In this manner a viewer is able to relive the astronomical observations
and experiences of Galileo or Newton. Most modern planetariums use computers to aid the control
and rendering processes.

Other natural phenomena cannot be conveniently reproduced in a physical or optical laboratory.
For example, the transformation of mass according to the theory of relativity would be practically
impossible to reproduce physically. We can use animated graphics to simulate physical entities or
to represent complex scientific phenomena such as nuclear and chemical reactions, hydraulic flow,
physiological systems and organs, or structures under load. We can also use animated graphics in
reproducing physical simulators, such as the planetarium, in depicting systems that cannot be
conveniently imitated in other ways, or in creating a more feasible or economical emulation of
physical phenomena.

One such type of computer-assisted device, sometimes called a simulator, finds practical and
economical use in experimentation and instruction. Astronauts training for a lunar landing practiced
in simulators of the landing module and the mother ship. Airplane pilots often train in computer-
assisted simulators that can safely reproduce unusual or dangerous flying conditions.

Computer games

Since the release of Pac Man in the early 1980s computer animation has played an increasingly
important role in the personal entertainment field. More recently we have seen a remarkable
increase in popularity of dedicated computer-controlled systems and user-interaction devices, such
as those developed by Nintendo and Sega. During this time the arcade-type electronic game
continued to prosper.

Even more recently, RC games and simulations have gained their own status. High-performance

video systems, CD-ROM, digital audio, and specialized user-interaction devices have been
combined in an environment called multimedia. The quality of the animated imagery and sound
effects that can be obtained in multimedia compu-ter systems often competes with those in
dedicated systems. Some applications for personal computers have achieved such a degree of
realism that moral and ethical issues are being raised regarding the use of sexually explicit or
violent representations.

Artificial life

A new discipline of computer science, named artificial life, or ALife, has evolved around the
computer modeling of biosystems. Practitioners of this new field state that it is based on biology,
robotics, and artificial intelligence. The results are digital entities that resemble self-reproducing
and self-organizing biological life forms. Computer viruses of the harmful and benign forms are
examples of artificial life.

The notion of a cellular automaton is at the core of artificial life. The idea was first described by
John von Neumann as a theoretical model of a parallel computing device. The model is made
subject to various restrictions to facilitate the formal investigation of its computing powers. The
cellular automaton is reminiscent of a living organism because it is based on an interconnection of
identical cells. Each cell behaves as a finite-state machine: it computes an output based on input
received from a finite set of other similar cells, which are said to form its neighbor-hood. A cell can
also receive input from an external source. A timer determines that all cells produce a
simultaneous output. The output is directed to all cells in the neighborhood, and possibly to an
external destination or receiver.

The first formal discussion of cellular automata was by E. F. Codd in 1968. The subject of cellular
automata is also discussed in a book edited by A.W. Burks titled Theory of Self-Reproducing
Automata (1970). A more recent title by Edward Rietman, Creating Artificial Life Self Organization,
provides a rigorous, and at the same time, entertaining presentation of this subject. The
implementation of cellular automata is often represented as a sequence of images. Each clock
cycle is an iteration update of the automata system, which can be viewed graphically on the
computer screen. The resulting changes in the system give rise to an image set that simulates an
animated entity. In general, the notion of artificial life is naturally associated with biological forms
capable of self-reproduction and self-organization. These actions imply changes that can be
represented graphically.

Virtual reality

Recent breakthroughs in input/output technology have made possible a new level of user
interaction with a computing machine. In virtual reality (VR) a computer system is equipped with
one or more interaction devices (typically in the form of virtual reality goggles or head-mounted
display), and one or more input devices, which enable the user to interact with the animation
system. The result of virtual reality is a digital universe created by the computer system in which
the user is submerged, according to its level of isolation from the surrounding environment. This
digital universe has been named cyberspace, using a term coined by science fiction writer William
Gibson in his 1984 book Neuromancer. The possible applica-tions of VR technology range from
pure entertainment to practical industrial controls. For example, we can use VR to travel to planet
Mars and walk on its surface, to control a complex robot used in industry or manufacturing, or to
dance to the tango with a virtual partner. Other applications of virtual reality technology include
scientific and medical research, art, music, CAD, electronic games, information management,
engineering, education, and surgery.

Animation techniques are usually required in virtual reality as part of the computer feedback
mechanism. In a typical VR system the goggles take the place of the video display. Animators use
their art to present to the user a convincing image of the virtual environment created by the
system. For example, when the system detects a rotation of the user's head toward the left, the
video image displayed on the VR goggles is smoothly panned in that direction. This action makes
visible the objects that were previously outside of the user's field of view, as would naturally result
from the new position of the eyes. If the virtual universe includes entities that move, the system
must use sprite animation to reflect this action in the virtual environment. For example, a virtual
reality representation of the Jurassic period could be based on images of dinosaurs that move in
predetermined or random fashion, perhaps interacting with the user.

On the PC we have not yet achieved the level of technical refinement and the image processing
power necessary for creating a completely realistic virtual environment. In an ideal system many
virtual entities would be animated simultaneously, accord-ing to the user's interaction with the
system, or to predetermined or random factors. In the years to come we are likely to create virtual
realities in which a user is able to experience being a brain surgeon, a time traveler, or a rather
skimpy meal for a large, flesh-eating animal from the Jurassic period.

Fractal graphics

When examined closely, natural surfaces are highly irregular and do not follow predictable
geometrical patterns. Such is the case with coastlines, islands, rivers, snowflakes, and galaxies.
For this reason, many natural objects cannot be satis-factorily represented using polygons or even
smooth curves because the resulting image is too regular and contrived. However, it is possible to
represent some types of natural objects realistically with a mathematical entity called a fractal. The
term was derived from the words fractional dimensions and first used by Benoit Mandelbrot in his
book The Fractal Geometry of Nature.

A fractal is often explained by a structure called a triadic Koch curve. The evolution of the Koch
curve starts with a straight line of length one. The middle third of this line (one-third fraction) is
replaced by two lines of the same length that form a 60-degree angle. The result is a curve that is
more rugged than the original one. This second-order curve can be transformed into a curve of the
third order by repeating the same process with each of its four segments. The evolution of a Koch
curve to the third order is shown in Figure 5-15.

VAN 1 OV

first order second ordes thrd el

Figure 5-15: Triadic Koch fractal

We observe that the length of the Koch curve in Figure 5-15 increases in proportion to the number
of straight line segments that it contains. This means that the second-order Koch curve has a
greater length than the first-order curve, and the third order is longer than the second order. By
continuing the process to infinity, the length of the curve also increases to infinity. Therefore, the
curve cannot be measured in one dimension. On the other hand, the Koch curve cannot be
measured in two dimensions because, by definition, its area is always zero. This leads to the
conclusion that the curve must have a dimension that is greater than one and less than two, that
is, a fractional dimension, or fractal. Following the Hausdorff-Besicovich method, the dimension of

the Koch curve is determined to be approximately 1.2857.

One interesting feature of fractals is that they can be generated by computers following what is
called a production rule. The method of subdividing each intermediate line segment into two others
is the production rule for the Koch fractal. The Koch curve exhibits a feature known as self-
similarity. Parts of the curves are similar to the whole curve. Natural objects, on the other hand,
rarely exhibit self-similarity, although they do show what is called statistical self-similarity. In using
fractal curves to simulate natural objects it is necessary to introduce a random factor that
diminishes the curve's self-similarity property. The result is comparable to the image formed in a
kaleidoscope in which the random placement of the colored glass fragments ensures a unique
image with every change.

Computer animation can be used to show the progression in the approximation of random fractals.
Notice that a truly random fractal has an infinitely complex shape; therefore, it cannot actually exist
as a visible object. The introduction of a random element in the creation of the fractal curve ensures
that the result will be unpredict-ably different every time the fractal is approximated. The animated
imagery that results from the generation of a random fractal graphic approximation is quite
interesting from both an artistic and a mathematical viewpoint.

The Animator's Predicament

At the current levels of technology, a 3D programmer on the PC rarely has available all the
resources ideally necessary for the project at hand. The most common dilemma requires a
sacrifice of image quality for the sake of performance, or vice-versa. Real-time animation in the PC
environment, such as is required in games and simulations, may result in a bumpy, coarse, and
unrealistic rendering that is aesthetically unpleasant, and even physiologically disturbing. The 3D
programmer's art consists of making the best possible use of limited resources in solving the
processing and image representation problems to produce results that are as smooth and pleasant
as the media allows. This often requires stretching the system's capabilities to its extremes as well
as resorting to every scheme and stratagem in the programmer's bag of tricks.

The least rewarding part of the programmer-animator's work is making the compromises that
ensure acceptable levels of undesirable effects. In this sense, the animator often has to decide how
small an image satisfactorily depicts the object, how much bumpiness is acceptable in representing
a movement, how little definition is sufficient for a certain scenery, or with how few attributes can an
object be realistically depicted. In the hands of the expert, these compromises and concessions
result in the best possible representation in a particular system.

Summary

Here we reviewed the fundamental concepts in computer animation. We started with cartoon
technology because computer animation originated in cartoons and continues to follow similar
methods. We also looked at frame-by-frame and real-time animation, at programming methods,
and rendering problems. The chapter also covered applications of animation and concluded with a
discussion of the compromises and concessions that the animation programmer often must make.

At this point in the book we are almost finished with the fundamentals. One topic that is pending is
covered in the next chapter: the fundamentals of Windows programming.

Chapter 6: Windows APl Programming

Overview

Although this book assumes that you have some Windows programming experience, in this
Chapter we review API programming in Windows. The idea is to establish a programming
environment for the chapters that follow and to agree upon a program development methodology.
Our approach to Windows programming is at the API level. Although we don't use class libraries or
other wrappers, we take advantage of the editing and code generating facilities provided by
Developer Studio. The process of fabricating a program requires not only knowledge of the
language con-structs that go into it, but also skills in using the environment. For example, to create
a program icon for an application you need to know about the API services that are used in defining
and loading the icon, but you also need to have skills in activating and using the icon editor that is
part of Developer Studio. Furthermore, when the icon graphics are stored in a file, you need to
follow a series of steps that make this resource available to the program.

Preparatory Steps

We assume that you already installed one of the supported software development products. The
text is compatible with Microsoft Visual C++ versions 5 and 6. The following section describes the
steps in creating a new project in Microsoft Developer Studio, inserting a source code template
into the project, modifying and saving the template with a new name, and compiling the resulting
file into a Windows executable.

Creating a project

After Visual C++ is installed, start Developer Studio by double-clicking on the program icon on the
desktop, or by selecting it from the Microsoft Visual C++ program group. The initial Developer
Studio screen varies with the program version, the Windows configuration, the options selected
when Developer Studio was last executed, and the project under development. Visual C++ version
5.0 introduced the notion of a project workspace, or simply a workspace, as a container for several
related projects. In version 5 the extension .mdp, used previously for project files, was changed to
.dsw, which now refers to a workspace. The dialog boxes for creating workspaces, projects, and
files were also changed. The workspace/project structure and the basic interface are also used in
Visual C++ version 6.0.

We start with a walk through the process of creating a project from a template file. The
walkthrough is intended to familiarize you with the Developer Studio environ-ment. Later in this
chapter you will learn about the different parts of a Windows program and develop a sample
application. We call this first project Program Zero Demo, for the lack of a better name. The project
files are found in the Program Zero project folder in the book's CD-ROM.

A project is located in a workspace, which can include several projects. Project and workspace can
be located in the same folder or subfolder or in different ones, and can have the same or different
names. In the examples and demonstration programs used in this book we use the same folder for
the project and the workspace. The result of this approach is that the workspace disappears as a
separate entity, simplifying the creation process.

A new project is started by selecting the New command from the Developer Studio File menu.
When the New dialog box is displayed, click on the Project tab option and select a project type
from the displayed list. In this case our project is Win32 Application. Make sure that the project
location entry corresponds to the desired drive and folder. If not, click the button to the right of the
location text box and select another one. Next, enter a project name in the corresponding text box
at the upper right of the form. The name of the project is the same one used by Development
Studio to create a project folder. In this example we create a project named Do Nothing Demo,
which is located in a folder named 3DBPROJECTS. You can use these same names or create
your own. Note that as you type the project name it is added to the path shown in the location text
box. At this point the New dialog box appears as in Figure 6-1.

e H=HHA

Figs Fipch !q'\-'_'-npa-c-:-. i Dacamerss |

Faspant A

TR —

Ligakoe

\Ci LEn E YT HAFTE J
AoHkirw Dl ah pasct & [junie e vrpacs
[avasz snckowss A b i maeh A
e Casauie fes =
|y srvac-Link Ligrms
J=1 Ashi: Lita By
|
|
| —
!
!

1
[

Figure 6-1: Using the New command in Developer Studio FileMenu

Make sure that the radio button labeled Create new workspace is selected so that clicking OK on
the dialog box creates both the project and the workspace. At this point, you have created a
project, as well as a workspace of the same name, but there are no program files in it yet. How you
proceed from here depends on whether you are using another source file as a base or template or
starting from scratch.

If you wish to start a source file from scratch, click the Developer Studio Project menu, select Add
To Project, and then New commands. This action displays the same dialog box as when creating a
project, but now the Files tab is open. In the case of a source file, select the C++ Source File
option from the displayed list and type a filename in the corresponding text box. The dialog
appears as shown in Figure 6-2.

S |P-:|i-:li | Wrostspecas | O Dacamen |
Ak Sarsmr Fage = Ak i pepact
++ Pipacier Fikg

!: Conn Sayuscs File

k Carnor Pile Fil vt

HTWL Pags

aa File
Lisgakis
iy bk & f miH J
| Canow

Figure 6-2: Creating a new source file in Developer Studio

The development method we use in this book is based on using source code templates. To use a
template as a base, or another source file, you must follow a different series of steps. Assuming
that you have created a project, the next step is to select and load the program template or source

file. We use the template named TemplO1.cpp. If you installed the book's CD-ROM in your system,
the template file is in the path 3DB/Templates. If you did not install the CD-ROM, then you can
copy the program file Templ01.cpp from the CD-ROM into your project folder.

To load the source file into your current project, open the Developer Studio Project menu, select
Add To Project item, and then the Files commands. This action dis-plays an Insert Files into
Project dialog box. Use the buttons to the right of the Look in text box to navigate into the desired
drive and folder until the desired file is selected. Figure 6-3 shows the file WinHello.cpp highlighted
and ready for inserting into the project.

HE]L|
Lockine | i Hallo Windows =50 2 ¥l em |
[CIDebug
IRt smscurcah
A Sorink] o
| 1 rrr=vTE—
e uilE LR
|
|
|
|
|
|
|
Film nams '[.. nHalo.cpe ! oK i
Filas of fepe: [c++ Flmsic oo oo Bk Hhe el -| Concal |
= : —
[T I.'.';- Haly =]

Figure 6-3: Inserting an existing source file into a project

When using a template file to start a new project you must be careful not to destroy or change the
original source. The template file is usually renamed when it is inserted into the project. It is
possible to insert a template file in a project, rename it, delete it from the project, and then reinsert
the renamed file. Howevers, it is easier to rename a copy of the template file before it is inserted
into the project. The following sequence of operations is used:

1.Click the File menu and select the Open command. Navigate through the directory structure to
locate the file to be used as a template. In this case the file Templ01.cpp is located in
3DB/Templates folder.

2.With the cursor still in Developer Studio editor pane, open the File menu and click Save As.
Navigate through the directory structure again until you reach the 3DB_PROJECTS\Program Zero
Demo folder. Save the file using the name Prog_zero.cpp.

3.Click on the Project menu and select the commands Add to Project and Files. Locate the file
named Prog_zero.cpp in the Insert Files into Project dialog box, select it, and click OK.

The file Prog_zero.cpp now appears in the Program Zero Demo file list in Developer Studio
workspace pane. It is also displayed in the Editor window.

The Developer Studio main screen is configurable by the user. Furthermore, the size of its display
areas is determined by the system resolution. For this reason, it is impossible to depict a
Developer Studio screen display that matches the one that every user will see. In the illustrations

and screen dumps throughout this book we have used a resolution of 1152 X 854 pixels in 16-bit
color with large fonts. However, our screen format may not match yours exactly. Figure 6-4 shows
a full screen display of Developer Studio with the file Progzero.cpp loaded in the Editor area.

— Promct Worsknascs nare Editor pane Editior wandow confrols

i

i ke e i, Fries i 1 1, Pt 1 5, fomarn . g Ml | i

— Qulpul parie

Figure 6-4: Developer Studio Project Workspace, Editor, and Output pane

The Project Workspace pane of Developer Studio was introduced in version 4.0. It has four
possible views: Class View, File View, Info View, and Resource View. The Resource View is not
visible in Figure 6-4. To display the source file in the editor pane, you must first select File View tab
and double-click on the Prog_zero.cpp filename.

At this point, you can proceed to develop the new project using the renamed template file as the
main source. The first step is to make sure that the development software is working correctly. To
do this, open the Developer Studio Build menu and click Rebuild All. Developer Studio compiles
and builds your program, which is at this stage nothing more than the renamed template file. The
results are shown in the Output area. If compilation and linking took place without error, reopen the
Build menu and select the Execute Prog_zero.exe command button. If everything is in order, a do-
nothing program executes in your system.

Now click Save on the File menu to make sure that all project files are saved on your hard drive.

Elements of a Windows program

The template file Templ01.cpp, which we used and renamed in the previous example, is a bare
bones Windows program with no functionality except to display a window on the screen. Before
proceeding to edit this template into a useful program, you should become acquainted with its
fundamental elements. In this section, we take apart the template file Templ01.cpp for a detailed
look into each of its components. The program contains two fundamental components:
WinMain () and the window procedure.

WinMain()

All Windows GUI applications must have a WinMain () function. WinMain () is to a Windows GUI
program what main () is to a DOS application. It is usually said that winMain () is the program's
entry point, but this is not exactly true. C/C++ compilers generate a startup code that calls
WinMain (), soitis the startup code and not WwinMain () that is actually called by Windows. The
WinMain () header line is as follows:

| == Return type
I e One of the standard calling conventions
| | defined in windows.h

|] === Function name

| | | [parameter list

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
PSTR szCmdLine, int iCmdShow) {

WINAPI is a macro defined in the windows.h header file, which translates the function call to the
appropriate calling convention. Recall that calling conventions refer to how the function arguments
are placed in the stack at call time, and if the caller or the called routine is responsible for restoring
stack integrity after the call. Microsoft versions of Basic, FORTRAN, and Pascal push the
parameters onto the stack in the same order in which they are declared. In these languages the
stack must be restored by the caller. In C and C++, the parameters are pushed in reverse order,
and the stack is restored automatically after the call returns. For historical reasons (and to take
advantage of hardware features of the Intel processors) Windows requires the Pascal calling
convention. In previous versions of Windows the calling convention for WinMain () was PASCAL
or FARPASCAL. You can still replace WINAPTI with FARPASCAL and the program will compile and
link correctly, but using the WINAPI macro makes your program more portable.

Parameters

Most often parameters are passed to WinMain () by Windows but some can be passed by
whatever program executes your application. Your code can inspect these parameters to obtain
information about the conditions in which the program executes. Four parameters are passed to
WinMain ():

*HINSTANCE.HINSTANCE is a handle-type identifier. The variable hInstance is an integer that
identifies the instance of the program. Consider a multitasking environment where several copies
(instances) of the same program are running simultaneously. In this case Windows sets the value
of the instance and passes it to your code. Your program needs to access this parameter to enter
it in the WNDCLASSEX structure, and to call the CreateWindow () function. Because the handle to
the instance is required outside of WinMain () by many functions of the Windows API, the
template file stores it in a public variable, named pInstance. In general, the use of public
variables is undesirable in Windows programming, but this case is one of the valid exceptions to
the rule.

*hPrevInstance. The variable hPrevInstance is also of type HINSTANCE. This parameter is
included in the call for compatibility with previous versions of Windows, which used a single copy
of the code to run more than one program instance. In 16-bit Windows the first instance had a
special role in the management of resources. Therefore, an application needed to know if it was
the first instance. hPrevInstance held the handle of the previous instance. In Windows
95/98/NT this parameter is unused and its value is set to NULL.

*PSTR szCmdLine. This is a pointer to a string that contains the command tail entered by the
user when the program is executed. It works only when the program name is entered from the
DOS command line or from the Run dialog box. For this reason, it is rarely used by code.

*int iCmdShow. This parameter determines how the window is to be initially displayed. The
program that executes your application (normally Windows) assigns a value to this parameter, as
shown in Table 6-1.

Table 6-1: WinMain() Display Mode Parameter

Value Meaning
SWHIDE Hides the window and activates another window.
SWMINIMIZE Minimizes the specified window and activates the top-

level window in the system's list.

SWRESTORE Activates and displays a window. If the window is
minimized or maximized, Windows restores it to its
original size and position (same as SWSHOWNORMAL).

SWSHOW Activates a window and displays it in its current size and
position.

SWSHOWMAXIMIZED Activates a window and displays it as a maximized
window.

SWSHOWMINIMIZED Activates a window and displays it as an icon.

SWSHOWMINNOACTIVE Displays a window as an icon. The active window remains
active.

SWSHOWNA Displays a window in its current state. The active window

remains active.

SWSHOWNOACTIVATE Displays a window in its most recent size and position.
The active window remains active.

SWSHOWNORMAL Activates and displays a window. If the window is
minimized or maximized, Windows restores it to its
original size and position (same as SWRESTORE).

Data variables

The program file TemplO1.cpp defines several variables. One of them, the handle to the program's
main window, is defined globally. The other variables are local to WinMain () or the window
procedure. The variable defined globally is

HWND hwnd ;

HWND is a 16-bit unsigned integer that serves as a handle to a window. The variable HWND refers
to the actual program window. The variable is initialized when we make the call to
CreateWindow () service, described later in this section.

The variables defined in WinMain () are as follows:

static char szClassName[] = "MainClass" ; // Class name

MSG msg ;

The first one is an array of char that shows the application's class name. In the template it is given
the name MainClass, which you can replace for a more meaningful one. The application class
name must be the same one used in the WNDCLASSEX structure.

MSG is @ message-type structure of which msg is a variable. The MSG structure is defined in the
Windows header files as follows:

typedef struct tagMSG { // msg

HWND hwnd; // Handle to window receiving message

UINT message; // message number

WPARAM wParam; // Context-dependent additional information
LPARAM lParam; // about the message

DWORD time; // Time at which message was posted

POINT pt; // Cursor position when message was posted

} MSG;

The comments to the structure members show that the variable holds information that is important
to the executing code. The values of the message variable are reloaded every time a new
message is received.

WNDCLASSEX structure

This structure is defined in the Windows header files, as follows:

typedef struct tagWNDCLASSEX {
UINT cbSize ;

UINT style ;

WNDPROC lpfnWndProc ;
int cbClsExtra ;

int cbWndExtra ;
HINSTANCE hInstance ;
HICON hIcon ;

HCURSOR hCursor ;
HBRUSH hbrBackground ;
LPCSTR lpszMenuName ;
LPCSTR lpszClassName ;
HICON hIconSm ;

} WNDCLASSEX;

The WNDCLASSEX structure contains window class information. It is used with the
RegisterClassEx () and GetClassInfoEx () functions. The structure is similar to the
WNDCLASS structure used in 16-bit Windows. The differences between the two structures is that
WNDCLASSEX has a cbSize member, which specifies the size of the structure, and the hIconsSm
member, which contains a handle to a small icon associated with the window class. In the template
file TemplO1.cpp the structure is declared and the variable initialized as follows:

// Defining a structure of type WNDCLASSEX
WNDCLASSEX wndclass ;

wndclass.cbSize = sizeof (WNDCLASSEX) ;
wndclass.style = CSHREDRAW | CSVREDRAW ;
wndclass.lpfnWndProc = WndProc ;

07

07

wndclass.cbClsExtra

wndclass.cbWndExtra
wndclass.hInstance = hInstance ;

wndclass.hIcon = LoadIcon (NULL, IDIAPPLICATION) ;
wndclass.hCursor = LoadCursor (NULL, IDCARROW) ;
wndclass.hbrBackground = (HBRUSH) GetStockObject

(WHITEBRUSH) ;
wndclass.lpszMenuName = NULL ;
wndclass.lpszClassName = szClassName ;

wndclass.hIconSm = LoadIcon (NULL, IDIAPPLICATION) ;

The window class is a template that defines the characteristics of a particular window, such as the
type of cursor and the background color. The class also specifies the address of the window
procedure that carries out the work for the window. The structure variables define the window
class, as follows:

1.The cbsize variable specifies the size, in bytes, of the structure. The member is set using the
sizeof operator in the statement:

sizeof (WNDCLASSEX) ;

2.The style variable specifies the class style or styles. Two or more styles can be combined by
means of the C bitwise OR (|) operator. This member can be any combination of the values in
Table 6-2.

Table 6-2: Summary of Window Class Styles

Symbolic Constant Action
CSBYTEALIGNCLIENT Aligns the window's client area on the byte boundary (in

the x direction) to enhance performance during drawing
operations. This style affects the width of the window and
its horizontal position on the display.

CSBYTEALIGNWINDOW Aligns a window on a byte boundary (in the x direction) to
enhance performance during operations that involve
moving or sizing the window. This style affects the width
of the window and its horizontal position on the display.

CSCLASSDC Allocates one device context to be shared by all windows
in the class. Window classes are process specific;
therefore, different threads can create windows of the
same class.

CSDBLCLKS Sends double-click messages to the window procedure
when the user double-clicks the mouse while the cursor is
within a window belonging to the class.

CSGLOBALCLASS Allows an application to create a window of the class
regardless of the value of the hInstance parameter
passed to the CreateWindowEx () function. If you do not
specify this style, the hInstance parameter passed to
CreateWindowEx () function must be the same as the
one passed to the RegisterClass () function.

CSHREDRAW Redraws the entire window if a movement or size
adjustment changes the width of the client area.

CSNOCLOSE Disables the Close command on the System menu.

CSOWNDC Allocates a unique device context for each window in the
class.

CSPARENTDC Specifies that child windows inherit their parent window's

device context. Specifying CSPARENTDC enhances an
application's performance.

CSSAVEBITS Saves, as a bitmap, the portion of the screen image
obscured by a window. Windows uses the saved bitmap
to recreate the screen image when the window is
removed. This style is useful for small windows (such as
menus or dialog boxes) that are displayed briefly and then
removed before other screen activity takes place.

CSVREDRAW Redraws the entire window if a movement or size
adjustment changes the height of the client area.

Of these, the styles CSHREDRAW and CSVREDRAW are most commonly used. They can be
combined by means of the OR operator to produce a window that is auto-matically redrawn if it is
resized vertically or horizontally, as implemented in the TemplO1.cpp code.

lpfnWndProc is a pointer to the window procedure, described later in this chapter. In the
template TemplO1.cpp it is initialized to the name of the window procedure as follows:

wndclass.lpfnWndProc = WndProc;

cbClsExtra is a count of the number of extra bytes to be allocated following the window class
structure. The operating system initializes the bytes to zero. In the template this member is set to
zero.

cbWndExtra is a count of the number of extra bytes to allocate following the window instance.
The operating system initializes the bytes to zero. In the template this member is set to zero.

hInstance is a handle to the instance of the window procedure.

hIcon is a handle to the class icon. If this member is NULL, an application must draw an icon
whenever the user minimizes the application's window. In the template this member is initialized by
calling the LoadIcon () function.

hCursor is a handle to the class cursor. If this member is NULL, an application must explicitly set
the cursor shape whenever the mouse moves into the application's window. In the template this
member is initialized by calling the L.oadCursor () function.

hbrBackground is a background brush. This member can be a handle to the physical brush to be
used for painting the background, or it can be a color value. If it is a color value, then it must be
one of the standard system colors listed in Table 6-3.

Table 6-3: Common Windows Standard System Colors

Symbolic Constant Meaning

- 0000000000000

COLORACTIVEBORDER Border color of the active window

COLORACTIVECAPTION Caption color of the active window

COLORAPPWORKSPACE Window background of MDI clients

COLORBACKGROUND Desktop color

COLORBTNFACE Face color for buttons

COLORBTNSHADOW Shadow color for buttons

COLORBTNTEXT Text color on buttons

COLORCAPTIONTEXT Text color for captions, size boxes, and scroll bar arrow
boxes

COLORGRAYTEXT Color for disabled text

COLORHIGHLIGHT Color of a selected item

COLORHIGHLIGHTTEXT Text color of a selected item
COLORINACTIVEBORDER Border color of inactive window
COLORINACTIVECAPTION Caption color of an inactive window
COLORMENU Background color of a menu
COLORMENUTEXT Text color of a menu
COLORScroll bar Color of a scroll bar's gray area
COLORWINDOW Background color of a window
COLORWINDOWFRAME Frame color of a window
COLORWINDOWTEXT Text color of a window

When this member is NULL, an application must paint its own background whenever it is required
to paint its client area. In the template this member is initialized by calling the
GetStockObject () function.

lpszMenuName is a pointer to a null-terminated character string that specifies the resource name
of the class menu, as it appears in the resource file. If you use an integer to identify the menu, then
you must use the MAKEINTRESOURCE macro. If this member is NULL, the windows belonging to
this class have no default menu, as is the case in the template file.

lpszClassName is a pointer to a null-terminated string or it is an atom. If this parameter is an
atom, it must be a global atom created by a previous call to the GlobalAddAtom () function. The
atom, a 16-bit value, must be in the low-order word of 1pszClassName; the high-order word must
be zero. If 1pszClassName is a string, it specifies the window class name. In Templ01.cpp this
member is set to the szClassName [] array.

In Windows 95/98, hIconsm is a handle to a small icon that is associated with the window class.
This is the icon shown in Windows Explorer and in dialog boxes that list filenames. A Windows
95/98 application can use a predefined icon in this case, using the LoadIcon function with the
same parameters as for the hIcon member. In Windows NT this member is not used and should
be set to NULL. Windows 95/98 applications that set the small icon to NULL still have the default
small icon displayed on the task bar.

In most cases it is better to create both the large and the small icon than to let Windows create the
small one from the large bitmap. Later in this chapter we describe how to create both icons as a
program resource and how to make these resources available to the application.

Contrary to what is sometimes stated, the LoadIcon () function cannot be used to load both large
and small icons from the same resource. For example, if the icon resource is named IDIICONI,
and we proceed as follows:

wndclass.hicon = LoadIcon (hInstance,

MAKEINTRESOURCE (IDIICON1) ;

wndclass.hiconSm = LoadIcon (hInstance,

MAKEINTRESOURCE (IDIICON1) ;

the result is that the large icon is loaded from the resource file, but not the small one. This happens
even if the resource file contains both images. Instead, you must use the LoadImage () function,
as follows:

wndclass.hIcon = LoadImage (hInstance,
MAKEINTRESOURCE (IDIICON1),

IMAGEICON, // Type

32, 32, // Pixel size

LRDEFAULTCOLOR) ;

wndclass.hIconSm = LoadImage (hInstance,
MAKEINTRESOURCE (IDIICON1),

IMAGEICON, // Type

16, 16, // Pixel size

LRDEFAULTCOLOR) ;

Now both the large and the small icon resources are loaded correctly and are used as required.

Registering the window class

After your code has declared the WNDCLASSEX structure and initialized its member variables, it has
defined a window class that encompasses all the structure attri-butes. The most important ones
are the window style (wndclass.style), the pointer to the window procedure

RegisterClassEx () function is used to notify Windows of the existence of a particular window
class, as defined in the WNDCLASSEX structure variable. The address-of (&) operator is used to
reference the location of the specific structure variable, as in the following statement:

RegisterClassEx (&wndclass) ;

The RegisterClassEx () function returns an atom (16-bit value). This value is nonzero if the
class is successfully registered. Code should check for a successful registration because you
cannot create a window otherwise. The following construct ensures that execution does not
proceed if the function fails.

if (!RegisterClassEx (&wndclass))

return (0) ;

This coding style is the one used in the template Templ01.cpp.

Creating the window

A window class is a general classification. Other data must be provided at the time the actual
window is created. The CreateWindowEx () function receives the addi-tional information as
parameters. CreateWindowEx () is a Windows 95 version of the CreateWindow () function.
The only difference between them is that the new version supports an extended window style
passed as its first parameter.

The CreateWindowEx () function is very rich in arguments, many of which apply only to special
window styles. For example, buttons, combo boxes, list boxes, edit boxes, and static controls can
be created with a CreateWindowEx () call. At this time, we refer only to the most important
function parameters that relate to a program's main window.

In the file TemplO1.cpp the call to CreateWindowEx () is coded as follows:

hwnd = CreateWindowEx (

WSEXLEFT, // left aligned (default)
szClassName, // pointer to class name
"Window Caption", // window caption (title bar)
WSOVERLAPPEDWINDOW, // window style
CWUSEDEFAULT, // initial x position
CWUSEDEFAULT, // initial y position
CWUSEDEFAULT, // initial x size
CWUSEDEFAULT, // initial y size

NULL, // parent window handle

NULL, // window menu handle

hInstance, // program instance handle

NULL) ; // creation parameters

The first parameter passed to the CreateWindowEx () function is the extended window style
introduced in the Win32 API. The one used in the file Templ01.cpp, WSEXLEFT, acts as a
placeholder for others that you may want to select because it is actually the default value. Table 6-
4 lists some of the most common extended styles.

Table 6-4: Most Commonly Used Windows Extended Styles

Symbolic Constant

Meaning

WSEXACCEPTFILES

WSEXAPPWINDOW

WSEXCLIENTEDGE

WSEXCONTEXTHELP

WSEXCONTROLPARENT

WSEXDLGMODALFRAME

WSEXLEFT

WSEXMDICHILD

WSEXNOPARENTNOTIEY

The window created with this style accepts drag-and-drop
files.

A top-level window is forced onto the application taskbar
when the window is minimized.

The window has a border with a sunken edge.

The title bar includes a question mark. When the user
clicks the question mark, the cursor changes to a question
mark with a pointer. If the user then clicks a child window,
it receives a WMHELP message.

Enables the user to navigate among the child windows of
the window by using the Tab key.

The window has a double border. Optionally, the window
can be created with a title bar by specifying the
WSCAPTION style in the dwStyle parameter.

The window has generic "left-aligned" properties. This is
the default.

This style creates an MDI child window.

This style creates a child window that does not send the
WMPARENTNOTIFY message to its parent window when it
is created or destroyed.

WSEXOVERLAPPEDWINDOW This style combines the WSEXCLIENTEDGE and
WSEXWINDOWEDGE styles.

WSEXPALETTEWINDOW This style combines the WSEXWINDOWEDGE,
WSEXTOOLWINDOW, and WSEXTOPMOST styles.

WSEXRIGHTScroll bar The vertical scroll bar (if present) is to the right of the
client area. This is the default placement for the vertical
scrollbar.

WSEXSTATICEDGE This style creates a window with a three-dimensional
border style intended for use with items that do not accept
user input.

WSEXTOOLWINDOW This style creates a tool window. This type of window's
intended use is as a floating toolbar.

WSEXTOPMOST A window created with this style should be placed above
all non-topmost windows and should stay above them,
even when the window is deactivated.

WSEXTRANSPARENT A window created with this style is transparent. That is,
any windows that are beneath it are not obscured by it.

WSEXWINDOWEDGE The window has a border with a raised edge.

The second parameter passed to the CreateWindowEx () function call is either a pointer to a
string with the name of the window type, a string enclosed in double quotation marks, or a
predefined name for a control class.

In the template file, szClassName is a pointer to the string defined at the start of WinMain (), with
the text "MainClass." You can edit this string in your own applications so that the class name is
more meaningful. For example, if you were coding an editor program you may rename the
application class as TextEdClass. However, this is merely a name used by Windows to associate a
window with its class; it is not displayed as a caption or used otherwise.

Control classes can also be used as a window class name. These classes are the symbolic
constants BUTTON, Combo box, EDIT, List box, MDICLIENT, Scroll bar, and STATIC.

The third parameter can be a pointer to a string or a string enclosed in double quotation marks
entered directly as a parameter. In either case, this string is used as the caption to the program
window and is displayed in the program'’s title bar. Often this caption coincides with the name of
the program. You should edit this string to suit your own program.

The fourth parameter is the window style. Over 25 styles are defined as symbolic constants. The

most used styles are listed in Table 6-5.

Table 6-5: Window Styles

Symbolic Constant Meaning
WSBORDER Creates a window that has a thin-line border.
WSCAPTION Creates a window that has a title bar (includes the

WSBORDER style).

WSCHILD Creates a child window. This style cannot be used with
the WSPOPUP style.

WSCLIPCHILDREN Excludes the area occupied by child windows when
drawing occurs within the parent window.

WSCLIPSIBLINGS Clips child windows relative to each other. When a
particular child window receives a WMPAINT message,
this style clips all other overlapping child windows out of
the region of the child window to be updated. If
WSCLIPSIBLINGS is not specified and child windows
overlap, it is possible to draw within the client area of a
neighboring child window.

WSDISABLED Disables the window. A disabled window cannot receive
input from the user.

WSDLGFRAME Creates a window that has a border of a style typically
used with dialog boxes. The window does not have a title
bar.

WSHSCROLL Creates a window that has a horizontal scroll bar.

WSICONIC Minimizes the Window; same as the WSMINIMIZE style.

WSMAXIMIZE Maximizes the window.

WSMAXIMIZEBOX Creates a window that has a Maximize button. Cannot be

combined with the WSEXCONTEXTHELP style.

WSMINIMIZE

WSMINIMIZEBOX

WSOVERLAPPED

WSOVERLAPPEDWINDOW

WSPOPUP

WSPOPUPWINDOW

WSSIZEBOX

WSSYSMENU

WSTILED

WSTILEDWINDOW

WSVISIBLE

WSVSCROLL

The style defined in the template file Templ01.ccp is WSOVERLAPPEDWINDOW. This style creates a

Minimizes the window; same as the WSICONIC style.

Creates a window that has a Minimize button. Cannot be
combined with the WSEXCONTEXTHELP style.

Overlapped window. Has a title bar and a border.

Overlapped window with the WSOVERLAPPED,
WSCAPTION, WSSYSMENU, WSTHICKFRAME,
WSMINIMIZEBOX, and WSMAXIMIZEBOX styles. Same as
the WSTILEDWINDOW style.

Creates a pop-up window. Cannot be used with the
WSCHILD style.

Creates a pop-up window with WSBORDER, WSPOPUP, and
WSSYSMENU styles. The WSCAPTION and
WSPOPUPWINDOW styles must be combined to make the
System menu visible.

Creates a window that has a sizing border. Same as the
WSTHICKFRAME style.

Creates a window that has a System—menu box in its title
bar. The WSCAPTION style must also be specified.

Overlapped window. Has a title bar and a border. Same
as the WSOVERLAPPED style.

Overlapped window with the WSOVERLAPPED,
WSCAPTION, WSSYSMENU, WSTHICKFRAME,
WSMINIMIZEBOX, and WSMAXIMIZEBOX styles. Same as
the WSOVERLAPPEDWINDOW style.

Window is initially visible.

Creates a window that has a vertical scroll bar.

window that has the styles WSOVERLAPPED, WSCAPTION, WSSYSMENU, WSTHICKFRAME,
WSMINIMIZEBOX, and WSMAXIMIZEBOX. It is the most common style of windows.

The fifth parameter to the CreateWindowEx () service defines the initial horizontal position of the
window. The value CSUSERDEFAULT (0x80000000) determines the use of the default position. The
template file uses the same CSUSERDEFAULT symbolic constant for the y position, and the
windows x and y size.

The ninth and tenth parameters are set to NULL because this window has no parent and no
default menu.

The eleventh parameter, hIinstance, is the handle to the instance that was passed to
WinMain () by Windows.

The last entry, called the creation parameters, can be used to pass data to a program. A
CREATESTRUCT-type structure is used to store the initialization parameters passed to the window
procedure of an application. The data can include an instance handle, a new menu, the window's
size and location, the style, the window's nhame and class name, and the extended style. Because
no creation parameters are passed, the field is set to NULL.

The CreateWindowEx () function returns a handle to the window of type HWND. The template file
TemplO1.cpp stores this handle in a global variable named hwnd. The reason for this is that many
functions in the Windows API require this handle. By storing it in a global variable, we make it
visible throughout the code.

If CreateWindowsEx () fails, it returns NULL. Code in WinMain () can test for this error
condition with the statement

if (!hwnd)

return (0) ;

We do not use this test in the template file Templ01.cpp because it is usually not necessary. If
WinMain () fails, you may use the debugger to inspect the value of hwnd after
CreateWindowEx () to make sure that a valid handle was returned.

Displaying the window

CreateWindowEx () creates the window internally but does not display it. To display the window
your code must call two other functions: ShowWindow () and UpdateWindow (). ShowWindow ()
sets the window's show state and UpdateWindow () updates the window's client area. In the case
of the program's main window, showWindow () must be called once, using as a parameter the
iCmdShow value passed by Windows to WinMain () . In the template file the call is coded as
follows:

ShowWindow (hwnd, iCmdShow) ;

The first parameter to ShowWindow () is the handle to the window returned by
CreateWindowEx (). The second parameter is the window's display mode param-eter, which
determines how the window must be initially displayed. The display mode parameters are listed in
Table 6-1, but in this first call to ShowWindow () you must use the value received by WinMain ().

UpdateWindow () actually instructs the window to paint itself by sending a WMPAINT message to
the window procedure. The processing of the WMPAINT message is described later in this chapter.
The actual code in the template file is as follows:

UpdateWindow (hwnd) ;

If all has gone well, at this point your program is displayed on the screen. It is now time to
implement the message passing mechanisms that are at the heart of event-driven programming.

The message loop

In an event-driven environment there can be no guarantee that messages are processed faster
than they originate. For this reason Windows maintains two message queues. The first type of
queue, called the system queue, is used to store messages that originate in hardware devices,
such as the keyboard and the mouse. In addition, every thread of execution has its own message
queue. The message handling mechanism can be described with a simplified example: when a
keyboard event occurs, the device driver software places a message in the system queue.
Windows uses information about the input focus to decide which thread should handle the
message. It then moves the message from the system queue into the corresponding thread queue.

A simple block of code, called the message loop, removes a message from the thread queue and
dispatches it to the function or routine that must handle it. When a special message is received,
the message loop terminates, and so does the thread. The message loop in TemplO1.cpp is coded
as follows:

while (GetMessage (&msg, NULL, 0, 0))
{

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

}

return msg.wParam ;

The while statement calls the function GetMessage (). The first parameter to GetMessage () is a
variable of the structure type MsSG, described earlier in this chapter and reproduced in Appendix A.
The structure variable is filled with information about the message in the queue, if there is one. If
no message is waiting in the queue, Windows suspends the application and assigns its time slice
to other threads of execution. In an event-driven environment, programs act only in response to
events. If no event occurs no message is sent and no action takes place.

The second parameter to GetMessage () is the handle to a window for which to retrieve a
message. Most applications set this parameter to NULL, which signals that all messages for
windows that belong to the application making the call should be retrieved. The third and the fourth
parameters to GetMessage () are the lowest and the highest message numbers to be retrieved.

parameters to GetMessage () are the lowest and the highest message numbers to be retrieved.
Threads that only retrieve messages within a particular range can use these parameters as a filter.
When the special value 0 is assigned to both of these parameters (as is the case in our message
loop) then no filtering is performed and all messages are passed to the application.

There are two functions inside the message loop. TranslateMessage () is a key-board
processing function that converts keystrokes into characters. The characters are then posted to the
message queue. If the message is not a keystroke that needs translation, then no special action is
taken. The DispatchMessage () function sends the message to the window procedure, where it
is further processed and either acted upon or ignored. The window procedure is discussed in the
following section. GetMessage () returns 0 when a message labeled WMQUTIT is received. This
signals the end of the message loop; at this point execution returns from winMain (), and the
application terminates.

The Window Procedure

At this moment in a program's execution the window class has been registered, the window has
been created and displayed, and all messages are being routed to your code. The window
procedure, sometimes called the window function, is where you write code to handle the
messages received from the message loop. It is in the window procedure that you respond to the
events that pertain to your program.

Every window must have a window procedure. Although the name WinProc () is commonly used,
you can use any other name for the window procedure provided that it appears in the procedure
header, the prototype, in the corresponding entry of the WNDCLASSEX structure, and that it does
not conflict with another name in your application. Also, a Windows program can have more than
one window procedure. The program's main window is usually registered in WinMain () but others
can be registered elsewhere in an application. Here again, each window procedure corresponds to
a window class, has its own WNDCLASSEX structure, as well as a unique name.

In the template, the window procedure is coded as follows:

| === _Return type, equivalent to a long type
N ity _Same as FAR PASCAL calling convention.

| | Used in windows and dialog procedures.

I T Procedure name

| | | [parameter list ...]

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam,
LPARAM lParam) {

The window procedure is of callback type. The CALLBACK symbol was first introduced in Windows
3.1 and is equivalent to FAR PASCAI, and also to WINAPT because all of them currently
correspond to the stdcall calling convention. Although it is possible to substitute stdcall for
CALLBACK in the function header, it is not advisable because this could compromise the
application's portability to other platforms or to future versions of the operating system.

The return value of a window procedure is of type LRESULT, which is a 32-bit integer. The actual
value depends on the message, but it is rarely used by application code. However, there are a few
messages for which the window procedure is expected to return a specific value. It is a good idea
to check the Windows documentation when in doubt.

Window procedure parameters

The four parameters to the window procedure are the first four fields in the MSG structure. Because
the window procedure is called by Windows, the parameters are provided by the operating system
at call time, as follows:

*hwnd is the handle to the window receiving the message. This is the same handle returned by

CreateWindow ().

*iMsg is a 32-bit unsigned integer (UINT) that identifies each particular message. The constants
for the various messages are defined in the Windows header files. They all start with the letters
WM, which stand for window message.

swParam and 1Param are called the message parameters. They provide additional information
about the message. Both values are specific to each message.

The last two members of the message structure, which correspond to the message's time of
posting and cursor position, are not passed to the window procedure. However, application code
can use the functions GetMessageTime () and GetMessagePos () to retrieve these values.

Window procedure variables

The implementation of the window procedure in Templ01.cpp starts by declaring a scalar of type
HDC and two structure variables of type HWND and MSG, respectively. The variables are as follows:

*hdc is a handle to the device context. A device context is a data structure maintained by
Windows, which is used in defining the graphics objects and their attributes, as well as their
associated graphics modes. Devices such as the video display, printers, and plotters must be
accessed through a handle to their device contexts, which is obtained from Windows.

*ps is @ PAINTSTRUCT variable. The structure is defined by Windows as follows:

typedef struct tagPAINTSTRUCT

{

HDC hdc; // identifies display device

BOOL fErase; // not-zero if background must be
// erased

RECT rcPaint; // Rectangle structure in which
// painting is requested

BOOL fRestore; // RESERVED

BOOL fIncUpdate; // RESERVED

BYTE rgbReserved[32]; // RESERVED

} PAINTSTRUCT;

The structure contains information that is used by the application to paint its own client area.
*rect is a RECT structure variable. The RECT structure is also defined by Windows:

typdef struct RECT {

LONG left; // x coordinate of upper-left corner

LONG top; // y of upper-left corner

LONG right; // x coordinate of bottom-right corner
LONG bottom; // y of bottom-right

} RECT;

The RECT structure is used to define the corners of a rectangle, in this case of the application's
display area, which is also called the client area.

Message processing

The window procedure receives and processes messages. The message can originate as follows:

*Some messages are dispatched by WinMain () . In this group are the messages placed in the
thread's message queue by the DispatchMessage () function in the message loop. Messages
handled in this manner are referred to as queued messages. Queued messages originate in
keystrokes, mouse movements, mouse button clicks, the system timer, and in orders to redraw the
window.

*All other messages come directly from Windows. These are called nonqueued messages.

The window procedure examines each message, queue or nonqueued, and either takes action or
passes the message back for default processing. In the template file TemplO1.cpp the message
processing skeleton is coded as follows:

switch (iMsgq)

{

// Windows message processing
// Preliminary operations
case WMCREATE:

return (0);

// Redraw window

case WMPAINT

hdc = BeginPaint (hwnd, é&ps) ;
GetClientRect (hwnd, &rect) ;

// Initial display operations here
EndPaint (hwnd, &ps) ;

return 0 ;

// End of program execution

case WMDESTROY

PostQuitMessage (0) ;
return 0 ;

}

return DefWindowProc (hwnd, iMsg, wParam, lParam) ;

Messages are identified by uppercase symbolic constants that start with the characters wM
(window message). Over two hundred message constants are defined in Windows. Three
messages are processed in the template file: WMCREATE, WMPAINT, and WMDESTROY.

When the window procedure processes a message it must return 0. If it does not process a
particular message, then the function DefWindowsProc () is called to provide a default action.

WM_CREATE message processing

The WMCREATE message is sent to an application as a result of the CreateWindowEx () function
in WinMain (). This message gives the application a chance to perform preliminary initialization,
such as displaying a greeting screen, or playing a sound file. In the template, the WMCREATE
processing routine does nothing. It serves as a placeholder where the programmer can insert the
appropriate code.

WM_PAINT message processing

The WMPAINT message informs the program that all or part of the client window must be repainted.
This happens when the user minimizes, overlaps, or resizes the client window area. Recall that the
style of the program's main window is defined in the template with the statement:

wndclass.style = CSHREDRAW | CSVREDRAW ;
This style determines that the screen is redrawn if it is resized vertically or horizontally.

In WMPAINT, processing begins with the BeginPaint () function. BeginPaint () serves to
prepare the window for a paint operation by filling a variable of type PAINTSTRUCT, previously
discussed. The call to BeginPaint () requires the hwndvariable, which is the handle to the
window that will be painted. ps, a PAINTSTRUCT variable, is also filled by the call. During
BeginPaint () Windows erases the background using the currently defined brush.

The call to GetClientRect () requires two parameters. The first one is the handle to the window
(hwnd), which is passed to the window procedure as a parameter. In the template file this value is
also stored in a public variable. The second parameter is the address of a structure variable of
type RECT, where Windows places the coordinates of the rectangle that defines the client area.
The left and top values are always set to zero.

Processing ends with EndPaint (). EndPaint () notifies Windows that the paint operation has
concluded. The parameters passed to EndPaint () are the same ones passed to
BeginPaint () : the handle to the window and the address of the structure variable of type

PAINTSTRUCT.

WM_DESTROY message processing

The WMDESTROY message is received by the window procedure when the user takes an action to
destroy the window, usually by clicking the Close button or selecting the Close or Exit commands
from the File or the System menus. The standard processing performed in WMDESTROY is

PostQuitMessage (0) ;

The PostQuitMessage () function inserts a WMQUIT message in the message queue, thus
terminating the GetMessage loop and ending the program.

The default windows procedure

The code in the template file contains a return statement for each of the messages that it handles.
For example

case WMPAINT

hdc = BeginPaint (hwnd, é&ps) ;
GetClientRect (hwnd, &rect) ;

// Initial display operations here
EndPaint (hwnd, &ps) ;

return 0 ;

The last statement in this routine returns a value of zero to Windows. The Windows documentation
states that zero must be returned when an application processes the WMPAINT message. Some
Windows messages, not many, require a return value other than zero.

Many of the messages received from Windows, or retrieved from the message queue, are of no
interest to your application. In this case, code must provide a default action for those messages
that it does not handle. Windows contains a function, named DefWindowsProc (), that ensures
this default action. DefWindowsProc () provides specific processing for those messages that
require it, thus implementing a default behavior. For those messages that can be ignored,
DefWindowsProc () returns zero. Your application uses the return value of DefWindowsProc ()
as its own return value from the window procedure. This action is coded as follows in the template
file:

return DefWindowProc (hwnd, iMsg, wParam, lParam) ;

The parameters passed to DefWindowsProc () are the same message parameters received by
your window procedure from the operating system.

The WinHello Program

In the first walkthrough, at the beginning of this chapter, we used the template file Templ01.cpp to
create a new project, which we named Program Zero Demo. Program Zero Demo resulted in a do-
nothing program because no modifications were made to the template file at that time. In the
present walkthrough we proceed to make modifications to the template file to create a Windows
program different from the template. This project, which we named Hello Windows, is a Windows
version of the classic "Hello World" program.

We first create a new project and use the template file Templ01.cpp as the source code base for it.
To do this we must follow all the steps in the first walkthrough, except that the project name is now
Hello Windows and the name template file Templ01.cpp is copied and renamed WinHello.cpp.
After you have finished all the steps in the walkthrough you will have a project named Hello
Windows and the source file named WinHello.cpp listed in the Project Workspace and displayed in
the Editor window. After the source file is renamed, you should edit the header block to reflect the
file's new name and the program's purpose. Figure 6-5 shows the Developer Studio screen at this
point.

e o e |
2 L e (e B D [om e e NET
CEW W B Ha #EC 1 w8 0B S vl =

Lk

1), et T & Srinmd 5, Frceiem | L Bam L oLl o i O

Figure 6-5: Developer Studio main screen showing the Hello Windows Project and source file

The project Hello Windows, which we are about to code, has the following features:
*The caption displayed on the program title bar is changed to "Hello Windows."
*When the program executes, it displays a greeting message on the center of its client area.

*The program now contains a customized icon. A small version of the icon is displayed in the title
bar and a larger one is used when the program's executable is represented by a shortcut on the
Windows desktop.

After you create the project named 7HeIIo Windows and include in it the source file WinHello.cpp,

you are ready to start making modifications to the source and inserting new elements into the
project.

Modifying the program caption

The first modification that we make to the source is to change the caption that is displayed on the
title bar when the program executes. This requires editing the third parameter passed to the
CreateWindowsEx () function in WinMain (). The parameter now reads "Hello Windows."
Throughout this book we use the project's name, or a variation of it, as the title bar caption. Our
reason for this is to make it easy to find the project files from a screen dump of the executable.

Displaying text in the client area

The second modification requires entering a call to the DrawText () API function, in the case
WM _PAINT processing routine. The routine now is

case WM _PAINT
hdc = BeginPaint (hwnd, &ps)
GetClientRect (hwnd, é&rect) ;

// Display message in the client area
DrawText (hdc,

"Hello World from Windows",

-1,

&rect,

DT SINGLELINE | DT CENTER | DT VCENTER) ;

EndPaint (hwnd, &ps) ;

return 0 ;

The call to DrawText () requires five parameters. When calls require several parameters, we can
improve the readability of the source by devoting a separate text line to each parameter, or to
several associated parameters, as in the previous listing.

The first parameter to DrawText () is the handle to the device context. This value was returned
by the call to BeginPaint (), described previously in this chapter.

The second parameter to DrawText () points to the string to be displayed. The string can also be
enclosed in double quotation marks, as in the previous listing.

The third parameter is -1 if the string defined in the second parameter terminates in NULL. If not,
then the third parameter is the count of the number of characters in the string.

The fourth parameter is the address of a structure of type RECT, which contains the logical
coordinates of the area in which the string is to be displayed. The call to GetClientRect (),
made in the WM PAINT message intercept, filled the members of the rect structure variable.

In the fifth parameter are the text formatting options. Table 6-6 lists the most used of these

controls.

Table 6-6: Symbolic Constants Used in DrawText() Function

Value

Meaning

DTBOTTOM

DTCALCRECT

DTCENTER

DTEXPANDTABS

DTEXTERNALLEADING

DTLEFT

DTNOCLIP

DTNOPREFIX

DTRIGHT

Bottom-justifies text. Must be combined with
DTSINGLELINE.

This constant is used to determine the width and height of
the rectangle. If there are multiple lines of text, DrawText
uses the width of the rectangle in the RECT structure
variable supplied in the call and extends the base of the
rectangle to bound the last line of text. If there is only one
line of text, DrawText modifies the right side of the
rectangle so that no text is displayed.

Centers text horizontally.

Expands tab characters. The default number of characters
per tab is eight.

Includes the font external leading in line height. Normally,
it is not included.

Aligns text to the left.

Draws without clipping. The function executes somewhat
faster when DTNOCLIP is used.

DrawText () interprets the control character ¢ as a
command to underscore the character that follows. The
control characters && print a single &. This processing is
turned off by specifying DTNOPREFIX.

Aligns text to the right.

DTSINGLELINE Displays text on a single line only. Carriage returns and
linefeeds are ignored.

DTTOP Top-justifies text (single line only).
DTVCENTER Centers text vertically (single line only).
DTWORDBREAK Breaks words. Lines are automatically broken between

words if a word extends past the edge of the rectangle
specified by the 1pRect parameter. A carriage-return—
linefeed sequence also breaks the line.

Creating a program resource

The last customization that you have to perform on the template file is to create two customized
icons, which are associated with the program window. The icons correspond to the hIcon and
hIconSm members of the WNDCLASSEX structure described previously and listed in Appendix A.
hIcon is the window's standard icon. Its default size is 32-by-32 pixels, although Windows
automatically resizes this icon as required. The standard icon is used on the Windows desktop
when a shortcut is created and in some file listing modes of utilities like Windows Explorer. The
small icon is 16-by-16 pixels, which makes it one-fourth the size of the large one. This is the icon
shown in dialog boxes that list filenames, by Windows Explorer, and in the program's title bar.
Windows NT uses a scaled version of the standard icon when a smaller one is required.

An icon is a resource. Resources are stored in read-only, binary data files, which the application
can access by means of a handle. We introduce icons at this time because other program
resources such as cursors, menus, dialog boxes, bitmaps, and fonts are handled similarly. The
icons that we create in this walkthrough are considered an application-defined resource.

The most convenient way of creating and using resources is to take advantage of the facilities in
the development environment. Visual C++ provides several resource editors, and Developer
Studio facilitates the creation and manipulation of the support files required for using resources.
Graphics programmers often want to retain the highest possible control over their code; however,
the use of these facilities in creating and managing resources does not compromise this principle.
The files created by the development environment are both visible and editable. As you gain
confidence and knowledge about them, you can progressively take over some or all of the
operations performed by the development software. In this book, we sometimes let the
development environment generate one or more of the program files and then proceed to edit
them so that it better suits our purpose.

The convenience of using the automated functions of the development environment is made
evident by the fact that a simple resource often requires several software elements. For example,
a program icon requires the following components:

*A bitmap that graphically encodes the icon. If the operating system and the application support

the small icon, then two bitmaps are required.

*A script file (also called a resource definition file), which lists all the resources in the application

and may describe some of them in detail. The resource script can also reference other files and

may include comments and pre-processor directives. The resource compiler (RC.EXE) compiles
the script file into a binary file with the extension .RES. This binary file is referenced at link time.

The resource file has the extension .RC.

*The script file uses a resource header file, with the default filename resource.h, which contains
preprocessor directives related to the resources used by the application. The application must
reference this file with an #include statement.

Creating the icon bitmap

Developer Studio provides support for the following resources: dialog boxes, menus, cursors,
icons, bitmaps, toolbars, accelerators, string tables, and version controls. Each resource has either
a graphics editor or a wizard that helps create the resource. In this discussion we refer to either
one of them as a resource editor.

Resource editors can be activated by clicking Resource in the Insert menu. At this time Developer
Studio displays a dialog box with an entry for each type of resource. Alternatively, you can access
the resource editors faster by displaying the Resource toolbar. In Visual C++ 4 and later this is
accomplished by clicking Toolbars in the View menu, and then selecting the check box for the
Resource option. In versions 5 and 6 select Customize in the Tools menu, open the Toolbars tab
in the Customize dialog box, and select the check box for the Resource option. The Graphics and
Colors boxes should also be checked to display the normal controls in the resource editors. The
resulting toolbar is identical in both cases. When the Resource toolbar is displayed, you can drag it
into the toolbar area or to any other convenient screen location. The Insert Resource dialog screen
and the resource toolbar are shown in Figure 6-6.

T
r— |
.I_. e
=
B il |
| T =
H
o d-adog bas

A LB
rwy BTy
T TN
TRl TR
'4..'!}.1-;;‘.1_"1.1:.7__ (B fles =

Figure 6-6: Developer Studio Insert Resource dialog screen and toolbar

You can activate the icon editor either by selecting the icon option in the Resource dialog box or by
clicking the appropriate button on the toolbar. The icon editor is simple to use and serves well in
most cases. It enables you to create the bitmap for several sizes of icons. Although the interface to
the icon editor is simple, it is also powerful and flexible. You should experiment with the icon editor,
as well as with the other resource editors, until you have mastered all their options and modes.
Figure 6-7 shows the icon editor in Developer Studio.

Chersige: |Glen:|5'd-:]:"-.'f| Ll ﬂ i _jl
[

1 L T
Pl e
~ 7 A
OE=
N N

Figure 6-7: Creating an icon resource with Developer Studio icon editor

The toolbar on the right of the icon editor is similar to the one used in the Windows Paint utility and
in other popular graphics programs. There are several tools that enable you to draw lines, curves,
and geometrical figures in outline or filled form. Also, there is a palette box from which colors for
foreground and background can be selected.

Developer Studio makes possible the creation of a large and a small icon from the same resource.
To request the small icon, click on the New Device Image button and then select the 16-by-16
icon. The two icons, 32-by-32 pixels and 16-by-16 pixels, can be developed alternatively by
selecting one of them in the Open Device Image scroll box in the icon editor. Windows
automatically uses the large and the small icons as required.

In the WinHello program the WNDCLASSEX structure is edited to support user-created large and
small icons, as follows:

// The program icon is loaded in the hIcon and hIconSm
// structure members

WNDCLASSEX wndclass ;

wndclass.hIcon = LoadImage (hInstance,

MAKEINTRESOURCE (IDIICON1),

IMAGEICON, // Type

32, 32, // Pixel size

LRDEFAULTCOLOR) ;

wndclass.hIconSm = LoadImage (hInstance,
MAKEINTRESOURCE (IDIICON1),

IMAGEICON, // Type

16, 16, // Pixel size

LRDEFAULTCOLOR) ;

The MAKEINTRESOURCE macro is used to convert an integer value into a resource. Although
resources can also be referenced by their string names, Microsoft recom-mends the use of the
integer value. The name of the icon resource, IDITCON1, can be obtained from the resource script
file. However, an easier way of finding the resource name is to click the Resource Symbols button
on the Resource toolbar (labeled ID=) or select Resource Symboils in the View menu. Either the
symbolic name or the numerical value for the icon resource that is shown on the Resource
Symbols screen can also be used in the MAKEINTRESOURCE macro.

In the process of creating an icon bitmap, Developer Studio also creates a new script file, or adds
the information to an existing one. However, when working outside of the Microsoft Foundation
Class library, you must manually insert the script file into the project. You can do this by selecting
Add to Project in the Project menu and then clicking on the Files option. In the Insert Files into
Project dialog box, select the script file, which in this case is the one named Script1.rc, and then
press OK. The script file now appears on the Source Files list in the Files View window of the
Project Workspace.

In addition to the script file, Developer Studio also creates a header file for resources. The default
name of this file is resource.h. In order for resources to be available to the code you must enter an
#include statement in the main source file, as follows:

#include "resource.h"

Notice that the double quotation marks surrounding the filename indicate that it is in the current
folder.

At this point, all that is left to do is to compile the resources, the source files, and link the program
into an executable. You can do this by selecting Rebuild All in the Build menu. Figure 6-8 shows
the screen display of the WinHello program.

1
&

Hello Workd from Windows

Figure 6-8: Screen dump of the WinHello Program

WinHello Program Listing

The following is a listing of the WinHello program. We excluded the header block to economize
space.

// WinHello.cpp

#include <windows.h>

#include "resource.h" // Load resource file

// Storage for program instance

HINSTANCE pInstance;

// Predeclaration of the Window Procedure

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

//****************************

// WinMain

//****************************

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
PSTR szCmdLine, int iCmdShow)

{

static char szClassName[] = "MainClass" ; // Class name

HWND hwnd ;

MSG msg ;

// Defining a structure of type WNDCLASSEX

// The program icon is loaded in the hIcon and hIconSm
// structure members

WNDCLASSEX wndclass ;

wndclass.cbSize = sizeof (wndclass) ;

wndclass.style = CSHREDRAW | CSVREDRAW ;
wndclass.lpfnWndProc = WndProc ;

0 ;

0

wndclass.cbClsExtra

wndclass.cbWndExtra
wndclass.hInstance = hInstance ;
wndclass.hIcon = LoadImage (hInstance,
MAKEINTRESOURCE (IDIICON1),

IMAGEICON, // Type

32, 32, // Pixel size

LRDEFAULTCOLOR) ;

wndclass.hCursor = LoadCursor (NULL, IDCARROW) ;
wndclass.hbrBackground = (HBRUSH) GetStockObject
(WHITEBRUSH) ;

wndclass.lpszMenuName = NULL ;
wndclass.lpszClassName = szClassName ;
wndclass.hIconSm = LoadImage (hInstance,
MAKEINTRESOURCE (IDIICON1),

IMAGEICON, // Type

16, 16, // Pixel size

LRDEFAULTCOLOR) ;

// Store program instance

pInstance = hlInstance;

// Registering the structure wmdclass

RegisterClassEx (&wndclass) ;

// CreateWindow ()

hwnd = CreateWindowEx (

WSEXLEFT, // Left aligned (default)
szClassName, // pointer to class name
"WinHello Program", // window caption
WSOVERLAPPEDWINDOW, // window style
CWUSEDEFAULT, // initial x position
CWUSEDEFAULT, // initial y position
CWUSEDEFAULT, // initial x size
CWUSEDEFAULT, // initial y size

NULL, // parent window handle

NULL, // window menu handle
hInstance, // program instance handle

NULL) ; // creation parameters

ShowWindow (hwnd, iCmdShow) ;
UpdateWindow (hwnd) ;

// Message loop

while (GetMessage (&msg, NULL, 0, 0))
{

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

}

return msg.wParam ;

}

//****************************

// Window Procedure
//****************************

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg,
LPARAM 1Param)

{

HDC hdc ;

PAINTSTRUCT ps ;

RECT rect ;

switch (iMsgq)

{

// Windows message processing
case WMCREATE:

return 0;

case WMPAINT
hdc = BeginPaint (hwnd, &ps)
GetClientRect (hwnd, é&rect) ;

// Display message in the client area
DrawText (hdc,

"Hello World from Windows",

-1,

&rect,

TSINGLELINE | DTCENTER | DTVCENTER) ;

EndPaint (hwnd, &ps) ;

return 0 ;

// End of program execution

WPARAM wParam,

case WMDESTROY
PostQuitMessage (0) ;
return 0 ;

}

return DefWindowProc (hwnd, iMsg, wParam,

}

lParam) ;

Summary

In this chapter we concluded our review of API programming in Windows. At this point we
established the programming environment for the chapters that follow and showed you our
program development methodology. In addition, you gained some familiarity with the Developer
Studio environment so that you are able to create a simple project using the program templates
furnished in the book's CD-ROM. The chapter includes two walkthroughs: in the first one you
created a do-nothing program by simply inserting the template file into a project. In the second
walkthrough you edited the template file to create an actual Windows program, with its own icons,
and which displays a message on its client area.

Here we conclude Part | of the book, devoted to the fundamentals, and now proceed with
DirectDraw programming. DirectDraw is the rendering engine of Direct3D; therefore it is a core
subject in our context.

Chapter 7: DirectDraw Fundamentals

Overview

With this chapter we begin our discussion on DirectDraw. DirectDraw is one of the components of
Microsoft's DirectX Software Development Kit, version 7, usually called the DirectX 7 SDK. It
provides graphics programmers with direct access to video memory and to special hardware
features in the video card. This results in better performance and a higher level of control. The
disadvantage is that direct access to the video memory and hardware complicates programming
and creates portability and device dependency problems.

Game Development on the PC

Computer games, and other high-performance graphics programs, require interactive graphics,
animation, and realistic object rendering: all of these features rapidly consume CPU cycles and
video resources. In their effort to achieve maximum quality for their products, game programmers
are constantly pressing the boundaries of machine performance.

PC game development started in DOS. In this environment, applications can use any operation
code or operand in the instruction set. In this case the running application is the "god of the
machine." But this power can be dangerous. A DOS program can accidentally (or intentionally)
destroy files and resources that are not its own, including the operating system itself. As the PC
gradually evolved into a serious business machine, the possibility that an application could destroy
code, erase data belonging to other programs, and even create havoc with the operating system
became intolerable. How would anyone trust its valuable business information and processing to
such an unsafe environment?

The problem had to be addressed both in hardware and software. An operating system capable of
providing a safe and reliable environment requires hardware that supports this protection. Intel
started on this route with the 286 micropro-cessor, which came equipped with hardware features
that allow the operating system to detect and prevent access to restricted memory areas and to
disallow instructions that are considered dangerous to the integrity of other programs or to the
environment's stability. The features were enhanced in the 386 and the various versions of the
Pentium. In the mid 1980s Microsoft and others started developing operating systems that would
take advantage of the CPU features recently introduced. The results were several protected-mode
operating systems, of which Windows has been the only survivor.

Although safer and more reliable, Microsoft Windows imposed many restrictions on applications.
One result of this situation was that games, and other high-performance graphics applications,
could no longer access the hardware resources directly in order to maximize performance and
expand functionalities. For several years game programmers continued to exercise the craft in
DOS, and Windows users had to switch to the DOS mode to run games, simulations, and other
graphics programs. The resulting situation implied a major contradiction: a graphical operating
system in which graphics applications would execute with marginal performance.

Microsoft decided to remedy the situation by providing programmers with limited access to
hardware and system resources. The goal was to allow appli-cations sufficient control of video
hardware and other resources so as to improve performance and control, and to do it in a way that
would not compromise system stability. The first effort in this direction was a product named WinG,
in reference to Windows for Games. WinG was first made available in 1994 and it required Win32
in Windows 3.1. Its main feature is that WinG enabled the game programmer to rapidly transfer
bitmaps from system memory into video memory. This made possible the creation of Windows
games that executed with much better performance. Because of the success of WinG, Microsoft
developed a more elaborate product called the Game Software Development Kit, or Game SDK.

DirectX

The Microsoft Game SDK made evident that the usefulness of direct access to video memory and
hardware was not limited to games. Many multimedia applications, and other graphics programs
that required high performance, could benefit from these enhanced facilities. In response,
Microsoft renamed the new version of the Game SDK, calling it DirectX 2. Other versions later
released were named DirectX 3, DirectX 5, DirectX 6, and currently, DirectX 7. Note that no

DirectX 4 version exists. DirectX version 7 SDK, released in 1999, is discussed in this book.

The functionality of the DirectX SDKs is available to applications running in Windows 95/98 and
Windows NT 3.1 and later. In fact, the full functionality of DirectX 7 SDK is incorporated into
Windows 98 and will also be found in Windows NT 5.0 and Windows 2000. This means that
applications running under Windows 98 and later will be able to execute programs that use DirectX
without loading additional drivers or other support software. In addition, Microsoft provides a setup
utility that enables you to upgrade a compatible machine to a new version of DirectX.

Installing the SDK

Several versions of the DirectX SDK are available for download, at no cost, on the Microsoft Web
sites. DirectX has grown in size during its evolution. The current version takes up approximately
360MB, which requires several hours online, even with the fastest commercial modems. For this
reason we have included the DirectX 7 SDK in the book's CD-ROM. DirectX SDK CD-ROMs can
also be ordered from Microsoft.

DirectX 7 contains an installation utility that loads and sets up the software on the target system.
Microsoft recommends that you uninstall any previous versions of the SDK before the setup
program is executed; however, only the most recent versions of the SDK are equipped with
uninstall utilities. The SDK installs to a default folder c:\mssdk. Certain uncommon features of the
SDK directory structure are designed for compatibility with Microsoft Developers Network (MSDN)
Platform SDK, which duplicates most of DirectX 7.

Compiler support

DirectX 7 is compatible with Microsoft Visual C++ version 4.2 and later as well as with Watcom
11.0 and Borland C Builder 3 and 4. Visual C++ project files (.mdp) are included in the
demonstration programs contained in the package. Microsoft states in the SDK documentation that
some of the sample programs are not compatible with Borland or Watcom.

Testing the installation

The folder mssdk\bin\DXUtils of the installed DirectX 7 SDK contains several programs that can be
used for testing DirectX in the host system. The most useful one, named dxdiag, allows testing the
DirectDraw, Direct3D, and DirectSound components of the SDK. The tests also provide a brief
demonstration of the capabilities of each of these components. Figure 7-1 shows the Display test
tab of the DirectX diagnostics program.

e T Tatt Donperiy |
e

I -
| Seurhaanke, ria e “Tisst Dusnrillume® bamn afges: =
I- Vi Y N T — -]

Figure 7-1: Display test function of the DirectX diagnostics program

When the Test button associated with the DirectDraw function is clicked, the program executes
several tests to determine compatibility. A series of tests related to the Direct3D function activate
when the corresponding test button is selected. In the Still Stuck? tab the program provides
several troubleshooting options. Figure 7-2 shows the initial display of the troubleshooting screen.

o - i
= Davs kbl
e Windows 38 Directs 3
Ty b bppaed v et T " i
g =———— Wikari profibes. sre you hasing?
Low T B
i) B iy
e Crar
Uowih Do Prnrn -~
" - Vb
SNy DA
 E g S
L] = i
|| s =

Figure 7-2: Troubleshooting screen of the DirectX diagnostics program

DirectX components
The DirectX SDK includes the following components:

*DirectDraw provides hardware acceleration and direct access to video memory. This component

performance.

*DirectSound provides hardware and software sound mixing and playback.

*DirectMusic works with message-based musical data. It supports the Musical Instrument Digital
Interface (MIDI) and provides authoring tools for creating interactive music.

*DirectPlay makes possible the connecting of applications over a modem link or a network.

*Direct3D is a 3D graphics package that provides a high-level interface that enables you to
implement a 3D graphical system. It also contains a low-level interface that lets applications take
complete control of the rendering pipeline.

*Directinput provides support for input devices including joystick, mouse, keyboard, and game
controllers. It also provides support for feedback game devices.

*DirectSetup provides a simple installation procedure for DirectX. It simplifies the updating of
display and audio drivers and makes sure that there are no software or hardware conflicts.

*AutoPlay enables you to create a CD-ROM disc that installs automatically after it is inserted in the
drive. AutoPlay is not unique to DirectX since it is part of the Microsoft Win32 API.

The SDK also includes several sample programs with the corresponding source code.

In this section we mainly discuss the DirectDraw component of the DirectX SDK.

DirectX and COM

Microsoft's Component Object Model (COM) is a foundation for an object-oriented system that
attempts to improve on the C++ model. COM is also an object model at the operating system level,
which supports and promotes the reuse of interfaces. DirectDraw is presented to the programmer
using the Component Object Model. The COM object is defined as a data structure that contains a
pointer to the associated functions. One of the advantages of the COM is that it does not require
C++. Programs written in C, or even in a non-C development system, can use APIs based on the
COM protocol.

The DirectX Programmer has several ways of accessing the COM interface. From C++, the COM
object appears like an abstract class. In this case access is by means of the pointer to the
DirectDraw COM object. However, when using straight C, the function must pass the pointer to the
COM object as an additional parameter. In addition, the call must include a pointer to a property of
the COM object called the vtable. Because this book assumes C++ programming, we use the
simpler interface to the COM.

Introduction to DirectDraw

DirectDraw is usually considered the most basic and useful component of DirectX. It enables an
application to access display memory as well as some of the hardware functions in the video card.
The result is that a Windows program can obtain a high level of graphics performance without
sacrificing device independence and while maintaining compatibility with the Graphics Device
Interface (GDI). DirectDraw is implemented as a software interface to the card's video memory and
graphics functions. Although its original intention was merely to facilitate game development under
Windows, many other types of graphics applications can benefit from the higher degree of control
and the performance gains that it provides.

In this sense DirectDraw can be described as a display memory manager, which also furnishes
access to some hardware acceleration features and other graphics facilities that may be available
on the video card. Most current video cards used in the PC support DirectDraw, but some do so to
a limited extent. Furthermore, there is no uniform set of acceleration features and graphics
functions that all DirectDraw devices must provide. For these reasons, the decision to use
DirectDraw also entails the burden of accommodating varying degrees of DirectDraw
functionalities. DirectDraw provides services that enable applications to query the capabilities of a
particular video card as well as the level of hardware support. Most features not supported by the
hardware are emulated in software by DirectX, but at a substantial performance penalty.

A DirectDraw system implements its functionality both in hardware and in software emulation, each
one with its own capabilities. Applications can query DirectDraw to retrieve the hardware and
software capabilities of the specific implementation in the installed video card. DirectDraw is
furnished as a 32-bit dynamic link library named DDRAW.DLL.

DirectDraw features

The following are the most important features of DirectDraw:
*Direct access to video memory

*Manipulation of multiple display surfaces

*Page flipping

*Back buffering

*Clipping

*Palette management

*Video system support level information

Advantages and drawbacks

The possible advantages of using DirectDraw are:

1.1t provides direct access to video memory, thus increasing performance and allowing the
graphics programmer a higher degree of control. This feature also makes it easier to port some
DOS graphics programs and routines into the Windows environment.

2.1t improves application performance by making use of video hardware capabilities. For example,
if the video card supports hardware blits, DirectDraw uses this feature. DirectDraw also provides a
hardware emulation layer (HEL) to simulate features that are not supported by the hardware.

3.DirectDraw uses 32-bit flat memory addressing of video memory. This model is much easier to
handle by code than one that is based on the Intel segmented architecture.

4.In full screen, exclusive mode applications, DirectDraw supports page flipping with multiple back
buffers. This technique enables you to implement animation effects that were previously
unsatisfactory. In windowed programs DirectDraw supports clipping, hardware-assisted overlays,
image stretching, and other graphics manipulations.

The major disadvantages are:

1.Programming in DirectDraw is more complicated and difficult than using the Windows GDI.
Programs that do not need the additional performance or control provided by DirectDraw might
find little additional justification for using it.

2.The graphics functions emulated by DirectDraw are often slower than those in the GDI.

3.Applications that rely on DirectDraw are less portable than those that do not.

Architecture

The architecture of DirectDraw is defined by its interface, its object composition, the hardware
abstraction layer (HAL), and the hardware emulation layer (HEL).

Interface

DirectDraw provides services through COM-based interfaces. The various versions of this
interface are named IDirectDraw, IDirectDraw2, and IDirectDraw4. Note that
IDirectDraw3 does not exist, although it is erroneously mentioned in some Microsoft
documents. These interfaces to DirectDraw correspond to different releases of the Game SDK and
of DirectX.

Programs can gain access to DirectDraw by means of the DirectDrawCreate () function or by
the CoCreateInstance () COM function. In this book we use DirectDrawCreate (), which is
the easier and more common one. Later in this chapter we discuss how a program can query
which of the three DirectDraw interfaces is available at run time.

Object composition

DirectX APls are sometimes implemented as instances of COM objects. Communication with
these objects is by means of methods; for example, if IDirectDraw4 is the interface, the method
SetDisplayMode is accessed through the interface as follows:

IDirectDrawd: :SetDisplayMode

COM interfaces are derived from a base class called TUnknown. The following DirectDraw object
types are currently defined: DirectDraw, DirectDrawSurface, DirectDrawPalette,
DirectDrawClipper, and DirectDrawVideoPort. Figure 7-3 shows the object composition of
the IDirectDraw interface.

| Urknigen I

ireciDraw I

DirectOrawSurface I

DirectDrawClipper I

| DiractlrawFalaite I

DireciDraw\ideoPan I

Figure 7-3: IDirectDraw object types

The DirectDraw objects are described as follows:

*DirectDraw is the basic object of all applications. It is considered to represent the display
adapter card. The corresponding COM object is named I1DirectDraw. This is the first object
created by a program, and it relates to all other DirectDraw objects. A call to

DirectDrawCreate () creates a DirectDraw object. If the call is successful, it returns a pointer
to either IDirectDraw, IDirectDraw?2, or IDirectDraw4 interfaces.

*DirectDrawSurface object, sometimes called a surface, represents an area in memory. The
COM object name is IDirectDrawSurface. This object holds the image data to be displayed, or
images to be moved to other surfaces. Applications usually create a surface by calling the
IDirectDraw: :CreateSurface method of the DirectDraw object.

*DirectDrawPalette object, sometimes referred to as a palette, represents a 16- or 256-color
indexed palette. The palette object simplifies palette manipulations. It contains a series of indexed
RGB ftriplets that describe colors associated with values within a surface. Palettes are limited to
surfaces that use a pixel format of 8 bits or less. Palette objects are usually associated with
corresponding surface objects, whose color attributes the palette object defines.

*DirectDrawClipper object, sometimes referred to as a clipper, serves to prevent applications
from drawing outside a predefined area. Clipper objects are usually convenient when a DirectDraw
application is displayed in a window. In this case the clipper object prevents the application from
drawing outside of its client area.

*DirectDrawVideoPort object, which was introduced in DirectX 5, represents the video-port
hardware present in some systems. It allows direct access to the frame buffer without intervention
of the CPU or the PCI bus.

Hardware Abstraction Layer (HAL)

DirectDraw ensures device independence by implementing a Hardware Abstraction Layer, or HAL.
The HAL is provided by the video card manufacturer, board manufacturer, or OEM, according to
Microsoft's DirectDraw specifications. However, applications have no direct access to the HAL, but
to the interfaces exposed by DirectDraw. It is this indirect access mechanism that ensures HAL
consistency and reliability.

In Windows 95/98, device manufacturers implement the HAL in both 16-bit and 32-bit code. In
Windows NT the HAL is always in 32-bit code. It can be furnished as part of the card's display
driver or as a separate DLL. The HAL contains device-dependent code. It performs no emulation
and provides no programmer-accessible services. The only point of contact between an
application and the HAL is when the application needs to query DirectDraw to find out what
capabilities are directly supported.

Hardware Emulation Layer (HEL)

DirectDraw emulates in software those basic features that are not supported through the HAL. The
Hardware Emulation Layer (HEL) is the part of DirectDraw that provides this functionality.
Applications do not access the HEL directly. Whether a given functionality is provided through
hardware features, or through emulation, is transparent to an application using DirectDraw. Code
must specifically query DirectDraw to determine the origin of a given functionality. The GetCaps ()
function, discussed later in this chapter, furnishes this information.

Unfortunately, some combinations of hardware-supported and emulated functions may lead to
slower performance than pure emulation. DirectDraw documentation cites an example in which a
display device driver supports DirectDraw but not stretch blitting. When the stretch blit function is
emulated in video memory, a noticeable performance loss occurs. The reason is that video
memory is often slower than system memory; therefore, the CPU is forced to wait when accessing
video memory surfaces. Such cases make evident one of the greatest drawbacks of DirectDraw,
which is that applications must provide alternate processing for hardware dependencies.

Relations with Windows

Several Windows graphics components lie between the application code and the video card
hardware. Figure 7-4 shows the relations between the various Windows graphics components.

| vidan Card

Hardwmne Atstraciion Layer Dispiay Devica invariBce
= spiary D i
(HAL)Y LTl

[HEL)

Hardvsare Emulalion Layer I

]

‘ DarexciDvawy I ‘ Graphics Device interace
M}

| ,

Apohcabon I

Figure 7-4: Relations between Windows graphics components

The right-hand side of Figure 7-4 shows that an application can access the Windows video
functions through the GDI, which, in turn, uses the Display Device Interface (DDI). On the left-hand
side you can see that, alternatively, an application can access the video functions through
DirectDraw. DirectDraw, in turn, uses the Hardware Abstraction Layer and the Hardware Emulation
Layer to provide the necessary functionality. The horizontal arrow connecting the HAL and the DDI
indicates that applications that use DirectDraw can also use the GDI functions because both
channels of video card access are open simultaneously.

DirectDraw Fundamentals

There are several core topics that relate specifically to DirectDraw. Understanding these
fundamental concepts is a prerequisite to successful DirectDraw programming. Following are the
core topics of DirectDraw:

*Cooperative levels
*Display modes
*Surfaces

*Palettes

*Clippers

Cooperative levels

The notion of cooperative levels refers to the relation between DirectDraw and other Windows
applications. A DirectDraw program can execute full-screen, with exclusive access to the display
resources, or it can execute in a window and share the video resources with other running
programs. In this last case the DirectDraw application and the other Windows programs executing
concurrently must cooperate in their use of the video resources. When a DirectDraw application
requests and obtains total control of the video functions it is said to execute in exclusive mode.
DirectDraw applications that do not execute in exclusive mode are usually referred to as windowed
DirectDraw programs.

The SsetCooperativeLevel () function is used by an application to set cooperative levels. The
predefined constants DDSCLFULLSCREEN and DDSCLEXCLUSIVE enable the application to
execute full-screen and to ensure control of the display mode and the palette. In this case the
DirectDraw program has almost exclusive control of the video resources. The use of this function
is described later in this chapter.

DirectDraw cooperative levels have the following additional features:

*You can enable a DirectDraw application to use a nonstandard VGA resolution known as Mode X.
Mode X, which executes in 320 X 240 pixels in 256 colors, was a very popular mode with DOS
game programmers.

*You can prevent DirectDraw applications that execute in exclusive mode from responding to
CTRL + ALT + DEL keystrokes.

*You can enable a DirectDraw application to minimize or maximize itself.

Microsoft considers the normal cooperative level the one in which the DirectDraw application

cooperates as a windowed program. However, the DirectDraw applica-tions that execute in
windowed mode are not capable of changing the display mode or of performing page flipping.
Display mode control and page flipping are essential to many high-performance graphics
programs, especially those that use animation. Therefore, many high-performance DirectDraw
programs execute in exclusive mode.

Display modes

Display modes were introduced with the first video system used in the PC. The Video Graphics
Array (VGA) video system, released in 1987, supports 18 display modes. A display mode, which
enables a particular resolution and color depth, is a hardware configuration of the video system
internal registers. For this reason, display modes are described by their pixel width, height, and bit-
depth. For example, VGA mode 18H has a resolution of 640 by 480 by 4. This means that it
displays 640 pixel columns and 480 pixel rows in 16 colors. The last digit of the mode specification
is the number of bits used in the pixel color encoding. In VGA mode 18H the color range is 16,
which is the maximum number of combinations of the 4 binary digits devoted to the color encoding.

PC display modes are often classified as palettized and nonpalettized. In palettized display modes
each color value is an index into an associated color table, called the palette. The bit depth of the
display mode determines the number of colors in the palette. For example, in a 4-bit palettized
display mode, such as VGA mode 18H, each pixel attribute is a value from 0 to 15, which makes
possible a palette with 16 entries. The actual colors displayed depend on the palette settings. The
programmer can select and change the palette colors at any time, thus selecting a subrange of
displayed colors. However, when the palette is changed, all displayed objects are shown with the
new settings.

Nonpalettized display modes, on the other hand, encode pixel colors directly. In this case the bit
depth represents the total number of color attributes that can be assigned to each pixel. In
nonpalettized modes there is no look-up table to define the color attributes.

The higher the resolution and the color depth of a display mode, the more video memory is
required in the adapter. Because not all video adapters contain the same amount of memory, not
all of them support the same video modes. The DirectDraw EnumDisplayModes () function is
used to list all the display modes supported by a device, or to confirm if a particular display mode
is available in the video card.

Applications using DirectDraw can call the SetDisplayMode () function. The parameters passed
to the call describe the dimensions, bit depth, and refresh rate of the mode to be set. A fifth
parameter indicates special options for the given mode. Currently, this parameter is used only to
differentiate between Mode 13H, with 320 by 200 resolution and 16 colors, and VGA Mode X, also
with 320 by 200 resolution but in 256 colors. Although an application can request a specific display
mode resolution and bit depth, it cannot specify how the pixel depth is achieved by the hardware.
After a mode is set, the application can call the GetDisplayMode () function to determine if the
mode is palettized and to examine the pixel format. In other words, DirectDraw reserves the right
to implement a particular color depth in a palettized or nonpalettized mode.

DirectDraw programs that do not execute in exclusive mode allow other applications to change the

the display mode or manipulate the palette.

A DirectDraw application can explicitly restore the display hardware to its original mode by calling
the RestoreDisplayMode (). Since the DirectDraw?2 interface, a DirectDraw exclusive mode
application that sets the display mode by calling SetDisplayMode () can restore the original
display mode automatically by calling RestoreDisplayMode ().

DirectDraw supports all screen resolutions and pixel depths that are available in the card's device
driver. Thus, a DirectDraw application can change to any mode supported by the display driver,
including all 24- and 32-bit True-color modes.

Surfaces

A DirectDraw surface is a linear memory area used to hold image data. A DirectDrawSurface
object is a COM object derived from TUnknown, as shown in Figure 7-3. Surfaces can reside in
display memory, which is located in the video card, or in system memory. Applications create a
DirectDraw surface by calling the CreateSurface () function. The call can create a single
surface object, a complex surface-flipping chain, or a three-dimensional surface. The
IDirectDrawSurface interface allows an application to indirectly access memory through blit
functions, such as B1t () and B1tFast (). In addition, a surface provides a device context to the
display, which can be used with GDI functions.

IDirectDrawSurface surface functions can be used to access display memory directly. The
Lock () function retrieves the address of an area of display memory and ensures exclusive
access to this area. This operation is said to lock the surface. A primary surface is one in which the
display memory area is mapped to the video display. Alternatively, a surface can refer to a
nondisplayed area. In this case the surface is called an off-screen or overlay surface. Nonvisible
buffers usually reside in display memory, but they can be created in system memory if DirectDraw
is performing a hardware emulation, or if it is otherwise necessary because of hardware limitations.
Surface objects that use a pixel depth of 8 bits or less are assigned a palette that defines the color
attributes in the encoding. Figure 7-5 shows the surface-based layout of video memory.

Wideo memony

primary surface

overlay sirface

averlay surface

Figure 7-5: Primary and overlay surfaces in video memory

When a DirectDraw application receives a pointer to video memory it can use this pointer to draw
on the screen, with considerable gain in control and performance. However, a program that
accesses video memory directly must concern itself with many video system layout details that are
transparent at a higher programming level. The first complicating factor is that video buffer
mapping may be different in two modes with the same resolution but different color depths. The
reason for this variation is related to the fact that the video buffer is actually storage for pixel
attributes. If an attribute is encoded in 8 bits, then the buffer requires one byte per pixel. However,
if a pixel attribute is stored in 24 bits, then the buffer requires 3 bytes per pixel.

Figure 7-6 shows two video modes with different pixel depths. In the 8 bits per pixel mode the
fourth memory byte is mapped to the fourth screen pixel. However, in the 24 bits per pixel mode,
the thirteenth to the fifteenth video memory bytes are mapped to the fourth pixel. The calculations
required to obtain the offset in video memory for a particular screen pixel will be different in each
case.

- ,
| I | ‘ 0

Viden disgilay
{screnm pieels)

Vided memony
(1 yae per pisel]

i . |
1t1t1. .t1t1t1t. ‘ OOy

Vidhen memary
[tyins per pical)

Figure 7-6: Variations in memory-to-video mapping

There is another complication in direct access programming: in some display modes the number of
bytes in each video buffer row is not the product of the number of pixels on each video display row
by the number of bytes per pixel. The reason is related usually to video system design and
performance considerations, which make it necessary to allocate a number of bytes in each buffer
row that is a multiple of some specific number. This determines that some display modes have
data areas in each row that are not mapped to screen pixels. For example, a display mode with a
resolution of 640 pixels per row and a color depth of 24 bits per pixel requires 1920 bytes to store
the data corresponding to a single row of screen pixels. However, the video card designers may
have assigned 2560 bytes of video buffer space for each screen row, so that the same buffer size
can be used in a 32-bits-per-pixel mapping. The result is that in the 24-bit mode there is an area of
640 unmapped bytes at the end of each row. The term pitch is used to describe the actual byte
length of each row in the video buffer, while the term width refers to the number of pixels in each
screen row.

Palettes

A palette is a color look-up table. It provides a convenient way of indirectly mapping pixel
attributes, which results in extending the number of displayable colors in modes with limited color
depths. For example, a display mode with a 4-bits-per-pixel color depth represents 16 different
color attributes. When a palette is associated with the display surface, each video buffer value
serves as an index into the palette, which in turn defines the pixel color. By changing the palette,
the application can map many 16-color sets to the display attributes. By means of the palette
scheme the number of simultaneously displayable colors remains the same, but the actual colors
mapped to the video buffer values can be changed by the application. Figure 7-7 shows how a
palette provides an indirect mapping for the color attributes stored in the video buffer.

. I . Palette

1{4]3|0f7]s ses sesssse

ideo display
Viden
data

Figure 7-7: Palette-based pixel attribute mapping

In DirectDraw palettes are linked to surfaces. Surfaces that use a 16-bit or greater pixel format do
not use palettes. Therefore, the so-called real color modes (16 bits per pixel) and True-color
modes (24 and 32 bits per pixel) are nonpalettized. A DirectDraw palette can have 2, 4, 16, or 256
entries. A palette can only be attached to a surface with the same color depth. In addition, it is
possible to create palettes that do not contain a color table. In these so-called index palettes, the
palette values serve as an index into another palette's color table.

Each palette entry is in the form of an RGB ftriplet that describes the color to be used when
displaying pixel values at the corresponding entry. The RGB values in the color table can be in 16-
or 24-bit format. In 16-bit RGB format each palette entry is encoded in 5-6-5 form. The first 5 pixels
are mapped to the red attribute, the second 6 pixels to the green attribute, and the last 5 pixels to
the blue attribute. This is the same mapping scheme used in the real color modes. In the 24-bit
RGB palette format each of the primary colors (red, green, and blue) is mapped to 8 pixels, as is
the case in the True-color modes.

An application creates a palette by calling the DirectDraw CreatePalette () function. At call
time the application defines if the palette contains 2, 4, 16, or 256 entries and provides a pointer to
a color table used in initializing the palette. If the call is successful, DirectDraw returns the address
of the newly created DirectDrawPalette object. This palette object can then be used to attach
the palette to a DirectDraw surface. The same palette can be attached to multiple surfaces. After a
palette is attached to a surface, an application can call the GetPalette () and SetPalette ()
functions to query or change the palette entries.

A type of animation is based on changing the appearance of a surface object by modifying the
palette attached to the surface that contains it. By repeatedly changing the palette, the surface
object can be made to appear differently without actually modifying the contents of video memory.
Two different types of palette manipulations can be used for this. The first method is based on
modifying the values in a single palette. The second method is based on switching between
several palettes. Because palette modifications are not hardware intensive, either method often
produces satisfactory results.

The development and use of palettes were a direct consequence of the memory limitations of the
original video systems used in the PC. In VGA the video space was limited to a few hundred
kilobytes, whereas the low-end PCs of today are furnished with video cards that have 2 or 4 MB of
space on board video memory. This abundance of video memory makes palette modes almost
obsolete. Perhaps the one remaining justification for palettized modes relates to some interesting
animation effects that can be achieved by performing palette manipulations. For example, you can
make an object disappear from the screen by changing to a palette in which the object attributes
are the same as the background. Then you can make the object reappear by restoring the original
palette.

Clipping

DirectDraw clipping is a manipulation by which video output is limited to one or more rectangular-
shaped regions. DirectDraw supports clipping in applications that execute in exclusive mode and
windowed. The term, clippers, is often used to refer to DirectDrawClipper objects. A single
bounding rectangle is sometimes used to limit the display to the application's client area. Several
associated bounding rectangles are called a clip list.

The most common use for a clipper is to define the boundaries of the screen or of a rectangular
window. A DirectDraw clipper can be used to define the screen area of an application so as to
ensure that a bitmap is progressively displayed as it moves into this area. If a clipping area is not
defined, then the blit fails because the destination drawing surface is outside the display limits.
However, when the boundaries of the video display area are defined by means of a clipper,
DirectDraw knows not to display outside this area and the blit succeeds. Blitting a bitmap to
unclipped and clipped display areas is shown in Figure 7-8.

Bitmap Displary e [iechppeed)

Py

Figure 7-8: Blitting a bitmap to unclipped and clipped display areas

In Figure 7-8 we see that clipping makes it possible to display a bitmap that does not entirely fit in
the display area. Without clipping, the blit operation fails if the source bitmap doesn't fit in the
destination area, as shown in the top part of the illustration. With clipping it is possible to display
the bitmap of the automobile as it progressively enters the screen area, instead of making it pop
onto the screen all at once. All that is required to implement clipping in DirectDraw is to create a
clipper with the screen rectangle as its clip list. Trimming of the bitmap is performed automatically.
Clipper objects are also used to designate areas within a destination surface. The designated
areas are tagged as writable, while DirectDraw automatically crops images that fall outside this
area. Figure 7-9 shows a display area with a clipper defined by two rectangles. When the text
bitmap is blitted onto the screen, only those parts that fall inside the clipper are displayed. The
pixel data is preserved in the screen areas not included in the clipper. In this case the clip list
consists of the two rectangles for which output is validated.

BITRAF OF TEXT MESSAGE

Aa Bb Cc Dd Ee Ff Gg |

DISPLAY AREA

g LW 0l B I I 2 Ee f“_ng

/ ~
J -

o~

—~
-

F—= -
L

Clippers

Figure 7-9: A clipper consisting of two rectangular areas

Summary

In this chapter you learned the essential elements of DirectDraw. The discussion included topics
related to computer games, Windows programming using the DirectX 7 SDK, as well as an
overview of DirectDraw features, architecture, and basic concepts. Now that you are acquainted
with DirectDraw, we can proceed with DirectDraw installation and setup operations, which are the

topics discussed in Chapter 8.

Chapter 8: DirectDraw Configuration and Setup

Overview

Before an application can use DirectDraw it must initialize the software and perform a series of
configuration tests to determine how the program cooperates with concurrent Windows programs.
In this chapter we describe the initialization and setup operations and develop the code that serves
as a backbone for a DirectDraw program.

DirectDraw Setup

Before you can develop a DirectDraw program you must first set up your development system so
that it can access the DirectDraw software. The first step is to include the DirectDraw header file,
named ddraw.h. The file is furnished with the DirectX package and also with the newer versions of
the Windows operating system.

DirectDraw header file

As a system is updated with newer versions of the DirectX SDK, and perhaps with operating
system patches and new releases, it is possible to find several versions of the ddraw.h file on the
same machine. The developer needs to make sure that the software is using the most recent
release of the header file. One way to accomplish this is to search for all files named ddraw.h by
means of the file-finding feature of Windows Explorer, or of a similar utility. After the files are
located, you can rename or delete the older versions of ddraw.h. In most cases the directory path,
the date stamp, and the file size can serve to identify the most recent one. It is unwise to assume
that the installation program for the operating system, the SDK, or the development environment,
performs the necessary setup operations.

In addition, the newest version of the ddraw.h file must be located so that it is accessible to the
development software. This may require moving or copying the newest version of ddraw.h to the
corresponding include directory, as well as making certain that the path in the development
environment corresponds with this directory. In Visual C++ the directories searched by the
development system can be viewed by clicking Options in the Tools menu. In this case the Show
directories for: scroll box should be set for include files. You may now enter the path to the
DirectDraw include and library files in the edit box at the bottom of the Directories: window. Once
entered, the boxes can be dragged to the top of the list so that these directories are searched first.
If DirectX is installed in the default drive and path, then the results are as shown in Figure 8-1.

Edinr I Tahe | Dehug | Compatbibty | Buld Dirsclories ISulr:EDA:r oI+

Flalam o] S P R T
I ~| [inch.= ik =
Cara dinia e i

s\ DFECTHISETLF

L e LA
L MSSDE\RCLUDE

i\ Dl Shuch o WM CLLIDE

=
| Ok, I Cancal |

Figure 8-1: Directories tab in Developer Studio Options dialog box

DirectDraw libraries

The second software element necessary for DirectDraw programming is the ddraw.lib library file.

What was said in relation to ddraw.h also applies to ddraw.lib: possible duplicated versions of the
software must be identified and all but the most recent one eliminated. Here again, a search
function can be used to find the duplicate files. After the most recent library file is identified, the
older ones can be deleted or renamed. If after performing this step, the development system is still
unable to locate the library files, then you must copy ddraw.lib to the corresponding include
directory or modify the path, as previously explained for the ddraw.h file.

In addition to finding the newest version of the library, and installing it in the system's library path,
Visual C++ users must also make sure that the development environment is set up to look for the
DirectDraw libraries. To make sure of this you can inspect the dialog box that is displayed when
Settings is selected in the Developer Studio Project menu. The ddraw.lib and dxguid.lib files must
be listed in both the Object/library modules and the Project Options windows of the Link tab in the
Project Settings dialog box, as shown in Figure 8-2. If not, you can manually insert the library
names in the Object/library modules edit box. The library names are copied automatically to the
Project Options box.

= T - =i |
Chatgan il pami
Dot i Fado axa

Oniectbrary modskes

T b a2 B AL S WS RO CORO L S
F Caivarels delig i ™ kgreces &l defouk s

o ST A [l T
F Lk ey 7 Gesmins s

™ Enshie probling

Fropc Cpboes
a0 | 22k gelE? R s psal i eamdlg 121 il
avapd]2 i shedl12) b cbe 12 6D olamulI2 Wb vl i
gheii b cefbrep I ¥ frologn foehpyeismese dose ;I

o

Figure 8-2: Link tab in Developer Studio Project Settings dialog box

The ddraw.lib file contains the DirectDraw functions, and the dxguid.lib file has the GUID identifiers
required for accessing the various interface versions. When access to the DirectDraw header file
and the libraries are in place, the development system is ready to use.

Creating the DirectDraw Object

In order to use DirectDraw, an application must first create a DirectDraw object. This object is
actually a pointer to the DirectDraw interface as implemented in the video card. The pointer is
required for accessing all other DirectDraw functions, which means that a DirectDraw application
can do little else without this object. The DirectDrawCreate () function creates an instance of
the DirectDraw object. The function's general form is as follows:

HRESULT DirectDrawCreate (
GUID FAR 1lpGUID, // 1
LPDIRECTDRAW FAR *1plpDD, // 2
IUnknown FAR *pUnkOutter, // 3
)

The first parameter is a globally unique identifier (GUID) that represents the driver to be created. If
this parameter is NULL, then the call refers to the active display driver. The newer versions of
DirectDraw allow passing one of two flags in this parameter. The flags control the behavior of the
active display, as follows:

*DDCREATE EMULATIONONLY: DirectDraw uses only emulation. Hardware support features
cannot be used.

*DDCREATE HARDWAREONLY: DirectDraw object does not use emulated features. If a hardware
supported features is not available the call returns DDERR UNSUPPORTED.

The second parameter is a pointer that the call initializes if it succeeds. This is the object returned
by DirectDrawCreate (). The third parameter is provided for future compatibility with the COM
interface. At present it should be set to NULL. The call returns DD_OX if it succeeds. If it fails, one
of the following predefined constants is returned:

DDERR DIRECTDRAWALREADYCREATED
DDERR GENERIC

DDERR INVALIDDIRECTDRAWGUID
DDERR INVALIDPARAMS

DDERR NODIRECTDRAWHW

DDERR OUTOFMEMORY

On systems with multiple monitors, specifying NULL for the first parameter causes the DirectDraw
object to run in emulation mode. In these systems the call must specify the device's GUID to use

hardware acceleration.

Obtaining the interface version

The component object model (COM) requires that objects update their functionality by means of
new interfaces that provide the new features, rather than by changing methods within existing
interfaces. The objective is to keep existing interfaces static so that older applications continue to
be compatible with the newer interfaces. DirectX, and therefore, DirectDraw, follow the COM
object model.

Although the availability of various interfaces facilitates component updating, it also creates some
coding complications. For example, currently the DirectDraw surface object supports three
different interfaces, named IDirectDrawSurface, IDirectDrawSurface?2, and
IDirectDrawSurface4. Each version supports all the methods of its predecessor and adds new
ones for the new features. For an application to use these new features it must query DirectDraw
to determine which interface or interfaces are available in the host, then provide alternative
processing routes for each case. The situation is further complicated by the fact that, at least in
some instances, a new interface may not support methods provided in a previous one. The result
is a return to device-dependent programming that Windows was designed to avoid in the first
place. This is the price that must be paid for the power and functionality of direct hardware access.

Once the DirectDraw application has used the DirectDrawCreate () function to obtain a pointer
to the DirectDraw object, COM provides a mechanism that enables you to find out whether the
object supports other interfaces. The QueryInterface () method of TUnknown can be used for
this purpose. If a particular interface is supported, the call returns a pointer to this interface. It is
through this pointer that code gains access to the methods of the new interface. If the
QueryInterface () function returns NULL, or an error, then the calling code must decide if it can
use the previous interface, if it can provide some sort of work-around the missing functionalities, or
if it must abort execution for lack of processing capabilities in the host machine. The processing
usually consists of one or more tests and the contingency code required in each case.

The QueryInterface () has the following general form:

HRESULT QueryInterface (
REFIID riid, // 1
LPVOID* obj, // 2

) ;

The first parameter is a reference identifier for the object being queried. The calling code must
know this unique identifier before the call is made. The second parameter is the address of a
variable that will contain a pointer to the new interface if the call is successful. The return value is
S_OX if the call succeeds, or one of the following error messages if it fails:

DDERR INVALIDOBJECT
DDERR INVALIDPARAMS

DDERR_OUTOFMEMORY

DDERR OUTOFMEMORY

The DDERRR_OUTOFMEMORY error message is returned by IDirectDrawSurface2 and
IDirectDrawSurface4 objects only. If after making the call, the application determines that it
does not need to use the interface, it must call the Release () function to free it.

At this time there are three 1DirectDraw interfaces implemented. The corresponding reference
identifiers are IID DirectDraw, IID DirectDraw2,and IID DirectDraw4. Itis not
recommended that an application mix methods from two or more interfaces because the results
are sometimes unpredictable. Furthermore, it is virtually impossible to code a DirectDraw
application of any substance that executes in more than one implementation. In the first place, the
pointers returned by the various versions are often of formally different types. For example,

IID DirectDraw returns a pointer of type LPDIRECTDRAW, IID DirectDraw2 returns a
pointer of type LPDIRECTDRAWZ, and IID DirectDraw4 returns a pointer of type
LPDIRECTDRAWA4. The same is true of other objects and data structures, as well as the parameters
to some calls. For instance, the setDisplayMode () function takes three parameters in

IID DirectDraw and five parametersin IID DirectDraw2 and IID DirectDraw4.

Microsoft attempts to ensure the portability of applications that commit to a specific DirectX
implementation by furnishing an installation utility that upgrades the host system to the newest
components. In the DirectSetup element of DirectX there are the diagnostics and installation
programs, as well as the drivers and library files, that serve to update a system to the
corresponding version of the SDK. DirectSetup also includes a ready-to-use installation utility,
which copies all the system components to the corresponding directories of the client's hard drive
and performs the necessary modifications in the Windows registry. In the DirectX SDK Microsoft
also provides all the required project files for a sample installation application named dinstall. The
DirectX programmer can use the source code of the dinstall program as a base on which to create
a customized installation utility for DirectX.

The following code fragment shows the necessary processing for obtaining the version of DirectX
installed in the host system:

// Global variables for DirectDraw operations
HRESULT DDConnect;

// Interfaces pointers

LPDIRECTDRAW 1pDD;

LPDIRECTDRAW2 1pDD2;

LPDIRECTDRAW4 1pDD4;

int dDLevel = 0; // Implementation level

//*************************

// DirectDraw Init
//*************************

// Create a DirectDraw object
DDConnect = DirectDrawCreate (NULL,
&1pDD, // Pointer to object

NULL) ;

// Querying the interface to determine most recent
// version

if (DDConnect == DD OK) {

dDLevel = 1; // Store level

// Query the next interface level
DDConnect = lpDD->QueryInterface (

IID IDirectDraw2,

(LPVOID *) &lpDD2);

}

if (DDConnect == S OK) {

dDLevel = 2; // Update level
lpDD->Release(); // Release old pointer
// Query the next interface level
DDConnect = 1lpDD2->QueryInterface (

IID IDirectDraw4,

(LPVOID *) &lpDD4);

}

if (DDConnect == S OK) {

dDLevel = 4; // Update level

1lpDD2->Release(); // Release old pointer
lpDD4->Release(); // and current one

}

// ASSERT:

// dDlevel holds the current interface levels (values are
// 1, 2 or 4). If dDLevel == 0, then no DirectDraw interface
// was found.

// All pointers to interfaces have been released

Some of the examples in the DirectDraw literature use the return value from the
DirectDrawCreate () Oor QueryInterface () calls to determine if a DirectDraw object is
available. In the previous code fragment we use the dDlevel variable for this same purpose. If
this variable is zero, then no DirectDraw object has been created and DirectDraw functions are
unavailable. Notice in the code that as each new valid object is found, the preceding one is
released by means of the Release () function. The reason is that the COM interface maintains a
count of the number of objects created. TUnknown contains a function named AddRef () which
increments the object's reference count by 1 when an interface or an application binds itself to an
object. The Release () function then decrements the object's reference count by 1 when it is no
longer needed. When the count reaches 0, the object is deallocated.

Normally, every function that returns a pointer to an interface calls AddRef () to increment the

object reference count. By the same token, the application calls Release () to decrement the
object reference count. When an object's reference count reaches 0, it is destroyed and all
interfaces to it become invalid. In the previous sample code we need not call the AddRef ()
method because QueryInterface () implicitly calls AddrRef () when a valid object is found.
However, the code must still call Release () to decrement the reference object count and destroy
the pointer to the interface.

Setting the cooperative level

A DirectDraw application can obtain almost exclusive control over the hardware resources that a
normal Windows application must share. Control over the video system is necessary for
implementing some types of interactive, animated games and other high-performance graphics
programs. On the other hand, some DirectDraw programs may not need this special functionality
and behave more like a normal Windows application. The SetCooperativeLevel () function is
used to request a specific level of resource control which establishes the level of cooperation with
other Windows programs.

The function SetCooperativeLevel () has slightly different implementations in the
IDirectDraw, IDirectDraw2, and IDirectDraw4 interfaces. The basic decision that must be
made at the time of calling SetCooperativelLevel () is whether the application is to run full-
screen, with exclusive access to the display resources, or as a normal windowed program. In
addition, DirectDraw cooperative levels enable the use of Mode X resolutions, prevent DirectDraw
from releasing exclusive control of the display and from rebooting if the user presses Ctrl+Alt+Del,
and enable DirectDraw to minimize or maximize the application in response to user events. Table
8-1 lists the predefined constants that are recognized by the SetCooperativelLevel () function.

Table 8-1: Cooperative Level Symbolic Constants

Flag Description
DDSCL ALLOWMODEX Enables the use of Mode X display modes. This flag can

only be used with the DDSCL._EXCLUSIVE and
DDSCL_FULLSCREEN modes.

DDSCL_ALLOWREBOOT Enables the Ctrl+Alt+Del keystroke to function while in
exclusive mode.

DDSCL CREATEDEVICE DirectDraw creates and manages a default device window
for this DirectDraw object; supported by Windows 98

WINDOW and NT 5.0 only.

DDSCL_EXCLUSIVE Requests the exclusive level. This flag must be used with

DDSCL_FULLSCREEN.

DDSCL_ FPUSETUP Indicates that the DirectDraw application will keep the
math unit set up for single precision and exceptions
disabled, which is the best setting for optimal Direct3D
performance.

DDSCL FULLSCREEN The exclusive-mode owner is responsible for the entire
primary surface. GDI is ignored. This flag must be used
with DDSCL EXCLUSIVE.

DDSCL MULTITHREADED Requests multithread-safe DirectDraw behavior. This
causes Direct3D to execute the global critical section
more frequently.

DDSCL_NORMAL Indicates a regular Windows application. Cannot be used
with the DDSCL ALLOWMODEX, DDSCL EXCLUSIVE, or
DDSCL_FULLSCREEN flags. Applications executing in this
mode cannot perform page flipping or change the primary
palette.

DDSCL_NOWINDOWCHANGES DirectDraw is not allowed to minimize or restore the
application window.

DDSCL_ SETDEVICEWINDOW The hwWnd parameter is the window handle of the device
window for this DirectDraw object. This flag cannot be
used with the DDSCL_SETFOCUSWINDOW flag. Supported
by Windows 98 and NT 5.0 only.

DDSCL_SETFOCUSWINDOW The hwnd parameter is the window handle of the focus
window for the DirectDraw object. Cannot be used with
the DDSCL SETDEVICEWINDOW flag. Supported by
Windows 98 and NT 5.0 only.

The SetCooperativeLevel () function's general form is as follows:

HRESULT SetCooperativelLevel (
HWND hwnd, // 1

DWORD dword // 2

)

The first parameter is the handle to the application window; however, if an application requests

function returns DD_OK if the call succeeds, or one of the following error messages:

DDERR EXCLUSIVEMODEALREADYSET DDERR INVALIDOBJECT
DDERR HWNDALREADYSET DDERR INVALIDPARAMS
DDERR HWNDSUBCLASSED DDERR OUTOFMEMORY

The DDERR EXCLUSIVEMODEALREADYSET message refers to the fact that only one application
can request the exclusive mode. If this message is received, then there is another application that
has been granted the exclusive mode and code should provide alternative processing or an exit.

Full-screen applications receive the DDERR NOEXCLUSIVEMODE return value if they lose exclusive
device access, as is the case when the user presses Alt+Tab to switch to another program. In this
event one possible coding alternative is to call the TestCooperativelLevel () function in a loop,
exiting only when it returns DD_OK, which indicates that exclusive mode is now available.

Applications that use the normal cooperative level (DDSCL NORMAL flag) receive
DDERR_EXCLUSIVEMODEALREADYSET if another application has taken exclusive device access.
In this case a windowed application can be coded to loop until TestCooperativeLevel ()
returns DD_OK.

The two most common flag combinations used in the SetCooperativelLevel () call are the
ones used for programs that execute in exclusive mode and those that are windowed. The
following code fragment shows the call to SetCooperativelLevel () for a DirectDraw application
that requests exclusive mode:

LPDIRECTDRAW 1lpDD4; // DirectDraw object
HWND hwnd; // Handle to the window

lpDD4->SetCooperativeLevel (hwnd, DDSCL EXCLUSIVE | DDSCL_FULLSCREEN) ;

Two flags are required to set DirectDraw exclusive mode: DDSCL EXCLUSIVE and
DDSCL_ FULLSCREEN. In reality all exclusive mode applications execute full-screen so the second
flag is actually redundant.

To set the cooperative level to the normal mode the code can be as follows:

LPDIRECTDRAW 1pDD4; // DirectDraw object

1lpDD4->SetCooperativeLevel (NULL, DDSCL NORMAL) ;

Note that exclusive mode applications pass the handle to the window (hwnd) parameter so that

This is not required for normal Windows programs that use conventional recovery procedures.

Hardware capabilities

Whereas in conventional Windows programming application code often ignores the specific
configuration of the system hardware, this is not the case in programs that use DirectDraw. Video
cards that support DirectDraw do so at varying degrees of hardware compatibility and of
DirectDraw functionality. In most cases an application needs to know what level of DirectDraw
hardware support is available in a particular machine, as well as the amount of available video
memory, before deciding if the code is compatible with the host, or how to proceed if a given
functionality is not present.

Applications can enumerate the capabilities of the hardware to determine the supported hardware-
accelerated features. DirectX emulates most features that are not implemented in hardware;
however, there are a few in which this is not the case. It is this emulation that makes possible
some degree of device independence. The DirectDraw GetCaps () function returns run-time
information about video resources and hardware capabilities. By examining these capabilities
during the initialization stage, an application can decide whether the available functionality is
insufficient and abort execution, or make other adjustments to provide the best possible
performance over varying levels of support.

For this reason, applications that use features not supported by the hardware are usually better off
creating surfaces in system memory, rather than in video memory.

The GetcCaps () function returns the capabilities of the device driver for the hardware abstraction
layer (HAL) and for the hardware emulation layer (HEL). The general form of the GetCaps ()
function is as follows:

HRESULT GetCaps (

LPDDCAPS 1pDDDriverCaps, // 1
LPDDCAPS l1pDDHelCaps // 2

)i

The first parameter is the address of a structure of type DDCAPS that is filled with the capabilities of
the HAL, as reported by the device driver. Code can set this parameter to NULL if the hardware
capabilities are not necessary. The second parameter is the address of a structure, also of type
DDCAPS, which is filled with the capabilities of the HEL. This parameter can also be set to NULL if
these capabilities should not be retrieved. Code can set only one of the two parameters to NULL. If
the method succeeds, the return value is DD_OXK. If the method fails, the return value is one of the
following error constants:

DDERR INVALIDOBJECT
DDERR INVALIDPARAMS

The DDCAPS structure is a large one indeed; it contains 58 members in the DirectDraw4 version.
The structure is defined as follows:

typedef struct DDCAPS {

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

dwSize; // size of structure DDCAPS

dwCaps; // driver-specific caps
dwCaps?2; // more driver-specific // caps
dwCKeyCaps; // color key caps
dwFXCaps; // stretching and effects // caps
dwFXAlphaCaps; // alpha caps
dwPalCaps; // palette caps
dwSVCaps; // stereo vision caps

dwAlphaBltConstBitDepths;

// alpha bit-depth members

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

//
dwAlphaBltSurfaceBitDepths;

dwAlphaBltPixelBitDepths;
//
dwAlphaOverlayConstBitDepths; //
//

dwAlphaOverlaySurfaceBitDepths;

dwAlphaOverlayPixelBitDepths;
//
dwzBufferBitDepths; // Z-buffer bit depth
dwVidMemTotal; // total video memory

dwVidMemFree; // total free video memory

DWORD dwMaxVisibleOverlays
DWORD
DWORD dwNumFourCCCodes; //
// codes

DWORD dwAlignBoundarySrc;

// restrictions

dwCurrVisibleOverlays;

; // maximum visible overlays
// overlays currently // visible

number of supported // FOURCC

// overlay alignment

DWORD dwAlignSizeSrc; //

DWORD dwAlignBoundaryDest; //

DWORD dwAlignSizeDest; //

DWORD dwAlignStrideAlign; // stride alignment

DWORD dwRops[DD ROP SPACE]; // supported raster ops
DWORD dwReservedCaps; // reserved

DWORD dwMinOverlayStretch; // overlay stretch factors
DWORD dwMaxOverlayStretch; //

DWORD dwMinLiveVideoStretch; // obsolete

DWORD dwMaxLiveVideoStretch; //

DWORD dwMinHwCodecStretch; //

DWORD dwMaxHwCodecStretch; //

DWORD dwReservedl; // reserved

DWORD dwReserved2; //

DWORD dwReserved3; //

DWORD dwSVBCaps; // system—to-video blit // related
// caps

DWORD dwSVBCKeyCaps; //

DWORD dwSVBFXCaps; //

DWORD dwSVBRops [DD ROP SPACE]; //

DWORD dwVSBCaps; // video-to-system blit // related
// caps

DWORD dwVSBCKeyCaps; //

DWORD dwVSBFXCaps; //

DWORD dwVSBRops [DD ROP SPACE]; //

DWORD dwSSBCaps; // system—to-system blit // related
// caps

DWORD dwSSBCKeyCaps; //

DWORD dwSSBCFXCaps; //

DWORD dwSSBRops [DD ROP SPACE]; //

DWORD dwMaxVideoPorts; // maximum number of live // video
// ports

DWORD dwCurrVideoPorts; // current number of live // video
// ports

DWORD dwSVBCaps2; // additional system-to-// video
// blit

// caps

DWORD dwNLVBCaps; // nonlocal-to-local video

// memory

// blit caps

DWORD dwNLVBCaps2; //

DWORD dwNLVBCKeyCaps; //

DWORD dwNLVBFXCaps; //

DWORD dwNLVBRops [DD ROP_ SPACE]; //

DDSCAPS2 ddsCaps; // general surface caps

DDCAPS, FAR* LPDDCAPS;

Most applications are concerned with only a few of